跨音速压气机失速机理及机匣处理的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机是航空发动机的核心部件之一,其性能对航空发动机的整体性能具有决定性的影响。现代航空发动机的发展对压气机的单级压比提出了越来越高的要求,需要对旋转失速等制约压气机性能、并严重影响发动机安全的问题有更加深入的了解。机匣处理作为一种简单、有效的被动流动控制方式在提高压气机的失速裕度方面已经得到了较为广泛的应用。但对其作用机理的认识还比较匮乏,使得相关设计主要还依赖于大量的实验,并且通常以降低压气机的绝热效率为代价。
     本文采用先进的数值方法对跨音速压气机和机匣处理内的流动结构进行了较为系统的研究。通过讨论不同工况下跨音速轴流压气机中叶尖附近关键流动结构的变化和发展,发现叶片前缘顶隙泄漏涡的破裂和叶片尾缘的分离分别是大、小两种顶隙高度下导致压气机失速的直接原因,而这两种流动现象都与主要受顶隙泄漏涡轨迹影响的前缘顶隙泄漏流的二次泄漏相关,揭示了目前得到广泛认可的失速判据背后的物理机理。
     在此基础上,本文对环向沟机匣处理在跨音速轴流压气机中的应用进行了数值研究。讨论了轴向位置和深度对环向沟机匣处理效果的影响;并从越过顶隙的质量和动量输运的角度分析了环向沟机匣处理的作用机理。相关结果与压气机的失速机理是一致的。由此提出的设计准则在ND-TAC实验压气机上得到了验证。
     此外,本文还研究了自循环式机匣处理在跨音速离心压气机中的应用。分析了自循环式机匣处理在堵塞端和失速端提高压气机失速裕度的不同机理和引起压气机效率损失的机理;提出了按扩压器设计机匣处理通道的指导原则;讨论了机匣处理通道的开口位置、宽度和扩张度对机匣处理效果的影响;得到了使压气机绝热效率取得明显改善的机匣处理新构型,并得到了相关实验结果的支持。
Compressor is one of the core components of aero-engine. Its performance has a decisive influence to the overall performance of an aero-engine. Modern development of aero-engine requires a compressor with higher and higher total pressure ratio per stage. It challenges our understanding on the phenomena like rotating stall et al, which restrict the performance of compressor and threaten the safety of aero-engine. Casing treatment as a simple but effective passive flow control method has been widely used to extend the compressor stall margin. But the lack of good knowledge on the mechanism of casing treatment makes the design largely depend on ad hoc experiments and usually be accompanied with efficiency penalty.
     The flow structures in the transonic compressor and casing treatment are investigated in detail via an advanced numerical simulation. Based on the discussion on the change and development of the critical flow structures at tip region at different operation points, the blade trailing edge separation and the breakdown of the leading edge tip leakage vortex is considered to be the direct reason for the triggering of stall respectively for configurations with small and large tip clearance width. These two phenomena are both related to the second leakage of the leading edge tip leakage flow which is greatly influenced by the trajectory of the leading edge tip leakage vortex. The results reveal the physical mechanism behind the widely accepted stall criteria.
     On the basis of the discussion on the stall process, a numerical investigation on the application of Circumferential Groove Casing Treatment (CGCT) on the transonic axial compressor is performed. The influence of the axial location and depth of the grooves is studied. The mechanism of CGCT is also discussed via an analysis on the mass and momentum transport across the blade tip. The result is accordance with the stall process of the compressor. Some design suggestions are presented, and validated by the application in ND-TAC test compressor.
     Besides, the application of a self recirculation casing treatment on the transonic centrifugal compressor is numerically studied. The mechanisms for the stall margin improvement and efficiency loss are analyzed. Designing the casing treatment channel like a diffuser is suggested as a design rule. Following this rule, the influence of the location, width and diffusion level is investigated. A new casing treatment configuration which leads to significantly improved compressor efficiency (compare with datum casing treatment design) is achieved. The result is supported by experiments.
引文
[1]刘大响,陈光,航空发动机——飞机的心脏,2003,航空工业出版社.
    [2] Aspi R.Aadia, Some Advances in Fan & Compressor Aero at GE Aircraft Engine, 2005, Lecture in Tsinghua University.
    [3]卢新根,楚武利,朱俊强,吴艳辉,刘志伟,轴流压气机机匣处理研究进展及评述,力学进展, 2006, 36(2):222-232.
    [4] Greitzer E M, Nikkanen J P, Haddad D E, et al, A fundamental criterion for the application of rotor casing treatment, Journal of Fluids Engineering, 1979, 101(4):237-243.
    [5] Khalid S, Practical compressor casing treatment, 1997, ASME Paper GT97-375.
    [6]朱俊强,刘志伟,四种不同形式机匣处理的实验研究及机理分析,航空学报, 1997, 18(5): 567-570.
    [7] Joslyn H, Dring R, Axial Compressor Stator Aerodynamics, ASME J. of Engineering for Gas Turbines and Power, 1985, 107: 485-493.
    [8] Barankiewicz W, Hathaway M, Impact of Variable-Geometry Stator Hub Leakage in a Low Speed Axial Compressor, 1998, ASME Paper 98-GT-194.
    [9] Dong Y, Gallimore S, Hodson H, Three-Dimensional Flows and Loss Reduction in Axial Compressors, ASME J. of Turbomachinary, 1987, 109: 354-360.
    [10] Schulz H, Gallus H, Experimental Investigation of the Three-Dimensional Flow in an Annular Compressor Cascade, ASME J. of Turbomachinary, 1988, 110: 467-478.
    [11] Weber A, Schreiber H A, Fuchs R, Steinert W, 3-D Transonic Flow in a Compressor Cascade with Shock-Induced Corner Stall, ASME J. of Turbomachinary, 2002, 124: 358-365.
    [12] Gallus H, Hah C, Schulz H, Experimental and Numerical Investigation of Three-Dimensional Viscous Flows and Vortex Motion Inside an Annular Compressor Blade Row, ASME J. of Turbomachinary, 1991, 113: 198-206.
    [13] Hah C, Loellbach J, Development of Hub Corner Stall and its Influence on the Performance of Axial Compressor Blade Rows, ASME J. of Turbomachinary, 1999,121: 67-77.
    [14] Demargne A, Longley J, The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors, 2000, ASME Paper 2000-GT-570.
    [15] Lei V M, Spakovszky Z S, Greitzer E M, A Criterion for Axial Ccompressor Hub-Corner Stall, 2006, ASME Paper GT2006-91332.
    [16] Day I J, Stall and Surge, Cambridge Turbomachinery courses 2008 II, 2008.
    [17] Moore F K, Greitzer E M, A theory of post-stall transients in axial compression systems: Part I, II, ASME J. Eng. Gas Turbine Power, 1986, 108:68-76,231-240.
    [18] Sun X F, Three-dimensional compressible flow stability theory of rotating stall, 1996, BUAA Tech. Rep. BH-B4765.
    [19] McDougall N M, Cumpsty N A, Hynes T P, Stall Inception in Axial Compressors, ASME J. of Turbomachinery, 1990, 112: 116-125.
    [20] Haynes J M, Hendricks G J, Epstein A H, Active stabilization of rotating stall in a three-stage axial compressor, ASME J. of Turbomachinery, 1994, 116: 226-239.
    [21]聂超群,陈静宜,蒋浩康,徐力平,低速轴流压气机旋转失速先兆特征的实验分析,工程热物理学报, 1998, 19(3):293-298.
    [22] Paduano J D, Greitzer E M, Epstein A H, Compression system stability and active control, Annu. Rew. Fluid Mech., 2001, 33: 491-517.
    [23] Day I J, Stall inception in axial flow compressors, ASME J. of Turbomachinery, 1993, 115: 1-9.
    [24] Camp T R, Day I J, A study of spike and modal stall phenomena in a low-speed compressor, ASME J. of Turbomachinery, 1998, 120: 393-401.
    [25] Day I J, Active suppression of rotating stall and surge in axial compressors, ASME J. of Turbomachinery, 1993, 115: 40-47.
    [26] Bennington M, Cameron J, Morris S, Gendrich C, Over rotor casing streak measurements in a high speed axial compressor, 2007, ASME Paper 2007-28273.
    [27] Spakovsky Z S, Roduner C H, Spike and modal stall inception in an advanced turbocharger centrifugal compressor, 2007, ASME Paper 2007-27634.
    [28] Nie C, An experimental investigation on different radial loading distribution and patterns of stall inception in a single-stage low-speed axial compressor, 2003, ASME Paper 2003-GT-38090.
    [29] Hoss B, Leinhos D, Fottner L, Stall inception in the compressor system of a turbofan engine, ASME J. of Turbomachinery, 2000, 122: 32-43.
    [30] Spakovsky Z S, Weigl H J, Paduano J D, Van Schalkwyk C M, Suder K L, Bright M M, Rotating stall control in a high-speed stage with inlet distortion. Part I: radial distrortion, ASME J. of Turbomachinery, 1999, 121: 510-516.
    [31] Lin F, Li M L, Chen J Y, Long-to-short length scale transition: a stall inception phenoneon in an axial compressor with inlet distortion, 2005, ASME Paper GT2005-68656.
    [32] Morris S C, New perspectives in compressor stall, 2009, Lecture in Tsinghua University.
    [33] Wernet M P, Zante D V, et. al., 3-D digital PIV measurements of the tip clearance flow in an axial compressor, 2002, ASME Paper GT-2002-30643.
    [34] Baojie L, Hongwei W, et al, Experimental investigation on the unsteady flow field in the tip region of an axial compressor rotor passage at near stall condition with SPIV, 2003, ASME Paper GT-2003-38185.
    [35] Hoying D A, Tan C S, Greitzer E M, Role of blade passage flow structures in axial compressor rotating stall inception, 1999, ASME J. of Turbomachinery, 121(4): 735-742.
    [36] Vo H D, Cameron J, Morris S, Control of short length-scale rotating stall inception on a high-speed axial compressor with plasma actuation, 2008, ASME Paper GT-2008-50967.
    [37] Adamczyk J J, Celestina M L, Greitzer E M, The Role of Tip Clearance in High-Speed Fan Stall, 1993, ASME J. of Turbomachinery, 115: 28-38.
    [38] Suder K L, Celestina M L, Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor, 1994, NASA TM-106711.
    [39] Copenhaver W W, Mayhew E R, Hah C, Wadia A R, The Effects of Tip Clearance on a Swept Transonic Compressor Rotor, 1996, ASME J. of Turbomachinery, 118: 230-239.
    [40] Schlechtriem S, Loetzerich M, Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall, 1997, ASME Paper 97-GT-41.
    [41] Furukawa M, Inoue M, et al., The role of tip leakage vortex breakdown in compressor rotor aerodynamics, 1999, ASME J.of Turbomachinery, 121: 469-480.
    [42] Hoffman W H, Ballman J, Some Aspects of Tip Vortex Behavior in a Transonic Turbocompressor, 2003, ISABE Paper 2003-1223.
    [43] Hah C, Rabe D C, Wadia A R, ROLE OF Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor, 2004, ASME Paper GT2004-53867.
    [44] Hah C, Rabe D C, Wadia A R, Effects of Aerodynamic Sweep on the Development of Tipleakage Vortex and Stall Inception in Transonic Compressor Rotors, 2005, ISABE-2005-1142.
    [45] Vo H D, Tan C S, Greitzer E M, Criteria for spike initiated rotating stall, ASME J. of Turbomachinery, 2008, 130: 1-8.
    [46] Lin F, Zhang J, Chen J, Nie C, Flow structure of short length scale disturbance in an axial compressor, AIAA J. Propuls.Power, 2008, 24(6): 1301-1308.
    [47] Cameron J, Morris S, Barrows S, Chen J P, On the interpretation of casing treatment in axial compressor, 2008, ASME Paper GT-2008-51371.
    [48] Chen J P, Johnson B, Hathaway M, Webster R, Flow characteristics of tip injection on compressor rotating spike via time-accurate simulation, 2009, AIAA J. Propuls.Power, 25(3): 678-687.
    [49] Hazby H R, Xu L, Role of tip leakage in stall of a transonic centrifugal impeller, 2009, ASME paper GT2009-59372.
    [50] Xu L, private communication.
    [51] Houghton T O, Day I J, Enhancing the stability of subsonic compressor using casing grooves, 2009, ASME paper GT2009-59210.
    [52] Tan C S, Day I J, Morris S, Wadia A, Spike-tyoe compressor stall inception, detection and control, 2010, Annu. Rew. Fluid Mech., 42: 275-230.
    [53]吴艳辉,楚武利,张浩光,轴流压气机失速初始扰动的研究进展,力学进展,2008, 38(5):571-584.
    [54] Hathaway M D,Passive endwall treatments for enhancing stability, 2007, NASA Report TM-2007-214409.
    [55] Cheng P, Prell M E, Greitzer E M, Effect of compressor hub treatment on stator stall margin and performance, J. Aircraft, 1984, 21(7): 469-475.
    [56] Johnson M C, Greitzer E M, Effect of slotted hub and casing treatment on compressor endwall flowfield, ASME J. Turbomachinery, 1987,109(2): 380-387.
    [57] Wilke I, Kau H P, A numerical investigation of the flow mechanisms in a high-pressure compressor front stage with axial slots, ASME J. Turbomachinery, 2004, 126(2):339-349.
    [58] Wisler D C, Beacher B F, Improved compressor performance using recessed clearance (trenches) over the rotor, 1986, AIAA Paper AIAA-86-1745.
    [59] Offenbreg L S, Fischer J D, An experimental investigation on turbine cse treatment, 1987, AIAA Paper AIAA-87-1919
    [60] Azimian A R, Elder R L, Mckenzie A B, Application of recess vaned casing treatment to axial flow fans, 1989, ASME Paper GT-89-68.
    [61] Gorrell S E, Russler P M, Stall inception in a high speed low aspect ration fan including the effects of casing treatment, 1994, ASME Paper GT-94-322.
    [62] Hill S D, Elder R L, Application of casing treatment to an industrial axial-flow fan, J. Power and Energy, 1998, 212(4): 225-233.
    [63]杜辉,朱俊强,楚武利,凹槽叶片式机匣处理的结构尺寸优化研究,推进技术,1998,19(1): 70-74.
    [64]孙大坤,孙晓峰,非定常机匣处理对失速先兆波的抑制作用的实验研究,航空动力学报,2008,23(4):671-679.
    [65]楚武利,刘志伟,朱俊强,折线斜缝式机匣处理的实验研究及机理分析,航空动力学报,1999, 14(3): 270-274.
    [66] Yu Q, Li Q S, Li L, The experimental researches on improving operating stability of a transonic fan, 2002, ASME GT-2002-30640.
    [67] Crook A J, Greitzer E M, Tan C S, Numerical simulation of compressor endwall and casing treatment flow phenomena, ASME J. of Turbomachinery, 1993, 115(3): 501-512.
    [68] Thompson D W, King P I, Rabe D C, Experimental investigation of stepped tip gap effectson the performance of a transonic axial-flow compressor rotor, ASME J.of Turbomachinery, 1998, 120(3): 477-486.
    [69]袁巍,周盛,陆亚钧,压气机间隙流与处理机匣作用的三维数值分析,北京航空航天大学学报, 2004, 30(9): 885-888.
    [70] Yang H, Nuernberger D, Nicke E A, Numerical investigation of casing treatment mechanisms with a conservative mixed-cell approach, 2003, ASME Paper GT-2003-38481.
    [71]祝剑虹,朴英,周建兴,岂兴明,跨声压气机缝式处理机匣非定常模拟研究,航空动力学报,2008,23(5):882-888.
    [72] Takata H et al, 1977, Stall margin improvement by casing treatment----its mechanism and effectiveness, ASME J. Engineering for Power, 99(3), 121-133.
    [73] Rabe D C, Hah C, 2002, Application of casing circumferential grooves for improved stall margin in a transonic axial compressor, ASME Paper GT-2002-30641.
    [74] Wilke I, Kau H P, 2002, A numerical investigation of the influence of casing treatments on the tip leakage flow in a HPC front stage, ASME Paper GT-2002-30642.
    [75] Shabbir A, Adamczyk J J, Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressor, 2004, ASME Paper GT-2004-53903.
    [76] Lu X, Zhu J, Chu W, Wu Y , Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic compressor, 2006, ASME Paper GT2006-90077.
    [77] Müller M M, Schiffer H P, Hah C, Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor, 2007, GT-2007-27365.
    [78]王沛,压气机叶顶泄漏流动的控制策略及其扩稳机理研究,中国科学院研究生院硕士学位论, 2007.
    [79]祝剑虹,朴英,周建兴,岂兴明,跨声压气机周向槽处理机匣非设计工况研究,航空动力学报,2008,23(4):687-692.
    [80] Fisher F B, Application of Map Width Enhancement Devices to Turbocharger Compressor Stages, 1988, SAE Paper No.880794.
    [81] Goto S, Yamaguchi S, Nakao H, Yamaguchi H, Nakamura F, Study onWide Flow Range Centrifugal Compressor with Casing treatment for Turbocharger, J. of Turbomachinery, 2003, 31(8): 482-486.
    [82] Ishida M, Sakaguchi D, Ueki H, Optimization of Inlet Ring Groove Arrangement for Suppression of Unstable Flow in a Centrifugal Impeller, 2005, ASME Paper GT2005-68675.
    [83] Hunziker R, Dickmann H P, Emmrich R, Numerical and experimental investigation of a centrifugal compressor with an inducer casing bleed system, Proc Instn Mech Engrs, 2001, 215 Part A: 783-791.
    [84] Yin J, Li P, Pees S, Optimization of turbocharger ported shroud compressor stages, 2009,ASME Paper GT2009-59248.
    [85]陈海昕,符松,肖志祥,基于嵌补网格技术的CFD程序开发,第十二届全国流体力学会议论文集, 2004, 312-317.
    [86]陈海昕,李凤蔚,鄂秦,沈孟育,嵌补式多块网格技术,西北工业大学学报,2002,20: 576-580.
    [87] Haixin Chen, Song Fu, Fengwei Li, Navier–Stokes Simulations for Transport Aircraft Wing/Body High-Lift Configurations,J. Aircraft, 2003,40: 883-890.
    [88] Jameson A, et al, Numerical Solutions of Euler Equations by Finite Volume Methods with Runge-Kutta Time Stepping Schemes,1981, AIAA Paper 81-1259.
    [89] Martinelli L, Jameson A, Validation of Multigrid code for Reynolds Averaged Equation, 1988s, AIAA Paper 88-0414.
    [90] Van Leer B, Towards the Ultimate Conservative Difference Scheme V: A Second Order Sequel to Godunov’s method, Journal of Computational Physics, 1979, 32: 101-136.
    [91] Roe P L, Approximate Riemann Solver, Parameter Vectors, and difference schemes, Journal of Computational Physics, 1981, 43: 357-372.
    [92]肖志祥,复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究,西北工业大学博士学位论文,2003.
    [93] Bladwin B, Lomax H, Thin-Layer Approximation and Algebraic Model for Separation Flows, 1978, AIAA Paper 78-257.
    [94] Wilcox D C, Reassessment of the Scale-Determining Equation for Advanced Turbulence Models, AIAA Journal, 1988, 26: 1299-1310.
    [95] Menter F R, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 1994, 32: 1598-1605.
    [96] Kalitzin G, et al, Application of Two-Equation Turbulence Models in Aircraft Design, 1996, AIAA Paper 96-0327.
    [97] Dale E, Van Zante, et al, Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors, J. of Turbomachinery, 2000,122: 733-742.
    [98] Denton J D, Lessons from Rotor 37, Journal of Thermal Science, 1997, 6:1-13.
    [99] Dunham J, CFD Validation for Propulsion System Components, AGARD-AR-355.
    [100] Joshua D, Cameron J, et al, Effects of Steady Tip Cleanrance Asymmetry and Rotor Whirl on Stall Inception in an Axial Compressor, 2007, ASME Paper GT2007-28278.
    [101] Scott C. Morris, New Perspectives in Compressor Stall,2009,Lecture in Tsinghua University.
    [102] Fu Song, Li Qibing, and Wang Minghao, Depicting Vortex Stretching and Vortex RelaxingMechanisms, CHIN. PHYS. LETT., 2003, 20: 2195-2198.
    [103]黄克智,薛明德,陆明万,张量分析,清华大学出版社,2003.
    [104] Seung Jin Song and Seung Ho Cho, Nonuniform Flow in a Compressor Due to Asymmetric Tip Clearance, ASME J. of Turbomachinery, 2000, 122:751-760.
    [105]福罗良,非线性谐波法与跨音速轴流式压缩机的CFD研究,清华大学硕士论文, 2009.
    [106] Hazby H R, Xu L, Effects of the blade tip loading on the operating range of a transonic centrifugal compressor, 2009, ISABE Paper 2009-1153.
    [107] Scott C. Morris, et al, private communication.
    [108] Casey M V, Radial Turbomachinery design, Cambridge Turbomachinery courses 2008 II, 2008.
    [109] Haixin Chen , Xudong Huang , Ke Shi, Song Fu, Matthew A. Bennington, Scott C. Morris, Mark Ross, Scott McNulty, Aspi Wadia., A CFD Study of Circumferential Groove Casing Treatments in a Transonic Axial Compressor, 2010, GT2010-23606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700