地磁环境下光学原子磁力仪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高灵敏度原子磁力仪在地质勘探、空间科学、医疗诊断、工业无损检测和引力波探测等方面具有广泛的用途。本论文主要是对地磁场环境下原子磁力仪的研究。
     实验上用两台半导体激光器,通过拍频锁相获得相干双色光,完成了双色激光激发相干布居囚禁(CPT),通过扫描双色光频率测量基态塞曼分裂大小,从而来准确地测量磁场。与以前用圆偏振光作为激发源相比,最近几年利用线偏振光研究CPT现象,可以获得较大对比度的信号,目前已经被广泛用来研究原子钟。根据这个思想,将这种方案用来研究磁力仪。结果表明相对传统圆偏振光的激发方案,用线偏振光可以获得更高的信号对比度,对磁场的分辨能力更高,在不降低仪器灵敏度的基础上,可以适当的增加磁共振信号的线宽,因此可以作为高采样率磁力仪的一种实验方案。
     根据光学泵浦和光磁共振原理,通过射频频率来测量磁场的原子磁力仪。从上个世纪六十年代开始,利用这种方法生产的商用灯泵磁力仪被考古学家和地质学家广泛用于测量磁场异常。与用灯泵作为泵浦源的磁力仪相比,激光泵浦磁力仪有许多优点。由于光纤是无磁的,光纤和磁探头配合使用可以有效地隔绝仪器对磁场测量的干扰。利用二极管激光器可以研制成在室温下,小型化,全固化,电池供电的紧凑原子磁力仪。本文一部分工作是在光泵磁力仪的基础上,加入额外的一束回泵光,通过一个射频线圈激发磁共振信号,用来探测磁场大小。与原来用一束光既做探测光,又做泵浦光相比,这种方法通过额外的回泵光将一部分原来不参与磁共振跃迁的原子利用上,有效地提高了信号强度,最终从实验上看到,这种方法可以将磁共振信号提高55%以上,能够获得更高的磁场分辨率,并且讨论了信号大小与两束光的关系。利用密度矩阵方程计算了暗态原子布居数,定性地解释了上述现象,并且与实验进行了比较。最后通过高调制解调频率与调制深度,通过分析,这种方法可以提高仪器的抓捕区域。
     本论文安排如下:第一章介绍了原子磁力仪的研究意义,以及目前各种磁力仪的工作原理,优缺点以及发展状况。第二章介绍了磁力仪工作的一般原理,包括碱金属原子能级结构,光与原子作用的一些理论,光学极化原子的一些概念,以及影响原子磁力仪性能的一些因素。第三章在实验上实现了相干布居囚禁磁力仪,首先介绍了主要的实验装置,包括产生CPT必须的双色激光,原子气室加热、标准磁场的设计,信号的去噪等。首先用两束圆偏振光激发CPT效应,对仪器进行模拟测量,证明这种磁力仪完全可以在地磁环境下工作。然后通过线偏振激发方案,获得了较高对比度的信号,并且在相同的实验条件下进行了模拟测量,通过比较,这种方案可以获得更高的磁场分辨能力。第四章研究了双回泵光学泵浦磁力仪,与原来的磁力仪相比,增加的这束回泵光可以有效的增加对共振信号起作用的原子数目,研究了回泵光对信号的影响,将实际系统简化为一个四能级模型,通过密度矩阵方程计算了暗态原子数目随回泵光强的变化。最后通过高的调制解调频率,通过分析可以增加抓捕范围。最后一章为总结,并且对小型化的原子磁力仪的应用前景以及发展方向作了简单的展望。
Highly sensitive magnetometers capable of measuring magnetic fields are important for many applications such as geophysical surveying, space science, nuclear magnetic resonance, non-destructive testing, medical diagnoses and gravitational wave detection etc. This thesis is about the experimental implementation of measurement for magnetic field in the geophysical field range.
     We use a technique called coherent population trapping, which is usually observed with a bichromatic field consisting of two resonant laser fields with the frequency difference varying in the vicinity of the ground-state hyperfine splitting. In comparison with previous experimental configuration in atomic magnetometer by using circular polarization light, linear light scheme has raised a great deal of interest in atomic frequency references.The experimental results show that linear-linear transition scheme is a promising alternative to the conventional circular-circular transition scheme for atomic magnetometer. Comparing to circular light transition scheme, linear light accounts for high-contrast transmission resonances, which makes this excitation scheme promising for high-sensitivity magnetometer. Therefore, linear-linear transition scheme provides a novel and promising atomic magnetometer prototype.
     We also demonstrate experimentally an atomic magnetometer based on optical pumping theory, a magnetic resonance induced by a radio frequency field, dependent on the magnetic field strength. The method is known since the1960's and commercial lamp-based devices are used by archaeologists and geologists to measure variations of the earth's magnetic field. Comparing to conventional amalgam vapor lamp magnetometer, diode laser pumped alkali magnetometer has significant advantages. It is generally known that fiber optics are non-magnetic, an optic fiber coupled device allows flexible location of the instrument without magnetic interference. And diode laser has the potential to be battery operated at room temperature, miniaturized, ruggedized for development of a compact magnetometer. Compare with the conventional method using one radiation field, which is used as not only probe beam but also pump beam, the additional re-pump beam can increase remarkably the amplitude of the signal. It is shown that the amplitude of magnetic field resonance signal can be increased more than55%by using an additional re-pump beam, which makes the magnetometer a higher sensitivity. We conduct a study on the modulation frequency influence the characterization of the signal, in the experiment, we increase the capture range by using a high modulation frequency. Finally, we investigate the relation between amplitude of the signal and re-pump laser power, and calculate the atomic population in the trapping states with density matrix equations. The physical interpretation has been given to show the validity of the results.
     The thesis is organized as following. In chapter one, we introduce current research and significance of magnetometer working in the geophysical field range. In chapter two, basic principles of magnetometer based on optical pumping are presented. In chapter three, we experimentally study the coherent population trapping magnetometer by linear polarization laser. In chapter four, we investigate the optical pumping magnetometer using two pump laser. Finally, we give a brief summary and promising prospect of the atomic magnetometer.
引文
[1]P. P. Maricourt, The letter of Petrus Peregrinus on the magnet, A.D.1269 Translated by Brother Arnold (New York, McGraw Publishing,1904),
    [2]Whittaker, E. T. (1951). A History of the Theories of Aether and Electricity. Dover Publications, p.34. ISBN 0-486-26126-3.
    [3]C. F. Gauss (1832). The intensity of the Earth's magnetic force reducedto absolute measurement. Translated by Susan P. Johnson,1995.
    [4]H. Weinstock, (ed.) SQUID Sensors:Fundamentals, Fabrication and Applications (Kluwer Academic, Dordrecht,1996).
    [5]V. V. Yashchuk, J. Granwehr, D. F. Kimball, S. M. Rochester, A. H. Trabesinger, J. T. Urban, D. Budker, and A. Pines. Hyperpolarized Xenon Nuclear Spins Detected by Optical Atomic Magnetometry. Phys. Rev. Lett.93,160801 (2004).
    [6]S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker, and A. Pines. Magnetic resonance imaging with an optical atomic magnetometer. PNAS 103,12668 (2006).
    [7]E. Rodriguez et al. Perception's shadow:long-distance synchronization of human brain activity. Nature 397,430 (1999).
    [8]G. Bison, R Wynands, and A. Weis. A laser-pumped magnetometer for the apping of human cardiomagnetic fields. Appl. Phys. B 76,325 (2003).
    [9]H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis. Magnetoen cephalography with an atomic magnetometer. Appl. Phys. Lett.89 (21), 211104(2006).
    [10]M. N. Nabighian, V. J. S. Grauch, R. O. Hansen, T. R LaFehr, Y. Li, J. W. Peirce, J. D. Phillips, and M. E. Ruder. The historical development of the magnetic method in exploration. Geophysics 70,33ND (2005).
    [11]A. David, M. Cole, T. Horsley, N. Linford, P. Linford, and L. Martin. A rival to Stonehenge Geophysical survey at Stanton Drew, England. Antiquity 78,341 (2004).
    [12]N. Tralshawala, J. R. Clay comb, and J. H. Miller, Practical SQUID instrument for non-destructive testing. Appl. Phys. Lett.71,1573 (1997).
    [13]G. M. Harry, I. Jin, H. J. Paik, T. R. Stevensonand and F. C. Wellstood, Two-stage superconducting-quantum-interference-device amplifier in a high-Q gravitational wave transducer. Appl. Phys. Lett.76,1446 (2000).
    [14]S. Groeger, A. S. Pazgalev, and A. Weis. Comparison of discharge lamp and laser pumped cesium magnetometers. Appl. Phys. B 80,645 (2005).
    [15]C. C. Tsuei and J. R.Kirtley, Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Phys. Rev. Lett.85,182 (2000).
    [16]张昌达,量子磁力仪研究和开发近况,物探与化探,29,283(2005).
    [17]杨建中,尤政,刘刚,康春磊,扬超,微型磁通门式磁敏感器(MEMSMag),功能材料与器件学报14314(2008).
    [18]张昌达,董浩斌,量子磁力仪评说,工程地球物理学报1499(2004).
    [19]Ivan Hrvoic, P. Eng. "Requirements for obtaining high accuracy with proton magnetometers". GEM Systems Inc.,2010.
    [20]李曙光原子磁力仪的研究,浙江大学博士学位论文,(2009).
    [21]Overhauser Magnetometer, GSM-19/GSM-19W, GEM Systems. Inc.2010. http://www.gemsys.ca/wp-content/uploads/2012/10/GSM-19.pdf
    [22]董浩斌,张昌达,量子磁力仪再评,工程地球物理学报7,460(2010).
    [23]L. Rayleigh, A Photographic Spectrum of the Aurora of May 13-15,1921, and Laboratory Studies in Connection with it, Proc. R. Soc,102,190 (1922).
    [24]R. W. Wood and A. Ellett, Polarized Resonance Radiation in Weak Magnetic Fields, Phys. Rev.24,243 (1924).
    [25]W. Hanle, uber magnetische beeinflussung der polarisation der resonanzfluoreszenz, Z. Phys.30,93 (1924).
    [26]D. Budker, V. Yashchuk, and M. Zolotorev, Nonlinear magneto-optic effects with ultranarrow widths, Phys. Rev. Lett.81,5788 (1998).
    [27]D. Budker, D. Kimball, S. Rochester, V. Yashchuk and M. Zolotorev, Sensitive magnetometry based on nonlinear magneto-optical rotation, Phys. Rev. A 62, 043403 (2000).
    [28]J. C. Allred, R. N. Lyman, T. Kornack and M. Romalis, High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation, Phys. Rev. Lett.89, 130801 (2002).
    [29]I. K. Kominis, T. W. Kornack, J. C. Allred and M. V. Romalis, A subfemtotesla multichannel atomic magnetometer, Nature 422,596 (2003).
    [30]D. Robbes, Highly sensitive magnetometers-a review, Sensors and Actuators A 129,86 (2006).
    [31]M. O. Scully and M. Fleischhauer, High-sensitivity magnetometer based on index-enhanced media, Phys. Rev. Lett.69,1360 (1992).
    [32]A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. eschede and R. Wynands, Experimental realization of coherent dark-state magnetometers, Euro-phys. Lett.44,31 (1998).
    [33]M. Stahler, S. Knappe, C. Affolderbach, W. Kemp and R. Wynands, Picotesla magnetometry with coherent dark states, Euro-phys. Lett.54,323 (2001).
    [34]G. Bison, R. Wynands and A. Weis A laser-pumped magnetometer for the mapping of human cardiomagnetic fields Appl. Phys. B:Lasers Opt.76 325 (2003).
    [35]C. Affolderbach, M. Stahler, S. Knappe and R. Wynands, An all-optical, high-sensitivity magnetic gradiometer, Appl. Phys. B 75,605 (2002).
    [36]P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, Chip-scale atomic magnetometer. Appl. Phys. Lett.85,6409 (2004).
    [37]J. Belli, G. Bevilacqua, V. Biancalana, Y. Dancheva and L. Moi, All optical sensor for automated magnetometry based on coherent population trapping, J. Opt. Soc.Am. B 24,1482 (2007).
    [38]J. Belli, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva and L.Moi, Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment, J. Opt. Soc. Am. B 24,2357 (2007).
    [1]D. A. Steck Rubidium 87 D Line Data available online at http://steck.us/alkalidata (revision 2.1.4,23 December 2010).
    [2]P. Zeeman, XXXII. On the influence of magnetism on the nature of the light emitted by a substance Philosophical Magazine,43,226 (1897).
    [3]Wikipedia, http://en.wikipedia.org/wiki/Zeeman_effect.
    [4]T Preston XXXVI. Radiation phenomena in the magnetic field, Philosophical Magazine,45,325 (1898).
    [5]杨福家.《原子物理学(第三版)》高等教育出版社.2000.ISBN 7-04-007940-2.
    [6]A. Corney, Atomic and Laser Spectroscopy (Oxford:Clarendon) (1977).
    [7]S. J. Seltzer, Developments in Alkali-Metal Atomic Magnetometry (Ph.D.Thesis) (New Jersey:Princeton University), (2004).
    [8]Rochester, S. M. and Budker, D., American Journal of Physics,69,450, (2001).
    [9]M. Auzinsh, D.Budker and S. Rochester, Optically Polarized Atoms: Understanding light-atom interactions (OUP,2010).
    [10]I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, Tunable Atomic Magnetometer for Detection of Radio-Frequency Magnetic Fields. Physical Review Letters 95 (6),63004, (2005).
    [11]G. Bison, Development of an optical cardio-magnetometer (Ph.D.Thesis) (Switzerland:University of Freiburg) (2004).
    [12]D. C. Rife and R. R. Boorstyn, "Single-Tone Paramter Estimation from Discrete-Time Observations," IEEE Transactions on Information Theory 20(5), 591-598(1974).
    [1]W. Hanle, uber magnetische beeinflussung der polarisation der resonanzfluoreszenz, Z. Phys.30,93 (1924).
    [2]U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts, Phys. Rev.124,1866 (1961).
    [3]G. Alzetta, A. Gozzini, L. Moi and G. Orriols, An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour Il Nuovo Cim.36,5(1976).
    [4]E. Arimondo, G. Orriols, Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,Nuovo Cimento Lett.17, 333 (1976).
    [5]B Lounis, C Cohen-Tannoudji, Coherent population trapping and Fano profiles, J. Phys. Ⅱ,2,579 (1992).
    [6]J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. H. Picard, and C. R. Willis, Observation of Ramsey Fringes Using a Stimulated, Resonance Raman Transition in a Sodium Atomic Beam, Phys. Rev. Lett.48,867 (1982).
    [7]E. Arimondo, V Coherent Population Trapping in Laser Spectroscopy, Progress in Optics,35,257 (1996).
    [8]A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping, Phys. Rev. Lett.61,826 1988).
    [9]S. E. Harris, Lasers without inversion:Interference of lifetime-broadened resonances, Phys. Rev. Lett.62,1033 (1989).
    [10]S. E. Harris, Electromagnetically induced transparency, Phys. Today,50 36 (1997).
    [11]V. Milner and Y. Prior, Multilevel Dark States:Coherent Population Trapping with Elliptically Polarized Incoherent Light, Phys. Rev. Lett.80,940 (1998).
    [12]Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, Push-Pull Optical Pumping of Pure Superposition States, Phys. Rev. Lett.93,160802 (2004).
    [13]A. V. Taichenachev, V. I. Yudin, V. L. Velichansky and S. A. Zibrov On the Unique Possibility of Significantly Increasing the Contrast of Dark Resonances on the Dl Line of 87Rb, JETP lett.82 398 (2005).
    [14]K. Watabe, T. Ikegami, A. Takamizawa, S. Yanagimachi, S. Ohshima and S. Knappe, High-contrast dark resonances with linearly polarized light on the D1 line of alkali atoms with large nuclear spin, Appl. Opt.48 1098 (2009).
    [15]S. A. Zibrov, I. Novikova, D. F. Phillips, R. L. Walsworth, A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev and V. I. Yudin Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks Phys. Rev. A 81 013833 (2010).
    [16]D. F. Phillips, A. Fleischhauer, A. Mair R. L. Walsworth, Storage of Light in Atomic Vapor, Phys. Rev. Lett.86,783 (2001).
    [17]J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid, Phys. Rev. Lett.95,063601 (2005).
    [18]K. F. Reiml, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M. Champion, D. G. England, K. C. Leel, W. S. Kolthammer, N. K. Langford and I. A. Walmsley, Multipulse Addressing of a Raman Quantum Memory:Configurable Beam Splitting and Effcient Readout, Phys. Rev. Lett.108,263602 (2012).
    [19]W. W. Chow, M. O. Scully and J. O. Stoner, Jr., Quantum-beat phenomena described by quantum electrodynamics and neoclassical theory, Phys. Rev. A11, 1380(1975).
    [20]I. D. Abella, N. A. Kurnit and S. R. Hartmann, Photon Echoes, Phys. Rev.141, 391 (1966).
    [21]M. Scully and M. J. Stephen, Photon Echo in Gaseous Media, Phys. Rev.171, 213 (1968).
    [22]S. L. McCall and E. L. Hahn, Self-Induced Transparency, Phys. Rev.183,457 (1969).
    [23]Richard G. Brewer and E. L. Hahn, Coherent Raman Beats, Phys. Rev. A 8,464 (1973).
    [24]M. O. Scully and M. Fleischhauer. High-sensitivity magnetometer based on index-enhanced media.Phys. Rev. Lett.69,1360 (1992).
    [25]A. Corney Atomic and Laser Spectroscopy (Oxford, Clarendon,1977).
    [26]A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede and R. Wynands, Europhys. Lett.,44,36 (1998).
    [27]I. K. Kominis, J. C. Allred, T. W. Kornack and M. V. Romalis, Nature (London) 422,596 (2003).
    [28]G. Katsoprinakis, D. Petrosyan and I. K. KominisHigh Frequency Atomic Magnetometer by Use of Electromagnetically Induced Transparency Phys. Rev. Lett.97,230801 (2006).
    [29]W. Demtroder, Laser Spectroscopy, (Springer-Verlag, Berlin,2003).
    [30]Floyd M. Gardner著,姚剑清译,锁相环技术(第三版)北京:人民邮电出版社,2007.11
    [31]R. Wynands and A. Nagel Precision spectroscopy with coherent dark states, Appl. Phys. B:Lasers Opt.,681(1999).
    [32]Model SR830 DSP Lock-In Amplifier, SRS, Inc. (Revision 2.3, December 2006).
    [33]G. Liu and S. Gu, Experimental study of the CPT magnetometer worked on atomic energy level modulation, J. Phys. B:At. Mol. Opt. Phys.43 035004(2010).
    [1]O. Gravrand, A. Khokhlov, J. L. L. Mouel, On the calibration of a vectorial 4He pumped magnetometer, Earth Planets,53,949 (2001).
    [2 R. E. Slocum, L. D. Schearer, P. Tin et al., LNA laser optical pumping of He4 Application to space magnetometer, Journal of Applied Physics,64,6615 (1988).
    [3]H. Gilles, J. Hamel, B. Cheron, Laser pumped 4He magnetometer, Review of scientific instruments,72,2253 (2001)
    [4]董浩斌,张昌达,量子磁力仪再评,工程地球物理学报7,460(2010).
    [5]A. L. Bloom, Optical detection of magnetic resonance in alkali metal vapor, Appl. Opt.161 (1962).
    [6]H. G Dehmelt, Slow Spin Relaxation of Optically Polarized Sodium Atoms, Phys. Rev.105 1487 (1957).
    [7]G Bison, R. Wynands and A. Weis, A laser-pumped magnetometer for the mapping of human cardiomagnetic fields, Appl. Phys. B:Lasers Opt.76 325 (2003).
    [8]M. N. Livanov, A. N. Kozlov, S. E. Sinelnikova, J. A. Kholodov, V. P. Markin, A. M. Gorbach and A. V. Korinewsky, Record of the human magnetocardiogram by the quantum gradiometer with optical pumping, Adv. Cardiol.28 78 (1981).
    [9]S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker and A. Pines, Magnetic resonance imaging with an optical atomic magnetometer, PNAS 103 12668 (2006).
    [10]B. Patton, O. Versolato, D. C. Hovde, E. Corsini, J. Higbie and D. Budker, A remotely interrogated all-optical 87 Rb magnetometer, Appl. Phys. Lett.101 083502 (2012).
    [11]Potassium Magnetometer, GSMP-35, GEM Systems. Inc.2010. http://www.gemsys.ca/products/ultra-high-sensitivity-potassium]。
    [12]王义遒,原子的激光冷却与限俘,北京大学出版社(2007)
    [13]A. Kastler, Optical Methods of Atomic Orientation and of Magnetic Resonance, JOSAA 47,460(1957)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700