小鼠肠道菌群失衡模型建立及菌群失衡对肠道Toll样受体的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.以肠道十四种优势菌群变化情况为依据,利用抗生素干扰建立不同程度的菌群失衡小鼠模型。2.研究肠道菌群失衡对小鼠肠粘膜上皮Toll样受体信号转导通路的影响,探明微生态菌群失衡与肠道免疫屏障的分子应答及其在感染性疾病发生、发展中的作用和机理,为感染性疾病的防治提供新思路和新策略。
     方法:
     1.采用抗生素头孢曲松钠灌胃的方式建立小鼠肠道菌群失衡模型。以终浓度5g/kg/d的剂量,连续8天,取盲肠内容物进行肠道菌群分析,建立轻度菌群失衡模型;以终浓度8g/kg/d的剂量,连续8天,进行肠道菌群分析,建立重度菌群失衡模型
     2.利用EDTA振荡法提取正常组、轻度菌群失衡组、重度菌群失衡小鼠肠粘膜上皮细胞;RT-PCR方法检测TLR9、TLR4、TLR2的变化;免疫组织化学方法和RT-PCR方法检测NF-κBp65的变化。
     结果:
     1.通过培养基改良和培养鉴定方法,建立了肠道双歧杆菌属、乳酸杆菌属、类杆菌属、优杆菌属、肠球菌属、链球菌属、梭杆菌属、韦荣球菌属、消化球菌属、巨球菌属、肠杆菌属、葡萄球菌属、酵母菌属、霉菌属十四种肠道优势菌群稳定的培养计数分析方法。
     2.利用抗生素头孢曲松钠5g/kg/d,连续8天灌胃,优势菌群显著下降,建立轻度菌群失衡模型;以头孢曲松钠8g/kg/d,连续8天灌胃,优势菌群的数量几乎降至零,建立重度菌群失衡小鼠模型。
     3.菌群失衡小鼠与正常组小鼠相比较,TLR9表达均呈下降趋势,TLR4和TLR2均呈升高趋势,重度菌群失衡较轻度菌群失衡变化明显。
     4.菌群失衡小鼠与正常组小鼠相比较,NF-κBp65均呈升高趋势,且重度失衡较轻度失衡升高明显。
     结论:利用抗生素头孢曲松钠能建立稳定的轻度菌群失衡模型和重度菌群失衡小鼠模型;肠粘膜上皮Toll样受体变化受菌群变化的影响,菌群失衡促使TLR9表达呈下降趋势;TLR2和TLR4表达呈升高趋势;NF-κBp65表达呈升高趋势。
Objective: 1.Utilize antibiotics to effect intestinal microbiology of Balb/c mice, to establish mice model for dysbiosis of intestinal microflora based on intestinal predominant microbial population changes; 2.Toll-like receptor-mediated signaling of intestinal epithelium cells(IECs) influenced by alteration of intestinal flora, to investigate the molecular interaction of commensal bacteria with the intestinal epithelium and the mucosal immune system;to supply infectious diseases therapy with new thinking and strategy.
     Methods:
     1.We administer Balb/c mice with different doses of ceftriaxone sodium, establishing mice model for dysbiosis of Intestinal flora. Utilize 5g/kg/d doses, 8 days to establish light micro dysbiosis; meanwhile utilize 8g/kg/d doses, 8 days to establish heavy micro dysbiosis.
     2.In normal group, light micro dysbiosis and heavy micro dysbiosis animals intestinal epithelium cells were isolated Using an EDTA-viration method; Toll-like recptor 2, 4 and 9 mRNA were determined by RT-PCR; NF-κBp65 was determined by RT-PCR and immunohistochemistry.
     Results:
     1.Establish consummate analytical method of fourteen kinds of intestinal dominant microbe including Bacillus bifidus, Lactobacillus, Bateroides, Eubacterium, Enterococus, Streptococcus, Fusobacterium, Veillonella, Escherichia, Staphylococcus, yeast and so on.
     2.Using 5g/kg/d doses of ceftriaxone sodium to intragastic administrate Balb/c mice, we discovered dominant microbe decreased obviously and establish light micro dysbiosis; meanwhile utilize 8g/kg/d doses, dominant microbe decreased to zero, establishing heavy micro dysbiosis.
     3.Compared with normal mice, the levels of TLR9 was lower and TLR4 and TLR2 were higher of mRNA in dysbacteria mice, moreover the heavy-dysbacteria mice were higher than light-dysbacteria mice.
     4.Compared with normal mice, the levels of NF-κBp65 was up-regulation of both mRNA and protein in dysbacteria mice, moreover the heavy-dysbacteria mice were higher than light-dysbacteria mice.
     Conclusion: Use different doses of ceftriaxone sodium to intragastic administrate Balb/c mice, we establish mice model for heavy and light dysbiosis of intestinal microflora; compared with normal mice, the levels of TLR9 was lower and TLR4 and TLR2 were higher of mRNA in dysbacteria mice; NF-κBp65 was up-regulation of both mRNA and protein.
引文
1. Marian R. Neutra.Current concepts in mucosal immunology V Role of M cell in traepithelial transport of antigen and pathogens to the mucosal immune system. Am J physiol,1998 May;274(5 Pt 1):G785-91
    2. Hashimoto C. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein.Cell,1988;52(2):269-279
    3. Medzhitov R. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.Nature,1997 Jul 24;388(6640):394-7
    4. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol, 2004,4(6):478-85
    5. E Cario. Bacterial interactions with cells of the intestinal mucosa:Toll-like receptors and Nod2.GUT,2005;54(8):1182-1193
    6. Mollnes. Hypothesis:combined inhibition of complement and CD14 as treatment regimen to attenuate the inflammatory response.Adv Exp Med Biol,2008;632: 253-63
    7. Qureshi ST, Medzhitov R. Toll-like receptors and their role in experimental models of microbial infection. Genes Immun, 2003 Mar;4(2):87-94
    8. Medzhitov R. Recognition of microorganisms and activation of the immune response.Nature, 2007 Oct 18;449(7164):819-26
    9. Artis D. Epithelial-cell recognition of commensal bacteria and maintenanceof immune homeostasis in the gut. Nat Rev Immunol, 2008 Jun;8(6):411-20
    10. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol, 2007,19(2):59–69
    11. Treiner E, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature ,2003 Mar 13;422(6928):164-9
    12. Macpherson AJ,Gatto. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria.Science, 2000 Jun 23; 288(5474): 2222-6
    13. Mazmanian SK,Liu CH,Tzianabos AO. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.Cell, 2005, 122(1);107–118
    14. Tlaskalova-Hogenova H, et al. Commensal bacteria (normal microflora), mucosalimmunity and chronic inflammatory and autoimmune diseases. Immunol Lett, 2004 May 15;93(2-3):97-108
    15. Ott SJ, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut,2004;53(5): 685–693
    16. Lee J, Mo JH, kataturak. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling inintestinal epithelial cells. Nat Cell Biol, 2006,8(12):1327-36
    17. Obermeier F, Dunger N, Strauch UG. Contrasting activity of cytosin-guanosin dinucleotide oligonucleotides in mice with experimental colitis. Clin Exp Immunol, 2003;134(2):217-224
    18. Gewirtz AT, Navas TA, Lyons S.Cutting edge:bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol,2001;167(2):1882–1885
    19. Sierro F, Dubois B. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. USA, 2001 Nov 20;98(24):13722-7
    20. Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest,2004;113(9):1296–130
    21. HALLER D. Intestinal epithelial cell signalling and host-derived negative regulators under chronic inflammation:to be or not to be activated determines the balance towards commensal bacteria.Neurogastroenterol Motil,2006;18(3): 184-199
    22. Nomura F, Akashi S, Sakao Y, et al.Cutting edge: endotoxin tolerance in mouse peritoneal macrophagescorrelates with down-regulation of surface toll-like receptor 4 expression.J Immunol,2000;164(7):3476–3479
    23. Abreu MT, et al. Decreased expression of Toll-like receptor4 and MD2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol,2001; 167(3): 1609–1166
    24. Melmed G, et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2 dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol,2003;170(3):1406–1415
    25. Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinalepithelial cells. Gastroenterology,2004;126(4):1054–1070
    26. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun,2000;68(12):7010–7017
    27. Suzuki M, Hisamatsu T, Podolsky DK.Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated upregulationof LPS uptake and expression of the intracellular Toll-like receptor4-MD-2 complex.Infect Immun, 2003, 71(6): 3503–3511
    28. Netea, MG, Kullberg BJ,et al. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn’s disease. Eur. J. Immunol,2004;34(7): 2052-2059
    29. Watanabe T, Kitani A, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol,2004;5(8):776-8
    30. Melmed G, Thomas. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J. Immunol , 2003;170:1406–1415
    31. Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 2004;126(4):1054–1070
    32. BooneDL, etal. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor response. Nature Immuno,2004,15,1052-1060
    33. Fukao T, et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nature Immunol,2002;3(9):875–881
    34. Kobayashi, K, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell,2002;110(2):191–202
    35. McCartney-Francis N, Jin W, Wahl SM. Aberrant Toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-β1 signaling pathway. J Immunol ,2004;172(4):3814-3821
    36. Elson CO,Cong Y,Brandwein S. Experimental models to study molecular mechanisms underlying intestinal inflammation. Ann N Y Acad Sci, 1998 Nov 17;859:85-95
    37. Ewaschuk JB, Tejpar QZ, Soo I. The role of antibiotic and probiotic therapies in current andfuture management of inflammatory bowel disease. Curr GastroenterolRep,2006;8(6):486-498
    38. Szebeni B, Veres G, Dezsofi A.Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol,2008;151(1):34-41
    39. Cario E, Gerken G, Podolsky DK. Toll-like receptor-2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology,2007, 132(4):1359-1374
    40. Frolova L, Drastich P, Rossmann P.Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. JHistochem Cytochem ,2008;56(3):267-274
    41. Canto E, Ricart E, Monfort D. TNF alpha production to TLR2 ligands in active IBD patients. Clin Immunol,2006;119(2):156-165
    42. Sierro F,Dubois B,Coste A. Flagellin stimulation of intestinal epithelial cellstriggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci USA,2001,98(24):13722-13727
    43. Lodes MJ, Cong Y, Elson CO.Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest,2004;113(9):1296-1306
    44. Vijay-Kumar M, Wu H, Aitken J.Activation of toll-like receptor 3 protects against DSS-induced acute colitis. Inflamm Bowel Dis,2007;13(7):856-864
    45. Zhou R, Wei H, Sun R, Tian Z. Recognition of doublestrandedRNA by TLR3 induces severe small intestinal injury in mice. J Immunol,2007;178(7):4548-4556
    46. Cario E,Podolsky DK. Differential alteration in intestinalepithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun,2000;68(12):7010-7017
    1 Seth Rakoff-Nahoum,1 Liming Hao.Role of Toll-like Receptors inSpontaneous Commensal-Dependent Colitis. Immunity , 2006 Aug;25(2):319-29
    2 E Cario.Bacterial interactions with cells of the intestinal mucosa:Toll-like receptors and Nod2. GUT, 2005;54(8):1182-1193
    3 Frolova L, Drastich P, Rossmann P.Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. JHistochem Cytochem ,2008;56(3): 267-274
    4 Mollnes.Hypothesis: combined inhibition of complement and CD14 as treatment regimen to attenuate the inflammatory response.AdvExpMed Biol, 2008; 632: 253-63
    5 Lee J, Mo JH, kataturak,Maintenance of colonic homeostasis by distinctive apical TLR9 signalling inintestinal epithelial cells. Nat Cell Biol, 2006;8(12):1327-36
    6 Schreiber S,Nikolaus S,Hampe J.Activation of nuclear factor kappa B in inflam matory bowel disease.Gut, 1998 Apr;42(4):477-84
    7 E Cario.Commensal-Associated Molecular Patterns InduceSelective Toll-Like Receptor-Trafficking from ApicalMembrane to Cytoplasmic Compartments in Polarized Intestinal Epithelium. Am J Pathol , 2002 Jan;160(1):165-73
    8 E Cario.Barrier-protective function of intestinal epithelial Toll-like receptor 2 Mucosal Immunol. 2008 Nov;1 Suppl 1:S62-6
    9 Bonizzi G,Karin M.The two NF-κB activation pathways and their role in innate and adaptive immunity.[J].Trends Immunol,2004 Jun;25(6):280-8
    10 Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol, 2004 Jun;4(6):478-85
    11 Rakoff-Nahoum S.Why Cancer and Inflammation? Yale J Biol Med, 2006 Dec; 79(3-4): 123-30
    12 Upreti RK,Kannan A. A comparative study on rat intestinal epithelial cells and resident gut bacteria (ii) effect of arsenite. Biomed Environ Sci , 2006 Apr; 19(2): 77-86
    13 Neil FLINT, Frances L.A low-temperature method for the isolation of small- intestinal epithelium along the crypt-villus axis.Biochem. J, 1991 Dec 1;280 ( Pt 2):331-4
    14 Emiko Mizoguchi, MD, PhD, Series Editor.Toll-like receptors in inflammatory bowel disease-stepping into uncharted territory .World J Gastroenterol ,2008 September 7; 14(33): 5149-5153
    15 Collier-Hyams LS,Neish AS.Innate immune relationship between commensal flora and the mammalian intestinal epithelium. Cell Mol Life Sci,2005 Jun; 62(12): 1339-48
    16 Guarner F,Casellas F.Role of microecology in chronic inflammatory bowel diseases European Journal of Clinical Nutrition. 2002 Dec;56 Suppl 4:S34-8
    17 Hooper LV,Gordon JI.Commensal Host-Bacterial Relationships in the Gut . Science , 2001 May 11;292(5519):1115-8
    18 Macpherson AJ,Geuking MB.Immune responses that adapt the intestinal mucosa tocommensal intestinal bacteria .Immunolog, 2005 Jun;115(2):153-62
    19 Jilling T,Simon D.The Roles of Bacteria and TLR4 in Rat and Murine Models ofNecrotizing Enterocolitis.J Immunology, 2006 Sep 1;177(5):3273-82
    20 Ben-Neriah , Schmidt-Supprian M.Epithelial NF-κB maintains host gut microflora homeostasis. Nat Immunol,2007 May;8(5):479-81
    21 Abreu MT, et al. Decreased expression of Toll-like receptor4 and MD2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol,. 2001; 167(3):1609–1166
    22 Melmed G, et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2 dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol,2003;170(3):1406–1415
    23 Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinalepithelial cells. Gastroenterology, 2004;126(4):1054–1070
    24 E Cario, Podolsky DK.Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun,2000;68(12), 7010–7017
    25 Suzuki M, Hisamatsu T, Podolsky DK.Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated upregulationof LPS uptake and expression of the intracellular Toll-likereceptor 4-MD-2 complex.Infect Immun, 2003;71(6): 3503–3511
    26 Melmed G,Thomas LS.Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands:implications for host-microbial interactions in the gut. J. Immunol, 2003 Feb 1;170(3):1406-15
    27 Otte JM, Cario E, Podolsky DK.Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 2004;126(4):1054–1070
    28 Szebeni B, Veres G,Dezsofi A.Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol , 2008 Jan;151(1):34-41
    29 E Cario, Gerken G, Podolsky DK. Toll-like receptor2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology, 2007; 132(4): 1359-1374
    30 Vijay-Kumar M, Wu H, Aitken J.Activation of toll-like receptor 3 protects against DSS-induced acute colitis. Inflamm Bowel Dis,2007;13(7): 856-864
    31 Zhou R, Wei H, Sun R, Tian Z. Recognition of double strandedRNA by TLR3 induces severe small intestinal injury in mice. J Immunol,2007, 178(7): 4548-4556
    32 E Cario,Podolsky DK. Differential alteration in intestinalepithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun,2000;68(12): 7010-7017
    33 E Cario.Bacterial interactions with cells of the intestinal mucosa:Toll-like receptors and Nod2.GUT,2005;54(8):1182-1193
    35 Qureshi, S. T. & Medzhitov, R. Toll-like receptors and their role in experimental models of microbial infection. Genes Immun, 2003;4(2) : 87–94
    36 Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature, 2007;449(7164):819–826
    37 Evans GS,Flint N.The development of a method for the preparation of rat intestinal epithelial cell primary cultures.J Cell Sci,1992 Jan;101 ( Pt 1):219-31
    38 Furrie E,Macfarlane.Toll-like receptors-2,-3 and -4 expression patterns on human colon and their regulationby mucosal-associated bacteria. Immunology, 2005 Aug;115(4): 565-74
    39 Wagner H.Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity . Curr Opin Microbiol, 2002 Feb;5(1):62-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700