渗透压补偿性溶质ECTOINE对酶稳定性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环形氨基酸Ectoine (1,4,5,6-四氢-2-甲基-4-嘧啶羧酸)是由嗜盐菌在高渗透压诱导下合成的一种具有两性离子特性的渗透压补偿性溶质,对蛋白质、核酸、细胞等在逆环境下具有保护作用。本论文以植酸酶和脂肪酶为酶蛋白,从发酵制备、对酶的保护应用和作用机理等方面对Ectoine进行了研究。
     从盐池淤泥中筛选了一株中度嗜盐菌B2。细胞抽提物中经1 H-NMR鉴定含有Ectoine。菌株经16S rDNA鉴定属于盐单胞菌属(Halomonas sp.)。在含2mol/L NaCl的谷氨酸单钠培养基中发酵合成Ectoine最大量达到3.5g/L。
     通过与其他补偿性溶质比较,考察了Ectoine对植酸酶(PHYAⅡ)的热稳定性保护作用。研究了Ectoine的添加量、保护方式及对PHYAⅡ高温水解的影响。实验结果表明,Ectoine作为PHYAⅡ的热稳定性保护剂,用量最少,保护作用好。
     利用PHYAⅡ失活热力学和动力学分析,结合紫外和荧光光谱技术,推测Ectoine提高了酶热稳定性的作用机理。结果表明,Ectoine可以提高酶分子ΔU*、ΔH*、ΔG*和t1/2,降低失活速率常数k;荧光、紫外吸收光谱表明Ectoine对酶热处理后的肽链伸展不利。因此推测Ectoine的添加主要导致酶内部或酶与外界水介质的氢键发生变化,从而有利于酶热稳定性增加。
     以转酯合成生物柴油和酯化合成油酸乙酯为反应体系,考察Ectoine对Novozym435和Aspergillus oryzae DM-01全细胞脂肪酶在有机相中酶活性的影响。结果表明,作为底物的甲醇和乙醇在一定浓度下对脂肪酶具有抑制作用。添加适量Ectoine,在脂肪酶一次或反复使用中,均对脂肪酶有显著保护作用。和同质量的其他补偿性溶质比较,Ectoine保护效果最好。添加过量Ectoine则会抑制酶活性。
     利用傅立叶变换红外光谱技术(FTIR),结合酶催化动力学分析,探讨Ectoine提高脂肪酶在甲(乙)醇和油酸中活性的保护机理。对Novozym435的红外原始图谱和二级结构分析表明,适量Ectoine会降低甲醇对酶的氢键缔合作用,通过增加β-折叠结构来提高酶稳定性,酶催化动力学也表明适量Ectoine会减小甲醇对酶的亲和力。对A. oryzae DM-01脂肪酶红外光谱分析表明,油酸和无水乙醇都对酶构象有影响,其中油酸使酶的分子内氢键明显减弱,对酶构象影响较大。添加Ectoine,使酶的二级结构含量变化趋势减小,会更接近自然状态的酶。
The cyclic amino acid ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid), one of the representative compatible solutes with the characteristic of zwitterions, accumulates in halophilic and halotolerant bacteria. Previous studies indicated that ectoine functions on proteins, nucleic acids and cells as a stabilizer against some adverse conditions. The produciton of ectoine and its bioprotective application and mechanism were studied in the paper using phytase and lipase as model protein.
     A moderately halophilic bacterium B2 was isolated from silt in salt lake.'H-NMR analysis was used to identify ectoine in cell extract. Based on the analysis of 16S rDNA, strain was identified as Halomonas (Halomonas sp.). When B2 was cultivated in MG medium with 2 mol/L NaCl, the maximum ectoine concentration was 3.5 g/L
     The protective effects of ectoine on thermal stability of phytase (PHYAⅡwas investigated by comparing with other compatible solutes. The concentration, protective mode and effect on pyrohydrolysis of ectoine were studied. The result showed that ectoine had a highest thermoprotection efficiency for PHYAⅡas thermalstability protective additive.
     According the analyses of thermodynamics and kinetics of heat inactivation of PHYA II, combining with UV and fluorescence spectra, the mechanism of improving enzyme thermal stability by ectoine was speculated. The result indicated that the addition of ectoine improved△U*,△H*,△G* and t1/2, as well as reduced constant k of inactivation rate. The fluorescence and UV spectra showed that ectoine was disadvantaged for stretching of peptide chain after enzyme heat treatment. Therefore, it was suggested that addition of ectoine mainly led to change of hydrogen bond either inside enzyme or between enzyme and water in media, whereas benefit for increasing of the thermal stability of enzymes.
     Effect of ectoine on Novozym435 and whole cell lipase from Aspergillus oryzae DM-01 were investigated using transesterification for biodiesel and esterification for aethylis oleas as model reactions in organic media. The result indicated lipase would be inhibited by excess metnanol (alcohol) as substrates. Ectoine exhibited significant protection on enzymatic activity in once or reuse. Compared with other compatible solutes, ectoine showed the best protection. However, excess ectoine would result in inhibitting enzymatic activity.
     Using Fourier transform infrared spectroscopy (FTIR), combined with enzymatic kinetic analysis, the mechanism of improving activities of lipase in methanol (ethanol) and oleic acid by additine of Ectoine was investgated. Original infrared spectra and secondary structure analysis of Novozym435 showed that optimal ectoine could reduce the hydrogen bond association of methanol on enzyme and increase stability of enzyme by increasingβ-sheet structure. In addition, enzyme catalysis kinetics also shows that supplementation with an appropriate amount of ectoine led to a decrease in the affinity of lipase for methanol. The infrared spectrum of A. oryzae DM-01 lipase showed that oleic acid and absolute ethanol had an effect on enzyme conformation, in which oleic acid significantly decreased intramolecular hydrogen bonding to impact on enzyme conformation on greater degree. Addition of ectoine reduced the change trend of secondary structure, which closed to the natural conformation of the enzyme.
引文
[1]Franks F. Conformational stability of proteins.Protein Biotechnology,1993:395-436.
    [2]周理红,许梓荣.酶的失活机理及稳定化技术.浙江畜牧兽医,2004,(06):7-8.
    [3]郭勇.酶工程.北京:科学出版社;2004.
    [4]Wyss M, Pasamontes L, Remy R, et al. Comparison of the thermostability properties of three acid phosphatases from molds:Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase.Applied and environmental microbiology,1998,64(11):4446-4451.
    [5]Brosnan M, Kelly C, Fogarty W. Investigation of the mechanisms of irreversible thermoinactivation of Bacillus stearothermophilusa-amylase.European Journal of Biochemistry, 1992,203(1-2):225-231.
    [6]罗贵民.酶工程.北京:化学工业出版社;2002.
    [7]Chilson OP, Costello LA, Kaplan NO. Effects of Freezing on Enzymes.Fed Proc,1965,24(6): 55-65.
    [8]Hanafusa N. The behavior of hydration water of protein with the protectant in the view of lHNMR.Developments in biological standardization,1992,74:241-253.
    [9]Carpenter J, Crowe J. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins.Biochemistry,1989,28(9):3916-3922.
    [10]秦华明,宗敏华,梁世中.糖在蛋白质药物冷冻干燥过程中保护作用的分子机制.广东药学院学报,2001,17(4):305-308.
    [11]Prestrelski S, Tedeschi N, Arakawa T, et al. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers.Biophysical Journal,1993,65(2):661-671.
    [12]Gorman L, Dordick J. Organic solvents strip water off enzymes.Biotechnology and bioengineering,1992,39(4):392-397.
    [13]Fitzpatrick P, Steinmetz A, Ringe D, et al. Enzyme crystal structure in a neat organic solvent.Proceedings of the National Academy of Sciences of the United States of America,1993, 90(18):8653-8657.
    [14]Yennawar N, Yennawar H, Farber G. X-ray Crystal Structure of. gamma.-Chymotrypsin in Hexane.Biochemistry,1994,33(23):7326-7336.
    [15]Affleck R, Xu Z, Suzawa V, et al. Enzymatic catalysis and dynamics in low-water environments.Proceedings of the National Academy of Sciences of the United States of America, 1992,89(3):1100-1104.
    [16]Burke P, Griffin R, Klibanov A. Solid-state NMR assessment of enzyme active center structure under nonaqueous conditions.Journal of Biological Chemistry,1992,267(28):20057-20064.
    [17]Clement G, Bender M. The Effect of Aprotic Dipolar Organic Solvents on the Kinetics of-Chymotrypsin-Catalyzed Hydrolyses*.Biochemistry,1963,2(4):836-843.
    [18]Yennawar N, Yennawar H, Farber G. X-ray Crystal Structure of. gamma.-Chymotrypsin in Hexane.Biochemistry,1994,33(23):7326-7336.
    [19]Ryu K, Dordick J. How do organic solvents affect peroxidase structure and function?Biochemistry,1992,31(9):2588-2598.
    [20]Yang Z, Robb D. Partition coefficients of substrates and products and solvent selection for biocatalysis under nearly anhydrous conditions.Biotechnology and bioengineering,1994,43(5): 365-370.
    [21]Jaenicke R, B hm G. The stability of proteins in extreme environments.Current opinion in structural biology,1998,8(6):738-748.
    [22]Jaenicke R. What ultrastable globular proteins teach us about protein stabilization.Biochemistry Biokhimii a,1998,63(3):312-321.
    [23]张子丁.基于分子模拟技术的化学修饰酶热稳定性机理研究:(博士论文).天津:天津大学;2000.
    [24]Gupta M. Thermostabilization of proteins.Biotechnology and applied biochemistry,1991,14(1): 1-11.
    [25]Prabhu N, Sharp K. Heat capacity in proteins.Phys Chem,2005,56:521-548.
    [26]Kogut M. The "true" intracellular environment of moderately halophilic eubacteria.General and applied aspects of halophilic microorganisms Plenum Press, New York, NY,1991:217-224.
    [27]Becktel W, Schellman J. Protein stability curves.Biopolymers,1987,26(11):1859-1877.
    [28]Pace C. Measuring and increasing protein stability.Trends in Biotechnology,1990,8:93-98.
    [29]Murphy A, oFagain C. Stability characteristics of chemically-modified soluble trypsin. Journal of Biotechnology,1996,49(1-3):163-171.
    [30]Yang Z, Domach M, Auger R, et al. Polyethylene glycol-induced stabilization of subtilisin.Enzyme and Microbial Technology,1996,18(2):82-89.
    [31]刘朝辉,武伟娜,刘跃等.保护剂提高β-甘露聚糖酶热稳定性的研究.天津大学学报,2008,41(1):114-118.
    [32]Samborska K, Guiavarc'h Y, Van Loey A, et al. The thermal stability of Aspergillus oryzae alpha-amylase in presence of sugars and polyols.Journal of Food Process Engineering,2006,29(3): 287-303.
    [33]Gaertner H, Puigserver A. Increased activity and stability of poly (ethylene glycol)-modified trypsin.Enzyme and Microbial Technology,1992,14(2):150-155.
    [34]Tuccio B, Ferre E, Comeau L, et al. A kinetic model for the decrease in lipase activity of rhizopus arrhizus and penicillium cyclopium mycelia in organic media.Journal of Chemical Technology & Biotechnology,1992,55(1):17-24.
    [35]Sadana A, Henley J. Mechanistic analysis of complex enzyme deactivations: Influence of various parameters on series-type inactivations.Biotechnology and bioengineering, 1986, 28(7): 977-987.
    [36]张东浩,白姝,孙彦.海藻糖对脂肪酶的保护机理及酶失活动力学.生物加工过程,2006,4(1):50-53.
    [37]Deleuze H, Langrand G, Millet H, et al. Lipase-catalyzed reactions in organic media: competition and applications.Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1987,911(1):117-120.
    [38]Miller D, Prausnitz J, Blanch H. Kinetics of lipase-catalysed interesterification of triglycerides in cyclohexane.Enzyme and Microbial Technology,1991,13(2):98-103.
    [39]Zaks A, Klibanov A. Enzyme-catalyzed processes in organic solvents.Proceedings of the National Academy of Sciences,1985,82(10):3192-3196.
    [40]Khmelnitsky Y, Welch S, Clark D, et al. Salts dramatically enhance activity cf enzymes suspended in organic solvents. Journal of the American Chemical Society,1994,116(6):2647-2648.
    [41]蒋俊光,王振新.红外光谱和圆二色光谱研究氰根配位的辣根过氧化物酶(HRP)的热伸展过程.高等学校化学学报,2001,22(7):1131-1133.
    [42]王守业,徐小龙.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,13(4):257-260.
    [43]高红艳,许强,杨志怀FT-IR在研究蛋白质二级结构中的应用.宝鸡文理学院学报:自然科学版,2009,29(3):47-53.
    [44]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报,2003,24(2):226-231.
    [45]张强,袁静明.醇引起酵母醇脱氢酶构象变化的光谱研究.光谱学与光谱分析,1998,18(1):30-33.
    [46]颜兴和,王栋,徐岩.华根霉脂肪酶有机相合成酶活的研究.工业微生物,2005,35(2):24-28.
    [47]李沉纹,周佳敏,尹宗宁.荧光光谱法研究过氧化氢酶溶液稳定性.中国生化药物杂志,2009,30(4):243-247.
    [48]赵巍,陆珊,刁家志等.秋水仙碱与胰蛋白酶相互作用的光谱性质研究.天然产物研究与开发,2006,(18):369-372.
    [49]Haris P, Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media.Journal of Molecular Catalysis B:Enzymatic,1999,7(1-4):207-221.
    [50]杨红,高修功.用傅立叶变换红外光谱研究有机溶剂对脂肪酶构象的影响.无锡轻工大学学报:食品与生物技术,1997,16(2):42-46.
    [51]Meng-Xia X, Yuan L. Studies on the hydrogen bonding of aniline's derivatives by FT-IR.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2002,58(13): 2817-2826.
    [52]杨小民,杨基础.不同糖对纤维素酶保护的机理研究.清华大学学报,2000,40(2):55-58.
    [53]葛宇,刘玲,高剑英等.重组人铜锌SOD在脱水过程中的二级结构变化及保护剂的作用.华东理工大学学报,2003,(02).
    [54]刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响.化学学报,2003,61(8):1305-1310.
    [55]Janecek S. Strategies for obtaining stable enzymes.Process Biochemistry,1993,28(7):435-445.
    [56]O'Fagain C, Sheehan H, O'Kennedy R, et al. Maintenance of enzyme structure: Possible methods for enhancing stability.Process Biochemistry,1988,23(6):166-171.
    [57]周建琴,刘菊香.聚乙烯醇复合固定化植酸酶方法研究CHINA BREWING,2009, (11).
    [58]Garcia D, Ortega F, Marty J. Kinetics of thermal inactivation of horseradish peroxidase: stabilizing effect of methoxypoly (ethylene glycol).Biotechnology and applied biochemistry,1998, 27:49-54.
    [59]杨缜.聚乙二醇修饰对酶活性和稳定性的影响.生物化学与生物物理进展,1995,22(004):340-345.
    [60]Mozhaev V, Melik-Nubarov N, Levitsky V, et al. High stability to irreversible inactivation at elevated temperatures of enzymes covalently modified by hydrophilic reagents: a-chymotrypsin.Biotechnology and bioengineering,1992,40(6):650-662.
    [61]吴本传,刘红,陈昭烈等.化学修饰对组织型纤溶酶原激活剂的纤溶活性和体内半衰期的影响PHARMACEUTICAL BIOTECHNOLOGY,2003,10(6):369-375.
    [62]项明.卵清溶菌酶及其定点突变体热力学稳定性研究.生物化学与生物物理学报:英文版,1997,29(002):111-115.
    [63]Lee B. Estimation of the maximum change in stability of globular proteins upon mutation of a hydrophobic residue to another of smaller size.Protein Science,1993,2(5):733-738.
    [64]来鲁华.蛋白质的结构预测与分子设计.北京:北京大学出版社;1993.
    [65]Rodriguez E, Wood ZA, Karplus PA, et al. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris.Arch Biochem Biophys,2000,382(1):105-112.
    [66]Gekko K. Calorimetric study on thermal denaturation of lysozyme in polyol-water mixtures. Journal of biochemistry,1982,91(4):1197-1204.
    [67]徐金库,张媛媛,刘均洪.酶稳定性的研究进展.化学与生物工程,2004,(3):1-3.
    [68]Lippert K, Galinski E. Enzyme stabilization be ectoine-type compatible solutes:protection against heating, freezing and drying.Applied Microbiology and Biotechnology,1992,37(1):61-65.
    [69]Kaushik JK, Bhat R. Thermal stability of proteins in aqueous polyol solutions.J Phys Chem B,, 1998,102 (36):7058-7066.
    [70]Anjum F, Rishi V, Ahmad F. Compatibility of osmolytes with Gibbs energy of stabilization of proteins.Biochim Biophys Acta,2000,1476(1):75-84.
    [71]Costa S, Tzanov T, Filipa Carneiro A, et al. Studies of stabilization of native catalase using additives.Enzyme and Microbial Technology,2002,30(3):387-391.
    [72]Crowe J, Crowe L, Chapman D. Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane.Archives of biochemistry and biophysics,1984,232(1): 400-407.
    [73]Levine H, Slade L. Another view of trehalose for drying and stabilizing biological materials.BIOPHARM-EUGENE-,1992,5:36-36.
    [74]Timasheff SN. The control of protein stability and association by weak interactions with water: how do solvents affect these processes?Annual Review of Biophysics and Biomolecular Structure, 1993,22(1):67-97.
    [75]Colaco C, Sen S, Thangavelu M, et al. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology.Nature Biotechnology,1992,10(9):1007-1011.
    [76]Andersson M, Hatti-Kaul R. Protein stabilising effect of polyethyleneimine.Journal of Biotechnology,1999,72(1):21-31.
    [77]Marcozzi G, Di Domenico C, Spreti N. Effects of surfactants on the stabilization of the bovine lactoperoxidase activity.Biotechnology progress,1998,14(4):653-656.
    [78]Ventosa A, Nieto J, Oren A. Biology of moderately halophilic aerobic bacteria.Microbiology and Molecular Biology Reviews,1998,62(2):504-544.
    [79]张士功,高吉寅,宋景芝.甜菜碱对NaCI胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16(4):429-432.
    [80]任培根,周培瑾.中度嗜盐菌的研究进展.微生物学报,2003,43(003):427-431.
    [81]Brown AD, Simpson JR. Water relations of sugar-tolerant yeasts:the role of intracellular polyols.Microbiology,1972,72(3):589.
    [82]Roberts M. Organic compatible solutes of halotolerant and halophilic microorganisms.Saline Systems,2005,1(5):1-30.
    [83]Yancey P. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses.Journal of Experimental Biology,2005,208(15):2819-2830.
    [84]Galinski EA, Pfeiffer HP, Truper HG. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira.Eur J Biochem,1985,149(1):135-139.
    [85]Nagata S, Maekawa Y, Ikeuchi T, et al. Effect of compatible solutes on the respiratory activity and growth of Escherichia coli K-12 under NaCl stress.Journal of bioscience and bioengineering, 2002,94(5):384-389.
    [86]Schnoor M, Voss P, Cullen P, et al. Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer.Biochem Biophys Res Commun,2004,322(3):867-872.
    [87]姜蔚宇,陈荣忠.四氢嘧啶类物质的生物合成与转运途径及其生物学功能.生命的化学,2007,157(4):323-326.
    [88]Sauer T, Galinski E. Bacterial milking: a novel bioprocess for production of compatible solutes.Biotechnology and bioengineering,1998,57(3):306-313.
    [89]Onraedt A, Walcarius B, Soetaert W, et al. Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis.Biotechnology progress,2005,21(4):1206-1212.
    [90]姜蔚宇,陈志亮,傅英楠等.产四氢嘧啶中度嗜盐菌TA-4的分离和特性研究.台湾海峡,2008,27(2):168-173.
    [91]Schobert B, Tschesche H. Unusual solution properties of proline and its interaction with proteins.Biochimica et Biophysica Acta (BBA)-General Subjects,1978,541(2):270-277.
    [92]Crowe JH, Crowe LM, Carpenter JF, et al. Interactions of sugars with membranes.Biochimica et biophysica acta,1988,947(2):367-384.
    [93]Crowe J. Anhydrobiosis: an unsolved problem.American naturalist,1971,105(946):563-573.
    [94]Arakawa T, Timasheff S. Preferential interactions of proteins with solvent components in aqueous amino acid solutions* 1. Archives of biochemistry and biophysics,1983,224(1):169-177.
    [95]Galinski EA. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection.Cellular and Molecular Life Sciences,1993,49(6):487-496.
    [96]Yu I, Nagaoka M. Slowdown of water diffusion around protein in aqueous solution with ectoine.Chemical Physics Letters,2004,388(4-6):316-321.
    [97]Hai T, Oppermann-Sanio F, Steinbuchel A. Molecular characterization of a thermostable cyanophycin synthetase from the thermophilic cyanobacterium Synechococcus sp. strain MA19 and in vitro synthesis of cyanophycin and related polyamides.Applied and environmental microbiology, 2002,68(1):93-101.
    [98]Andersson M, Breccia J, Hatti-Kaul R. Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase.Biotechnology and applied biochemistry,2000,32:145-153.
    [99]Canovas D, Borges N, Vargas C, et al. Role of Ngamma-Acetyldiaminobutyrate as an Enzyme Stabilizer and an Intermediate in the Biosynthesis of Hydroxyectoine.Applied and environmental microbiology,1999,65(9):3774-3779.
    [100]魏胜华,赵永利,余俊et al.四氢嘧啶提高中性蛋白酶热稳定性的研究.安徽农业科学,2009,37(22):10345-10346.
    [101]戴传波,李建桥,赵岩涛.由植酸钠制取肌醇的水解反应动力学方程.农业机械学报,2007,38(10):73-76.
    [102]Keshavarz K. Nonphytate phosphorus requirement of laying hens with and without phytase on a phase feeding program.Poult Sci,2000,79(5):748-763.
    [103]Stahl CH, Roneker KR, Thornton JR, et al. A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs.J Anim Sci,2000,78(3): 668-674.
    [104]Wyss M, Pasamontes L, Remy R, et al. Comparison of the thermostability properties of three acid phosphatases from molds:Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase.Applied and environmental microbiology,1998,64(11):4446-4451.
    [105]W. HY, G. WA. Phytate hydrolysis in soybean and cottonseed meals by Aspergillus ficuum phytase. J Agric Food Chem,1988,36:259-262.
    [106]Ullah AH. Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum.Prep Biochem,1988,18(4):443-458.
    [107]Lehmann M. Consensus Phytase
    [108]Yanming H, Gen L. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris.Archives of biochemistry and biophysics,1999,364:83-90.
    [109]Berka RM, Rey MW, Brown KM, et al. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus.Appl Environ Microbiol,1998, 64(11):4423-4427.
    [110]Qu Y, Bolen CL, Bolen DW. Osmolyte-driven contraction of a random coil protein.Proc Natl Acad Sci U S A,1998,95(16):9268-9273.
    [111]Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils.J Biosci Bioeng,2001,92(5):405-416.
    [112]Bloomer S, Adlercreutz P, Mattiasson B. Facile synthesis of fatty acid esters in high yields.Enzyme and Microbial Technology,1992,14(7):546-552.
    [113]李伟杰,高静,姜艳军,et al. AOT逆胶束体系脂肪酶催化合成油酸乙酯.过程工程学报,2008,8(006):1173-1178.
    [114]A1-Zuhair S, Ling F, Jun L. Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase.Process Biochemistry,2007,42(6):951-960.
    [115]Watanabe Y, Shimada Y, Sugihara A, et al. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase.Journal of the American Oil Chemists' Society,2000,77(4):355-360.
    [116]Zaks A, Klibanov A. The effect of water on enzyme action in organic media.Journal of Biological Chemistry,1988,263(17):8017-8021.
    [117]Hoq M, Yamane T, Shimizu S, et al. Continuous hydrolysis of olive oil by lipase in microporous hydrophobic membrane bioreactor.Journal of the American Oil Chemists' Society, 1985,62(6):1016-1021.
    [118]赵海霞,王红宁,陈惠.饲用植酸酶热稳定性的研究.微生物学通报,2004,31(1):105-109.
    [119]东秀珠,蔡妙英.常见细菌系统鉴定手册北京:科学出版社;2001.
    [120]Nagata S, Wang Y, Oshima A, et al. Efficient cyclic system to yield ectoine using Brevibacterium sp. JCM 6894 subjected to osmotic downshock.Biotechnology and bioengineering, 2008,99(4):941-948.
    [121]梁国栋.最新分子生物学实验技术.北京:科学出版社;2001.
    [122]Thomas T, Galinski EA. Anaerobic high-cell-density fermentation and cyclic production of compatible solutes with halophilic, denitrifying bacteria. In: Presented at the first international congress on extremophiles. Estoril(Portugal); 1997.
    [123]张苓花,袁晓东.植酸酶基因在毕赤酶母中表达及表达酶性质研究.大连理工大学学报,2002,42(003):294-300.
    [124]Montes F, Battaner E, Catalan J, et al. Kinetics and heat-inactivation mechanisms of D-amino acid oxidase.Process Biochemistry,1995,30(3):217-224.
    [125]Siddiqui K, Najmus Saqib A, Rashid M, et al. Thermostabilization of carboxymethylcellulase from Aspergillus niger by carboxyl group modification.Biotechnology Letters,1997,19(4):325-330.
    [126]Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs1.Journal of molecular biology,1997,269(4):631-643.
    [127]Vieille C, Gregory Zeikus J. Thermozymes:identifying molecular determinants of protein structural and functional stability.Trends in Biotechnology,1996,14(6):183-190.
    [128]Daniel R. The upper limits of enzyme thermal stability.Enzyme and Microbial Technology, 1996,19(1):74-79.
    [129]Alber T. Stabilization energies of protein conformation. In. Prediction of proteins tructure and the principles of protein conformation (Fasman G. D. ed.).Plenum Press, New York,USA,,1987: 161-192.
    [130]Robson B, Gamier J. Introduction to protein and protein engineering. Amsterdam: Elsevier; 1986.
    [131]叶茂青,易同寅,李华屏等.牛血清IgG热化学变性和热变性的研究.化学学报,2005,63(22):2047-2054.
    [132]何飚,严明,张彤等.氨基酰化酶热变性时失活和去折叠的比较.科学通报,1994,39(7):656-660.
    [133]金亮,徐岩,曹光群.华根霉全细胞脂肪酶催化合成油酸油醇酯.催化学报,2006,27(7):611-614.
    [134]Samukawa T, Kaieda M, Matsumoto T, et al. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil Journal of bioscience and bioengineering,2000, 90(2):180-183.
    [135]K6se O, Tuter M, Aksoy H. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium.Bioresource Technology,2002,83(2):125-129.
    [136]Herskovits T, Gadegbeku B, Jaillet H. On the structural stability and solvent denaturation of proteins. Ⅰ. Denaturation by the alcohols and glycols.Journal of Biological Chemistry,1970,245(10): 2588-2598.
    [137]Dossat V, Combes D, Marty A. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production.Enzyme and Microbial Technology,1999,25(3-5):194-200.
    [138]Selmi B, Thomas D. Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free medium.Journal of the American Oil Chemists' Society,1998,75(6):691-695.
    [139]Nassreddine S, Karout A, Lorraine Christ M, et al. Transesterification of a vegetal oil with methanol catalyzed by a silica fibre reinforced aerogel encapsulated lipase.Applied Catalysis A: General,2008,344(1-2):70-77.
    [140]Tiirkan A, Kalay S. Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: elucidation of the mechanisms of lipases.Journal of Chromatography A,2006,1127(1-2):34-44.
    [141]Dossat V, Combes D, Marty A. Lipase-catalysed transesterification of high oleic sunflower oil.Enzyme and Microbial Technology,2002,30(1):90-94.
    [142]Xu Y, Du W, Liu D. Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor.Journal of Molecular Catalysis B: Enzymatic,2005,32(5-6):241-245.
    [143]邬敏辰,孙崇荣.圆弧青霉碱性脂肪酶的分离纯化的特性.生物化学与生物物理学报:英文版,1999,31(6):664-668.
    [144]王运吉,张苓花.酶化工.大连:大连海事大学出版社;1997.
    [145]Surewicz W, Moscarello M, Mantsch H. Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry.Journal of Biological Chemistry,1987,262(18):8598-8602.
    [146]Byler D, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra.Biopolymers,1986,25(3):469-487.
    [147]Susi H, Byler D. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes.Methods in enzymology,1986,130:290-311.
    [148]Krimm S, Bandekar J. Vibrational analysis of peptides, polypeptides, and proteins. V. Normal vibrations of β-turns.Biopolymers,1980,19(1):1-29.
    [149]陈清西,颜思旭.果菠萝蛋白酶在有机溶剂中的变性与失活动力学的研究.厦门大学学报:自然利学版,1993,31(9):88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700