大倾角大采高工作面煤壁失稳机理及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国厚煤层储量丰富,大采高综采随着技术优点的日益突出和配套设备的重大进展,已成为厚煤层开采的重要发展方向。但当大采高工作面遇到大倾角等复杂煤层赋存条件,将造成采场围岩控制的难度增大,特别是工作面煤壁易于片帮失稳,严重制约了大采高工作面安全高效优势的发挥。因此,开展大倾角大采高工作面煤壁失稳机理及控制研究具有重要现实与理论意义。
     论文调查统计了大采高工作面煤壁失稳的主要形式及其失稳特点,根据大采高工作面煤壁失稳的不同机制,对大采高工作面煤壁失稳进行了科学分类,提出了应力控制型煤壁失稳和结构控制型煤壁失稳的概念,并解释了其内涵。
     采用弹性力学的基本理论,对应力控制型煤壁失稳机理进行了理论研究,分析了工作面煤壁前方煤体内的应力分布规律。根据工作面前方煤体内最大主应力和最大剪应力的分布规律,发现在在大采高工作面煤壁中部偏上部位易发生拉裂破坏机制造成的应力控制型煤壁,在工作面煤壁上部易发生剪切破坏机制造成的应力控制型煤壁失稳。采用楔形体滑动破坏理论并结合极限平衡法,对结构控制型煤壁失稳机理进行了理论研究,得到了结构控制型煤壁失稳的判别式。根据岩石力学中结构面的强度效应,建立了结构控制型煤壁失稳与应力控制型煤壁失稳的判别机制。
     采用理论研究、RFPA数值模拟、PFC数值模拟、UDEC数值模拟方法,深入研究了煤层倾角对大采高工作面应力控制型煤壁稳定性和结构控制型煤壁稳定性的影响,得到了不同采高、不同煤体强度、不同埋深、不同结构面产状等条件下,煤层倾角对煤壁稳定性的影响规律,为大倾角大采高工作面煤壁稳定性控制提供了技术思路。
     运用AHP-FCE综合评判模型,对羊场湾煤矿Y110206大采高工作面煤壁稳定性进行了评价。依据煤层赋存条件和大采高综采技术及装备水平,对Y110206工作面进行了合理设计和设备选型,提出了大倾角复杂特厚易燃煤层6.2m大采高工作面的安全保障技术,实现了工作面年产量达到了1000万t的预期目标,技术经济效益显著。
Due to abundant reserves of thick coal seam in our country, fully-mechanizedmining of coalface with great mining height, with increasingly prominent merits of itstechnology and significant improvement of the matching equipment, has alreadybecome the important development direction in terms of the mining of thick coal seam.However, the complicated occurrence conditions, such as the increase of the dip angleand the buried depth of the coal seam, and―three softness‖coal seam, pose greatchallenge for controlling the surrounding rock of the stope, leading to serious instabilityof the coal wall in the coalface, which greatly limit the exertion of the of advantages ofsafe and high-efficient mining of coalface with great mining height. Therefore,launching studies on the stability of the coal wall and the technology for safe andhigh-efficient mining in coalface with great mining height is of great realistic andtheoretical significances.
     Based on the investigations and statistics of the main instability forms of the coalwall and its instability characteristics, in view of the different mechanisms of theinstability of the coal wall in the coalface with great mining height, the present paperconducts scientific classifications of the instabilities, puts forward the concept ofstress-controlled instability and structure-controlled instability, and interprets theirconnotations.
     With the adoption of fundamental theories in elasticity, the present paper conductstheoretical studies to investigate the mechanism of the stress-controlled instability of thecoal wall, and analyzes the stress distribution law in the coal mass in front of thecoalface. According to the distribution law of the maximum principle stressσ1andmaximum shear stressτmax in the coal mass in front of the coalface, the author findsthat the splitting failure, leading to stress-controlled instability,is very likely to happenin the middle and upper part of the coal wall in coalface with great mining height, andthe shear failure, leading to structure-controlled instability, is likely to happen in theupper part of the coal wall. Using slide failure theory of wedge-shaped object combinedwith limit equilibrium method, we launch theoretical studies on the mechanism ofstructure-controlled instability, obtaining its judgment equation. In line with the volumeeffects of the structural plane in rock mechanics, we established the discriminantmechanism of stress-controlled instability and structure-controlled instability of the coalwall. Using theoretical studies, RFPA and PFC and UDEC numerical software, thepresent paper studies deep into the influences of the coal seam dip angle on the stress-controlled instability and structure-controlled instability of the coal wall incoalface with great mining height, acquiring its influencing law under followingconditions, different mining height, different coal mass intensity, different buried depthand different occurrence of structural planes, et al, providing technical train of thoughtfor controlling the stability of the coal wall in coalface with great mining height andlarge dip angle. Utilizing AHP-FCE comprehensive evaluation model, this paperconducts the evaluation of the stability of the Y110206coalface with great miningheight in Yangchangwan coal mine. According to the occurrence of the seam and thefully-mechanized technology of the coalface with great mining height as well as itsequipped level, the present paper conducts reasonable designing and equipmentselection, puts forward the security technology for the coalface with6.2m height andlarge dip angle and free burning seam, realizes the expected goal of producing10million of the coal, yielding significant technical and economic benefits.
引文
[1]陈炎光,徐永圻.中国采煤方法[M].徐州:中国矿业大学出版社,1991.
    [2]屠世浩,袁永.厚煤层大采高综采理论与实践[M].徐州:中国矿业大学出版社,2012.
    [3]屠世浩.长壁综采系统分析的理论与实践[M].徐州:中国矿业大学出版社,2004.
    [4]杜计平,孟宪锐.采矿学[M].徐州:中国矿业大学出版社,2009.
    [5]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社,1993.
    [6]何富连,钱鸣高,刘长友.高产高效工作面支架—围岩保障系统[M].徐州:中国矿业大学出版社,1997.
    [7]王家臣,仲淑姮.我国厚煤层开采技术现状及需要解决的关键问题[J].中国科技论文在线,2008,3(11),829-834.
    [8]王家臣.我国综放开采技术及深层次发展问题探讨[J].煤炭科学技术,2005,33(1):14-17.
    [9]王学军,钱学森,马立强.厚煤层大采高全厚开采工艺研究与应用[J].采矿与安全工程学报,2009,26(2):212-216.
    [10]弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,2006.
    [11] Tu S, Yong Y, Zhen Y, et al. Research situation and prospect of fully mechanized miningtechnology in thick coal seams in China[J]. Procedia Earth and Planetary Science,2009,1(1):35-40.
    [12] Nenghu Z, Qi W, Yong Y, et al. Suitable retention and recovery technology of floor coal at ends offully mechanized face with great mining heights[J]. Mining Science and Technology (China),2011,21(2):281-285.
    [13] Cutts A. Monitoring and control of coal face equipment[J]. Mining Engineer,1993,153(385):101.
    [14] Barczak T M. Design and operation of powered supports for longwall mining[J]. Engineering andMining Journal;(United States),1993,194(6).
    [15]刘涛.厚煤层大采高综采技术现状[J].煤炭工程,2002,2:4-8.
    [16]王金华.我国大采高综采技术与装备的现状及发展趋势[J].煤炭科学技术,2006(1):4-7.
    [17]梁生芳.大采高综采工作面装备介绍[J].煤炭工程,2004(l):11-13.
    [18]许波云.澳大利亚煤炭工业的现状[J].中国煤炭,2000,26(10):54-55.
    [19]王金华.我国大采高综采技术与装备的现状及发展趋势[J].煤炭科学技术,2006,34(1):4-7.
    [20]张银亮,赵军.国产大采高液压支架的研究现状与发展趋势[J].煤矿开采,2008,13(6):1-3.
    [21]周光华.特厚煤层大采高开采技术研究及应用[D].西安:西安科技大学,2010.
    [22]周光华,伍永平,林红梅,等.复杂特厚煤层6.2m采高开采工艺优化[J].西安科技大学学报,2010,30(004):397-401.
    [23]缓倾斜特厚煤层6.2m大采高开采工艺技术研究报告[R].西安:西安科技大学,2008.
    [24]夏永学,康立军,齐庆新.割煤高度对大采高综放工作面煤壁稳定性影响[J].煤炭科学技术,2008,36(12):1-4.
    [25]钱鸣高,缪协兴,许家林,等.岩层控制的关键词理论[M].徐州:中国矿业大学出版社,2003.
    [26]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [27] IO.B.格罗莫夫, IO.H.贝奇科夫著,赵宏珠等译.缓倾斜厚煤层开采矿山压力控制[M].徐州:中国矿业大学出版社,1990:73-81.
    [28]夏均民.大采高综采围岩控制与支架适应性研究[D].青岛:山东科技大学,2004.
    [29]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1):7-11.
    [30] Jie Z. The Influence of Mining Height on Combinational Key Stratum Breaking Length[J].Procedia Engineering,2011,26:1240-1246.
    [31]郝海金.长壁大采高上覆岩层结构及采场支护参数的研究[D].中国矿业大学,2004.
    [32]郝海金,吴健,张勇,等.大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J].煤炭学报,2004,29(2):137-141.
    [33]付玉平,宋选民,邢平伟,等.大采高采场顶板断裂关键块稳定性分析[J].煤炭学报,2009,34(8):1027-1031.
    [34]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002(8):1174-1177.
    [35]黄庆享.近浅埋煤层大采高矿压显现规律实测研究[J].矿山压力与顶板管理,2003(3):58-59.
    [36]刘卫忠,孙立亚.大采高大倾角高档普采面平面应力状态的物理模拟[J].煤矿开采,2001,1:020.
    [37]赵宏珠.大采高支架的使用及参数研究[J].煤炭学报,1991,16(1):32-38.
    [38]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994:272-278.
    [39]李宏建,孙星亮,石平五.综采工作面支架初撑力对围岩控制的作用[J].河北建筑科技学院学报,1997,14(2):20-24.
    [40]徐金海,张顶立.综放工作面端面冒顶事故的防治[J].中国安全科学学报,1998,8(5):28-31.
    [41]宁宇.大采高综采煤壁片帮冒顶机理与控制技术[J].煤炭学报,2009,34(1):50-52.
    [42]方端宏,刘盼,张凤杰.大采高综采工作面煤壁片帮特征及其稳定性分析[J].煤矿安全,2013,44(3):195-198.
    [43]弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,1998.
    [44]李建国,田取珍,杨双锁.河滩沟煤矿综放面煤壁片帮机理及其控制[J].煤炭科学技术,2003,31(12):73-75.
    [45]杨培举,刘长友,吴锋锋.厚煤层大采高采场煤壁的破坏规律与失稳机理[J].中国矿业大学学报,2012,41(003):371-377.
    [46]尹志坡.大采高综采工作面煤壁片帮的分析与预防[J].华北科技学院学报,2008,5(3):51-53.
    [47]靳俊恒,孟祥瑞,高召宁.大采高工作面煤壁片帮深度分析[J].矿业研究与开发,2011(4):26-28.
    [48] Yong Y, Shihao T, Qi W, et al. Mechanics of rib spalling of high coal walls under fully-mechanizedmining[J]. Mining Science and Technology (China),2011,21(1):129-133.
    [49]刘俊峰.两柱掩护式大采高强力液压支架适应性研究[D].煤炭科学研究总院,2006.
    [50]李建国,田取珍,杨双锁.综采放顶煤工作面俯仰斜开采对煤壁片帮的影响机理研究[J].太原理工大学学报,2004,35(4):407-409.
    [51]张世豪.大采高综采工艺参数正交优化[J].山西煤炭,2004,24(1):26-28.
    [52]尹希文.寺河煤矿-6.2m大采高综采工作而矿压规律研究[D].煤炭科学研究总院,2007.4:34-56.
    [53]夏永学,康立军,齐庆新.大采高综放工作面煤壁稳定性分析[J].煤炭科技,2008(4):30-32.
    [54]闫少宏.大采高综放开采煤壁片帮冒顶机理与控制途径研究[J].煤矿开采,2008,13(4):5-8.
    [55]闫少宏,尹希文.大采高综放开采几个理论问题的研究[J].煤炭学报,2008,33(5):481-484.
    [56]牛艳奇,陈树义,刘俊峰.大采高综采工作面片帮加剧机理分析及防治措施[J].煤炭科学技术,2010,38(7):38-40.
    [57]胡国伟,靳钟铭.基于FLAC3D模拟的大采高采场支承压力分布规律研究[J].山西煤炭,2006,26(2):10-12.
    [58]刘长友,黄炳香等.极软厚煤层大采高台阶式综采端面煤岩稳定性控制研究[J].中国矿业大学学报,2008(11):734~738.
    [59]魏民涛,郭朝旭等.极软双突厚煤层大采高综采台阶式割煤防片帮机理研究[J].煤炭工程,2007(10):64~67.
    [60]夏均民.大采高综采围岩控制与支架适应性研究[D].青岛:山东科技大学,2004.
    [61]郝海金,张勇.大采高开采工作面煤壁稳定性随机分析[J].辽宁工程技术大学学报,2005,24(4):489-491.
    [62]尹希文.寺河煤矿-6.2m大采高综采工作而矿压规律研究[D].煤炭科学研究总院,2007.4:34-56.
    [63]方新秋,何杰,李海潮.软煤综放面煤壁片帮机理及防治研究[J].中国矿业大学学报,2009,38(5):640-644.
    [64]王家臣.极软厚煤层煤壁片帮与防治机理[J].煤炭学报,2007,32(8):785-788.
    [65]胡国伟,靳钟铭.基于FLAC3D模拟的大采高采场支承压力分布规律研究[J].山西煤炭,2006,26(2):10-12.
    [66]尹希文,闫少宏,安宇.大采高综采面煤壁片帮特征分析与应用[J].采矿与安全工程学报,2008(2).
    [67] HOU Chao-jiong. Review of roadway control in soft surrounding rock under dynamic stress [J].Journal of Coal Science and Engineering (China),2003,9(1):1-7.
    [68] GB/T23561.1-2009,煤和岩石物理力学性质测定方法—第1部分:采样一般规定[S].
    [69] GB/T23561.10-2010,煤和岩石物理力学性质测定方法—第10部分:煤和岩石抗拉强度测定方法[S].
    [70] GB/T23561.7-2009,煤和岩石物理力学性质测定方法—第7部分:单轴抗压强度测定及软化系数计算方法[S].
    [71] GB/T23561.11-2010,煤和岩石物理力学性质测定方法—第11部分:煤和岩石抗剪强度测定方法[S].
    [72]宋朝阳.寺河矿大采高工作面煤壁片帮机理及防治措施[J].煤炭技术,2007,26(4):52-55.
    [73]夏永学.屯留矿大采高综放工作面矿压显现规律与煤壁稳定性研究[D].北京:煤炭科学研究总院,2008.
    [74]边强.大采高工作面煤壁片帮规律与预防措施[J].煤矿支护,2010(004):17-20.
    [75]刘富营,张林良,杨文明,等.大采高工作面煤壁片帮深度机理研究[J].现代矿业,2012,5:025.
    [76]于洪,邱要伟,王中州.大采高工作面煤壁片帮机理分析及防治技术[J].中州煤炭,2011(001):47-49.
    [77]高全,伊小娟,赵晓彦.楔形体及其稳定性分析与讨论[J].路基工程,2008,12(1):115-116.
    [78]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992,2(177.182).
    [79]杨波.“三软”煤层大采高综采面煤壁片帮机理与控制研究[D].安徽理工大学,2012.
    [80] Keim K S, Miller M S. Case study evaluation of geological influences impacting mining conditionsat a West Virginia longwall mine[J]. International journal of coal geology,1999,41(1):51-71.
    [81] Singh R, Singh T N. Wide stall mining for optimal recovery of coal from a thick seam undersurface features[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(2):155-168.
    [82]郝海金,张勇.大采高开采工作面煤壁稳定性随机分析[J].辽宁工程技术大学学报,2005,24(4):489-491.
    [83]徐芝纶.弹性力学(上册)[J].教育出版杜,1986.
    [84]黄炎.工程弹性力学[M].清华大学出版社,1982.
    [85]李忠华,官福海.弹塑性煤柱的应力场计算[J].采矿与安全工程学报,2006.
    [86]卜万奎,董正筑,卢爱红,等.弹性理论中半无限平面问题的应力解答[J].黑龙江大学自然科学学报,2008,25(4):452-454.
    [87]丁大正.科学计算强档Mathematica4教程[M].电子工业出版社,2002.
    [88]谢广祥,杨科,刘全明.综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3):545-549.
    [89]王涛.煤层倾角对综采工作面支承压力的影响研究[J].科学技术与工程,2012,12(7):1595-1596
    [90]尹光志,李小双,郭文兵.大倾角煤层工作面采场围岩矿压分布规律光弹性模量拟模型试验及现场实测研究[J].岩石力学与工程学报,2010,29(增1):3339-3342.
    [91]张继华.急倾斜中厚煤层软底综采采场矿压规律及其控制研究[D].山东:山东科技大学,2010.
    [92]解盘石.大倾角煤层长壁开采覆岩结构及其稳定性研究[D].西安:西安科技大学,2010.
    [93]殷露中,朱贵三.倾斜煤层综采面矿压显现规律[J].矿山压力与顶板管理,1995,20(2):30-35.
    [94]刘阜羊,朱珍德,孙少锐.块体理论及其在洞室围岩稳定分析中的应用[J].地下空间与工程学报,2006,2(8):1408-1412.
    [95]高正.块体理论在岩质边坡稳定分析中的应用研究[D].西安:长安大学,2005.
    [96]王来贵,黄润秋,张倬元.岩石工程失稳破坏及其研究思路与方法[J].岩石力学与工程学报,1998,17(5):599-601.
    [97]边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [98]韩颖.岩质边坡楔形体稳定分析[D].浙江:浙江大学,2006.
    [99] Hoek E, Bray J. Rock slope engineering[M]. Taylor&Francis,1981.
    [100]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992,2(177).182-184.
    [101]卢元鹏,王思长,倪媛.岩质边坡楔形体破坏的稳定性分析[J].西安工程大学学报,2011,25(1):61-63.
    [102]袁永,屠世浩,马小涛等.“三软”大采高综采面煤壁稳定性及其控制研究[J].采矿与安全工程学报,2012,29(1):28-30.
    [103]石根华.块体系统不连续变形数值分析新方法[M].北京:科学出版社,1993.
    [104]刘锦华.块体理论在工程岩体稳定分析中的应用[M].北京:水利电力出版社,1988.
    [105]于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M].北京:中国水利水电出版社,2007.
    [106]张永兴.边坡工程学[M].北京:中国建筑工业出版社,2008.
    [107]李天斌,王兰生.岩质工程高边坡稳定性及其控制[M].北京:科学出版社,2008.
    [108]高全,伊小娟,赵晓彦.楔形体及其稳定性分析与讨论[J].路基工程,2008,12(1):115-116.
    [109]李世平.岩石力学简明教程[M].徐州:中国矿业学院出版社,1986.
    [110]蔡美峰,何满潮.岩石力学与工程[M].北京:科学出版社,2002.
    [111]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [112]尹小涛.岩土材料工程性质数值试验研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [113] Tang C A, Kaiser P K. Numerical simulation of cumulative damage and seismic energy releaseduring brittle rock failure—part I: fundamentals[J]. International Journal of Rock Mechanics andMining Sciences,1998,35(2):113-121.
    [114] Tang C A, Lin P, Wong R H C, et al. Analysis of crack coalescence in rock-like materialscontaining three flaws—part II: numerical approach[J]. International Journal of Rock Mechanicsand Mining Sciences,2001,38(7):925-939.
    [115] Zhu W C, Tang C A, Huang Z P, et al. Numerical simulation on splitting failure mode of rockunder static and dynamic loadings [J]. Chinese Journal of Rock Mechanics and Engineering,2005,1:000.
    [116] Chun'an T, Zenghe X, Xiaohe X. Application of Analysis System RFPA~(2D) of Rock FractureProcess in Researching Moving Rules of Covering Workface [J]. Journal of Liaoning TechnicalUniversity (Natural Science Edition),1999,5:004.
    [117]王宇,李晓,王声星,等.滑坡渐进破坏运动过程的颗粒流仿真模拟[J].长江科学院院报,2012,29(12):46-52.
    [118]李新坡,何思明.节理岩质边坡破坏过程的PFC2D数值模拟分析[J].四川大学学报:工程科学版,2010,42(1):70-75.
    [119]刘宁,张春生,褚卫江.深埋大理岩破裂扩展时间效应的颗粒流模拟[J].岩石力学与工程学报,2011,30(10):1989-1996.
    [120]王涛.隧洞围岩破坏的颗粒流模拟方法研究[C][J].第九届全国岩石力学与工程学术大会论文集,2006.
    [121] Cho N, Martin C D, Sego D C. A clumped particle model for rock[J]. International Journal ofRock Mechanics and Mining Sciences,2007,44(7):997-1010.
    [122] Jia L, Chen M, Zhang W, et al. Experimental study and Numerical Modeling of Brittle Fracture ofCarbonate Rock under Uniaxial Compression[J]. Mechanics Research Communications,2013.
    [123] Kazerani T. Effect of micromechanical parameters of microstructure on compressive and tensilefailure process of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2013,64:44-55.
    [124]夏才初,宋英龙,唐志成,等.粗糙节理剪切性质的颗粒流数值模拟[J].岩石力学与工程学报,2012,31(8):1545-1552.
    [125]周喻,吴顺川,张晓平.岩石节理直剪试验颗粒流宏细观分析[J].岩石力学与工程学报,2012,31(6):1245-1256.
    [126] Huanchun Z H U. PFC and application case of caving study[J]. Chinese Journal of RockMechanics and Engineering,2006,25(9):1927-1931.
    [127]胡威东.离散单元法在岩石隧道开挖中的应用研究[D].成都.西南交通大学,2006.
    [128] Souley M, Homand F. Stability of jointed rock masses evaluated by UDEC with an extendedSaeb-Amadei constitutive law[C]. International journal of rock mechanics and mining sciences&geomechanics abstracts. Pergamon,1996,33(3):233-244.
    [129] Bhasin R, H eg K. Parametric study for a large cavern in jointed rock using a distinct elementmodel (UDEC—BB)[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(1):17-29.
    [130] Lan H, Martin C D, Hu B. Effect of heterogeneity of brittle rock on micromechanical extensilebehavior during compression loading[J]. Journal of Geophysical Research: Solid Earth(1978–2012),2010,115(B1).
    [131]赵延林,万文,王卫军,王敏,彭青阳.随机形貌岩石节理剪切数值模拟和非线性剪胀模型[J].岩石力学与工程学报.2013,32(8):1666-1675
    [132] Yang L, Jiang Y, Li B, et al. Application of the expanded distinct element method for the study ofcrack growth in rock-like materials under uniaxial compression[J]. Frontiers of Structural andCivil Engineering,2012,6(2):121-131.
    [133] Tóth A R, Bagi K. Analysis of a Lunar Base Structure Using the Discrete-Element Method[J].Journal of Aerospace Engineering,2010,24(3):397-401.
    [134]张喜武.神东矿区可持续发展战略及其保障系统研究[D].阜新:辽宁工程科技大学,2003.
    [135]张朵.石化企业安全文化评价研究及应用[D].西安:西安科技大学,2010.
    [136] Saaty,T.. The analytic hierarchy process[M]. New York: McGraw Hill International BookCompany,1980.
    [137]刑中光.矿业运筹学[M].北京:煤炭工业出版社,1996.
    [138]郭金玉,张忠彬,孙庆云.层次分析法在安全科学研究中的应用[J].中国安全生产科学技术,2008.
    [139]李波波,袁梅,马科伟等. AHP在贵州煤矿安全质量标准化现状评价中的应用[J].矿业安全与环保2011.
    [140] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility [J]. Fuzzy Sets and Systems,1978,3,9-34.
    [141]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2010.
    [142]张小红,裴道武,代建华.模糊数学与Rough集理论[M].北京:清华大学出版社,2013.
    [143]杨纶标,高英仪,凌卫新.模糊数学原理及应用[M].广州:华南理工大学出版社,2010.
    [144]王晓丹.混凝土结构耐久性能的概率预测与模糊综合评估[D].杭州:浙江大学,2010.
    [145]杨德平,赵维加,管殿柱等.MATLAB基础教程[M].北京:机械工业出版社,2013.
    [146]徐今明. MATLAB应用基础[M].北京:清华大学出版社,2012.
    [147]方新秋,钱鸣高,曹胜根,等.不同顶煤条件下支架工作阻力的确定[J].岩土工程学报,2002,24(2):233-236.
    [148]高峰,钱鸣高,缪协兴.采场支架工作阻力与顶板下沉量类双曲线关系的探讨[J].岩石力学与工程学报,1999,18(6):658-662.
    [149]曹胜根,钱鸣高,缪协兴,等.直接顶的临界高度与支架工作阻力分析[J].中国矿业大学学报,2000,29(1):73-77.
    [150]侯朝炯,郭宏亮.我国煤巷锚杆支护技术的发展方向[J].煤炭学报,1996,21(2):113-118.
    [151]侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002,1:2-5.
    [152]姚强岭,李学华,瞿群迪.富水煤层巷道顶板失稳机理与围岩控制技术[J].煤炭学报,2011,36(1):12-17.
    [153]孟超,李学华.沿空掘巷锚杆支护参数敏感性分析与应用[J].中国煤炭,2013,39(3):45-49.
    [154]孟超,符利军,曹世超.马头门底鼓机理及防治技术研究[J].金属矿山,2013,4:19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700