航空发动机高稳定性控制及其在加速控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的防喘控制属于被动控制方法,利用保守的喘振裕度保证了航空发动机安全工作的同时,也极大地牺牲了发动机的性能。然而,先进飞行器却对推进系统提出更高负荷、更高效率、更高推重比的要求,高稳定性控制成为先进航空发动机的必备技术之一。因此,本文在总结了国内外在该领域研究进展的基础上,围绕压气机失稳模型、压气机喘振主动控制、压气机失稳预测等高稳定性控制关键技术开展研究,并研究了高稳定性控制在涡扇发动机加速优化中的应用。
     推导了一个MG模型形式的轴流式压气机变转速过失速瞬态模型。新模型考虑了压气机转子动态和旋转失速高阶分量对压缩系统稳定性的影响。仿真结果表明,压气机转子转速的变化相当于系统内容扰动,有可能使系统进入气动失稳过程。
     为了从机理上解释压气机喘振与旋转失速现象,基于分岔理论,对MG模型开展了非线性动力学分析。旋转失速的迟滞现象由发生在压气机稳定特性线压升系数最大值点的亚临界音叉分岔引起。而喘振现象与系统的Hopf分岔相关,当参数小于某一临界值时,系统不会发生Hopf分岔。
     提出了喘振及旋转失速输出反馈控制、喘振及旋转失速双执行机构控制、基于二阶滑模的喘振控制、基于FLC的喘振主动/被动混合控制四种轴流式压气机喘振主动控制方案。输出反馈控制器利用流量估计器对压气机流量系数进行估计,只需要易于采集的压力信号就能实现主动控制。双执行机构控制器使用节流阀和紧连阀控制阀(Close Coupled Control Valve,CCV)同时作为主动控制的执行机构,具有比单执行机构更好的控制效果。二阶滑模喘振主动控制器利用二阶滑动模态的特性在扩展了压缩系统稳定工作范围的同时,保证了控制器对未建模动态及系统扰动等不确定性具有较强的鲁棒性。喘振主动/被动混合控制器使用放气阀门作为执行机构,喘振主动控制器作为控制系统的主模式可扩大压气机的稳定工作范围,而将防喘系统作为备份模式负责在主动控制模式失效时发挥避免压气机失稳的作用。混合控制器基于模糊逻辑设计,简化了控制设计过程及形式。
     提出了基于MG模型及混沌序列的压气机失稳先兆信号的模拟方法。失稳先兆信号的构造有利于开展高稳定性控制仿真试验研究。在缺少发动机喘振实验条件的情况下,可以利用构造的失稳先兆信号验证失稳预测算法的有效性。
     提出了基于时频分析、基于数学形态学分形维数及基于时间序列分析三种压缩系统失稳预测方案。基于时频分析的失稳预测方案利用形态滤波器等包络检测算法对隐藏在压气机测量参数轮廓中的低频扰动信号进行检测。数学形态学分形维数分析是一种先进的非线性信号处理方法,可以从信号复杂度的变化中探测系统状态的变化。复杂系统的状态变化,通常反映在系统输出信号中。对发动机稳定状态下的传感器输出信号进行时间序列建模,使用所建立的模型对传感器信号进行在线预测,模型预测误差的均方可作为发动机稳定性状况的度量。
     提出了一种基于SQP算法与稳定性寻优相结合的航空发动机加速优化控制方案。总结了发动机加速过程的特点及各种主要限制因素,开展了基于SQP算法的涡扇发动机加速过程优化控制研究。将SQP优化过程中的喘振裕度限制降至最低,根据失稳预测系统的输出对发动机工作点做出适当调整,实现在加速过程中剩余喘振裕度的充分利用。
     本文的研究成果可为喘振主动控制、稳定性寻求控制等高稳定性控制技术研究提供理论参考。
Traditional surge avoidance control belongs to passive methods. The safety of the aero-engine isguaranteed by a conservative surge margin, but the performance of the engine is greatly sacrificed.Meanwhile, higher requirements are put forward on the propulsion system in moden advanced air-crafts, such as higher load, higher efficiency and higher thrust-weight-ratio. And high stability controlhas become one of key technologies in the advanced aero-engine. Therefore, following a review ofdevelopments in this field domestic and abroad, researches on key technologies of high stability con-trol are carried out, such as compression system modeling, compressor surge active control and com-pressor instability prediction. The application of the high stability control in turbofan engine accelera-tion optimization process is also researched.
     The compression system model of Moore Greitzer has been extended to include the spool dy-namic and higher harmonics of rotating stall. Simulation results test the influences of the spool dy-namic on the compression, which may lead to instability like the system inner disturbances.
     To explain the mechanism of the surge and rotating stall phenomena, nonlinear dynamic analysishas been done on MG model, based on bifurcation theory. It can be seen from the analysis results thatthe hysteresis loop of rotating stall is caused by a subcritical fork bifurcation at the peak point of thecompressor characteristic map, and the surge is related to a Hopf bifurcation, which will not occur inthe system with a low B-parameter.
     Four compressor surge active control strategies have been proposed, which are named surge androtating stall output feedback control, surge and rotating stall control via closed coupled valve (CCV)and throttle, surge control based on second order sliding mode and surge active/passive hybrid controlbased on fuzzy logic. A state estimator is employed to estimate the flow coefficient in the output con-troller, the pressure signal, which is easily to collect, is the only feedback parameter to achieve activecontrol. Compared to single actuator scheme, the advantages of using CCV and throttle as actuatorsimultaneously are demonstrated. Benefit from the character of the second order sliding mode, thesurge active controller possesses a better robustness on uncertainties such as un-modeled system dy-namic and disturbances. The active/passive hybrid control system uses a bleed valve as actuator, andcontains a surge active controller as main operating mode to enlarge compressor workingrange, and asurge avoidance controller as back-up mode to guarantee the reliability of the whole system. Thefuzzy logic simplifies the design process and the structure of the hybrid control system.
     Compressor instability precursor signal simulation methods based on MG model and chaotictime series have been studied. The construction of instability precursor signal is critical to compressorstability management simulation tests. The constructed signal also can be used to verify the effective-ness of compressor instability prediction algorithms with the absence of true experimental signal.
     Three compressor instability prediction algorithms have been proposed respectively based ontime-frequency analysis, mathematical morphology fractal dimension, and time series modeling.Envelope detection methods such as mathematical morphology filtering are used to detect low fre-quency instability precursors, which are hided in high frequency signals. Mathematical morphologyfractal dimension analysis is one advanced nonlinear signal processing technology, which can extractthe changes of compressor stability through quantization of the signal complexity. Since the variationsof complex system states are usually reflected in output signals, modelling the time series of systemoutput, prection the output by the model, the mean square of prediction error can be used as compres-sor stability index.
     A new aircraft engine acceleration optimization strategy which combined with SQP algorithmand stability management has been proposed. Based on summarization of the features and restrictivefactors of turbofan engine acceleration process, SQP based acceleration optimization is researched. Tomake full use of the remaining surge margin, the boundary condition of surge margin is minimized,and then, the engine operating point is adjusted realtime according to the output of the engine instabil-ity prediction system.
     All of the research results in this dissertation lay a solid theoretical reference on high stabilitycontrol technologies, including surge active control and stability seeking control.
引文
[1]胡骏,吴铁鹰,曹人靖.航空叶片机原理.北京:国防工业出版社,2006.
    [2]廉筱纯,吴虎.航空发动机原理.西安:西北工业大学出版社,2005.
    [3] Day I.J.Stall Inception in Axial Flow Compressors.J.Turbomachinery,1993,115:1~9.
    [4] Day I.J.Axial Compressor Performance During Surge.J.Propulsion and Power,1994,10:329~336.
    [5] Fink D.A.,Cumpsty N.A.,Greitzer E.M.Surge Dynamics in a Free-Spool CentrifugalCompressor System.J.Turbomachinery,1992,114:321~332.
    [6] Botros K.K.Transient Phenomena in Compressor Stations During Surge.J.Eng.GasTurbines and Power,1994,116:133~142.
    [7] Graig A.Buhr.Active Control of Rotating Stall in Compressors,[Doctoral Dis-sertation].West Lafayette:Purdue University,2003.
    [8] Kim K.H.,Fleeter S.Compressor Unsteady Aerodynamic Response to Rotating Stall andSurge Excitations.J.Propulsion and Power,1994,10:698~708.
    [9]吴艳辉,刘志伟,朱俊强等.轴流压缩系统失速可恢复性的预测.航空动力学报,2002,17(3):323~326.
    [10]Spang H.A.,Brown H.Control of Jet Engines.Control Engineering Practice,1999,7:1043~1059.
    [11]Longley J.P.,Shin H.W.,Plumley R.E.,et al.Effects of Rotating Inlet Distortion onMultistage Compressor Stability.ASME Journal of Turbomachinery,1996,118:181~188.
    [12]Pampreen R.C.Compressor Surge and Stall.Norwich,Vermont,USA:ConceptsETI,Inc,1999:135~156.
    [13]Emmons H.W.,Kronauer R.E.,Rockett J.A.A Survey of Stall Propagation:Experiment andTheory.Trans of ASME J.of Basic Engineering,1959:409~416.
    [14]Greitzer E.M.Surge and Rotating Stall in Axial Flow Compressors,Part I:TheoreticalCompressor System Modal.Trans of ASME,J.of Engineering for Power,1976.
    [15]叶巍,黄顺洲,陆德雨等.航空发动机防喘系统及其评定方法.燃气涡轮试验与研究,2000,13(2):53~57.
    [16]Botros K.K.,Henderson J.F.Developments in Centrifugal Compressor Surge Control-aTechnology Assessment.J.Turbomachinery,1994,116:240~249.
    [17]Dadd G.J.,Porter M.J.Surge Recovery and Compressor Working Line Control UsingCompressor Exit Mach Number Measurement.Proc.Inst.Eng.Pert G:J.Aerosp.Eng.,1993,207(GI):27~35.
    [18]Bram de Jager.Rotating Stall and Surge Conrol:A Survey.Proceedings of the34thConference on Decision&Control,New Orleans,LA,1995,1857~1862.
    [19]Vachtsevanos G.,Kang H.,Cheng J.,et al.Detection and Identification of Axial FlowCompressor Instability.J.Guidance,Control and Dynamics,1992,15:1216~1223.
    [20]Rodgers C.Centrifugal Compressor Inlet Guide Vanes for Increased Surge Mar-gin.J.Turbomachinery,1991,113:696~702.
    [21]旷桂兰.航空涡轴发动机喘振预测实验研究,[博士学位论文].南京:南京航空航天大学,2010.
    [22]姜明远,胡英俊.第四代战斗机作战需求研究.航空科学技术,2003,1:29~30.
    [23]Lord W.K.,MacMartin D.G.,Tillman T.G.Flow Control Opportunities in Gas TurbineEngines.AIAA2000-2234,2000.
    [24]Rainville P.A.,De Champlain A.Unsteady CFD Calculation for Validation of MultivaneThrust Vector Control System.Proceedings of40thAIAA/ASM/SAE/ASEE Joint PropulsionConference and Exhibit,Fort Lauderdale,AIAA2004-3384,2004.
    [25]Lu B.,Wu F.,Kim S.W.Switching LPV Control of An F-16Aircraft via Controller StateReset.IEEE Transactions on Control Systems Technology,2006,14(2):267~277.
    [26]Alireza R.B.Advanced,Adaptive,Modular,Distributed:Generic Universal FADECFramework for Intelligent Propulsion Control Systems.NASA Paper,AFRL-RZ-WP-TP-2008-2044,2008.
    [27]孙健国.面向21世纪航空动力控制展望.航空动力学报,2001,16(2):97~102.
    [28]Klas H.,Sven S.,Olof H.Reliability Analysis of a Single-Engine Aircraft FADEC.1998Proceedings Annual Reliability and Maintainability Symposium,1998.
    [29]邹涛,樊丁.航空发动机FADEC双冗余嵌入式实时计算机系统架构设计.计算机测量与控制,2006,14(11):1485~1501.
    [30]Small L.L.Integrated Flight/Propulsion Control for Next Generation MilitaryAircraft.SAE861726,1986.
    [31]朱旭津.航空发动机先进控制概念和高稳定性发动机控制系统研制.燃气轮机实验与研究,2002,15(3):5~10.
    [32]Nilesh V.K.,Krishna K.K.Intelligent Engine Control Using an Adaptive Critic.IEEETransactions on Control Systems Technology,2003,11(2):164~173.
    [33]Abibhatla S.,Lewis T.Model-Based Intelligent Digital Engine Control.Proc.33rdJoint Propulsion Conf.,1997,AIAA-97-3192.
    [34]Sun J.G.,Vasilyev V.,Ilyasov B.Advanced Multivariable Control System ofAero-Engine.北京:北京航空航天大学出版社,2005.
    [35]Orme J.,Schkolnik G.Flight Assessment of the Onboard Propulsion System Model forthe Performance Seeking Control Algorithm on an F-15Aircraft.AIAA Paper,1995,AIAA-95-2361.
    [36]Maruyama M.,Yasuda T.Research of Engine Optimal Control.Engineering Review,2005,38(2):70~73.
    [37]孙健国,黄金泉.发动机喘振裕度自适应控制.航空动力学报,1993,8(3).
    [38]Sanjay Garg.Controls and Health Management Technologies for Intelligent AerospacePropulsion Systems.NASA/TM-2004-212915,2004.
    [39]Najmeh D.,Mohammad R.J.,Mohammad T.H.Robust Adaptive Control of Surge Instabilityin a Centrifugal Compressor with Variable Speed.2010American Control ConferenceMarriott Waterfront,Baltimore,MD,USA,2010.
    [40]Giarre L.,Bauso D.,Falugi P,et al.LPV Model Identification for Gain SchedulingControl:an Application to Rotating Stall and Surge Control Problem,2005.
    [41]Salim A.M.,Jie Z.Compressor Surge Control Using a Variable Area Throttle and FuzzyLogic Control.Transactions of the Institute of Measurement and Control,2010,32(4):347~375.
    [42]Chen P.N.,Qin H.S.Bifurcation Control of Rotating Stall in Axial Flow Compressorsvia Dynamic Output Feedback.Proceedings of the8thWorld Congress on IntelligentControl and Automation,Jiann,China,2010.
    [43]Javadi Moghaddam J.,Farahani M.H.,Amanifard N.A Neural Network-Based Sliding-ModeControl for Rotating Stall and Surge in Axial Compressors.Applied Soft Computing,2011,11:1036~1043.
    [44]Javadi Moghaddam J.,Madani M.A Decoupled Adaptive Neuro-Fuzzy Sliding Mode ControlSystem to Control Rotating Stall and Surge in Axial Compressors.Expert Systems withApplications,2011,38:4490~4496.
    [45]王健,李应红,张东方等.基于分岔理论的轴流式压气机旋转失速主动控制技术.航空动力学报,2007,22(7):1179~1183.
    [46]Foutanie D.,Liao S.F.,Paduano J.Nonlinear Control Experiments on an Axial FlowCompressors,2004.
    [47]Gravdahl J.T.,Egeland O.,Vatland S.O.Drive Torque Actuation in Active SurgeControl of Centrifugal Compressors.Automatic,2002,38(11):1881~1893.
    [48]Epstein A.H.,Ffowce J.E.,Greitzer E.M.Active Suppression of Aerodynamic In-stabilites in Turbomachinery.J.Propulsion,1989,5:204~211.
    [49]Gu G.X.,Sparks A.,Banda S.S.An Overview of Rotating Stall and Surge Control forAxial Flow Compressors.IEEE Transactions on ControlSystems Technology,1999,7(6):639~647.
    [50]Willems F.,de Jager B.Modeling and Control of Rotating Stall and Surge:AnOverview.Proceedings of the1998IEEE International Conference on Control Ap-plication,Trieste,Italy,1998.
    [51]Emmons H.W.,Pearson C.E.,Grant H.P.Compressor Surge and Stall Propaga-tion.Transactions of the ASME,1955,77:455~469.
    [52]Greitzer E.M.Surge and Rotating Stall in Axial Flow Compressors:Part I-Theoretical Compression System Model.Journal of Engineering for Pow-er,Transactions of the ASME,1976,98:190~198.
    [53]Greitzer E.M.Surge and Rotating Stall in Axial Flow Compressors:Part II-Ex-perimental Results and Comparison with Theory.Journal of Engineering for Pow-er,Transactions of the ASME,1976,98:199~217.
    [54]Moore F.K.Theory of Rotating Stall of Multistage Axial Compressors:Part I–SmallDisturbances.Journal of Engineering for Gas Turbines and Power,Transactions of theASME,1984,106(2):313~321.
    [55]Moore F.K.Theory of Rotating Stall of Multistage Axial Compressors:Part II–Finite Disturbances. Journal of Engineering for Gas Turbines and Pow-er,Transactions of the ASME,1984,106(2):322~328.
    [56]Moore F.K.Theory of Rotating Stall of Multistage Axial Compressors:Part III–Limit Cycles. Journal of Engineering for Gas Turbines and Power,Transactions ofthe ASME,1984,106(2):329~336.
    [57]Moore F.K.,Greitzer E.M.Theory of Post-Stall Transients in Axial CompressionSystem:Part I–Development of Equaions.Journal of Engineering for Gas Turbinesand Power,Transactions of the ASME,1986,108:68~76.
    [58]Moore F.K.,Greitzer E.M.Theory of Post-Stall Transients in Axial CompressionSystem:Part II–Application.Journal of Engineering for Gas Turbines andPower,Transactions of the ASME,1986,108:231~239.
    [59]Wang H.O.,Adormaitis R.A.,Abed E.H.Nonlinear Analysis and Control of RotatingStall in Axial Flow Compressors.In Proc.of the1994American Control Confe-rence,1994,pages:2317~2321.
    [60]Haynes J.M.,Hendricks G.J.,Epstein A.H.Active Stabilization of Rotating Stall ina Three-Stage Axial Compressor.ASME J.Turbomachinery,1994,116(2):226~239.
    [61]Gravdahl J.T.,Egeland O.A Moore-Greitzer Axial Compressor Model with SpoolDynamics.in Proc.of the36thIEEE Conference on Decision and Con-trol,1997,pages:4717~4719.
    [62]Botros K.K.Transient Phenomena in Compressor Stations During Surge.ASMEJ.Engineering for Gas Turbines and Power,1994,116(1):133~142.
    [63]Hynes T.P.,Greitzer E.M.A Method for Assessing Effects of Circumferential FlowDistorsion on Compressor Stability.ASME Journal of Turbomachi-nery,1987,109:371~379.
    [64]Hu J.,Fottner L.A New Simplified Model of Post Stall Transients in Axial CompressionSystems.Journal of Thermal Science,1999,8(3):176~189.
    [65]Mansoux C.A.,Gysling D.L.,Setiawan J.D.,et al.Distributed Nonlinear Modeling andStability Analysis of Axial Compressor Stall and Surge.Proceedings of the1994American Control Conference.
    [66]Bonnaure L.P.Modeling High Speed Multistage Compressor Stability,[Master Dis-sertation].Massachusetts:MIT Department of Aeronautics and Astronuatics,1991.
    [67]Feulner M.R.,Hendricks G.J.,Paduano J.D.Modeling for Control of Rotating Stall inHigh Speed Multi-Stage Axial Compressors.ASME Paper No.94-GT-200,1994.
    [68]Hendricks G.J.,Dabnis J.S.,Feulner M.R.Analysis of Instability Inception inHigh-Speed Multi-Stage Axial-Flow Compressors.ASME Paper No.96-GT-360,1996.
    [69]Huang S.B.,Su S.M.Key Technology Analysis for Active Compressor StabilizationControl of Aero-Engine.2011International Conference on MachatronicScience,Electric Engineering and Computer,August19-20,2011, pages:1938~1942.
    [70]Day I.J.Stall Inception in Axial Flow Compressor.ASEM Journal of Turbomachi-nery,1993,113(1):1~9.
    [71]Mcdougall N.M.,Cumpsty N.A.,Hynes T.P.Stall Inception in Axial Compressors.ASEMJournal of Turbomachinery,1990,112(1):116~125.
    [72]Garnier V.H.,Epstein A.H.,Greitzer E.M.Rotating Waves as a Stall Indication inAxial Compressors.ASEM Journal of Turbomachinery,1991,115(3):290~302.
    [73]聂超群,陈静宜,蒋浩康等.低速轴流压气机旋转失速先兆特征的实验分析.工程热物理学报,1998,19(3):293~298.
    [74]Camp T.R.,Day I.J.A Study of Spike and Modal Stall Phenomena in a Low-Speed AxialCompressor.ASME Journal of Turbomachinery,1998,120(3):393~401.
    [75]Wilson A.C.,Freeman C.Stall Inception and Development in an Axial flow Aero-engine.ASME Journal of Turbomachinery,1994.116(2):216~225.
    [76]Tryfonidis M.,Etchevers O.,Paduano J.D.,et al.Pre-stall Behavior of SeveralHigh-Speed Compressors.ASME Journal of Turbomachinery,1995,117(1):62~80.
    [77]Escuret J.F.,Garnier V.Stall Inception Measurement in a High-Speed MultistageCompressors.ASME Journal of Turbomachinery,1996,118(4):690~696.
    [78]Day I.J.,Breuer T.Escuret J.,et al.Stall Inception and the Prospects for ActiveControl in Four High-Speed Compressors.ASME Journal of Turbomachi-nery,1999,121(1):18~27.
    [79]Bernd H.,Dirk L.,Leonhard F.Stall Inception in the Compressor System of a TurbofanEngine.ASME Journal of Turbomachinery,2000,122(1):32~41.
    [80]吴艳辉,楚武利,张皓光.轴流压气机失速初始扰动的研究进展.力学进展,2008,38(5):571~584.
    [81]Wernet M.P.,Zante D.V.,Strazisar T.J.,et al.3-D Digital PIV Measurements of thetip Clearance Flow in an Axial Compressor.ASME Paper,2002,2002-GT-30642.
    [82]Liu B.J.,Wang H.W.,Liu H.X.,et al.Experimental Investigation of Unsteady FlowField in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Conditionwith SPIV.ASME Paper,2003,2003-GT-38185.
    [83]Furukawa M.,Inoue M.,Saiki K.,et al.The Role of Tip Leakage Vortex Breakdown inCompressor Rotor Aerodynamics.ASME Journal of Turbomachinery,1999,121(3):469~480.
    [84]邓向阳.压气机叶顶间隙流的数值模拟研究,[博士学位论文].北京:中国科学院工程热物理研究所,2005.
    [85]Yamada K.,Furukawa M.,Nakano K.Unsteady Three-Dimensional Flow Phenomena Due toBreakdown of Tip Leakage Vortex in a Transonic Axial Compressor Rotor.ASMEPaper,2004,2004-GT-53745.
    [86]Hoying D.A.,Tan C.S.,Vo H.D.,et al.Role of Blade Passage Flow Structures in AxialCompressor Rotating Stall Inception.ASME Journal of Turbomachinery,1999,121(4):735~742.
    [87]Vo H.H.,Greitzer E.M.Critiria for Spike Initiated Rotating Stall.ASME Paper,2005,2005-GT-68374.
    [88]Hah C.,Bergner J.,Schiffer H.Short Length-Scale Rotating Stall Inception in aTransonic Axial Compressor-Criteria and Machanism.ASME Paper,2006,2006-GT-90045.
    [89]Longley J.P.Inlet Distortion and Compressor Instabilites,[Doctoral Disser tation].Cambridge:Cambridge University,1988.
    [90]Frank B.J.,King P.I.Effects of Leading Edge Sweep on Stall Inception.AIAA Pa-per,1994,AIAA-94-2696.
    [91]Frank B.J.Analysis and Chracterization of Compressor Stall Precursor Signals inForward and After Swept High Speed Compressor.AD-A273820,1993.
    [92]张靖煊.一种捕捉预示压气机失稳预警系统的新方法.航空动力学报,2004,19(2):270~277.
    [93]Liao S.F.,Chen J.Y.Time-Frequency Analysis of Compressor Rotating Stall by Meansof Wavelet Transform.ASME Paper,1996,96-GT-57.
    [94]程晓斌.小波分析与压气机旋转失速先兆研究,[博士学位论文].北京:中国科学院工程热物理研究所,2001.
    [95]Feng L.,Jingyi C.,Meilin L.Practical Issues of Wavelet Analysis of Unsteady RotorTip Flows in Compressors.AIAA Paper,2002,AIAA-2002-4082.
    [96]Inoue M.,Kuroumaru M.,Yoshida S.,et al.Short and Long Length-Scale DisturbancesLeading to Rotating Stall in an Axial Compressor Stage with Different Stator/RotorGaps.ASME Journal of Turbomachinery,2002,124(3):376~383.
    [97]吕建伟,李军.基于时频-小波分析的压气机失速过程研究.航空动力学报,2004,19(4):490~494.
    [98]Bright M.M.,Qammar H.K.,Weigl H.J.,et al.Stall Precursor Identification inHigh-Speed Compressor Stages Using Chaotic Time Series Analysis Methods.ASMEPaper,1996,1996-GT-370.
    [99]Bright M.M.,Qammar H.K.,Leizhen W.Investigation of Pre-stall Mode and Pip In-ception in High-Speed Compressors through the use of correlation integral.ASMEPaper,1998,98-GT-365.
    [100]Dhingra M.,Neumeier Y.,Prasad J.V.R.,et al.Stall and Surge Precursors in AxialCompressors.Presented at39thAIAA/ASME/SAE/ASEE Joint Propulsion Conference andExhibit,2003,Huntsville,AL.
    [101]Dhingra M.,Neumeier Y.,Prasad J.V.R.,et al.A Stochastic Model for a CompressorStability Measure.ASME Paper,2006,2006-GT-91182.
    [102]Dhingra M.,Armor J.,Neumeier Y.,et al.Compressor Surge:A Limit Detection andAvoidance Problem.Presented at AIAA Guidance,Navigation and Control Conference andExhibit,2005,San Francisco,CA.
    [103]Christensen D.,Cantin P.,Gutz D.,et al.Development and Demonstration of aStability Management System for Gas Turbine Engines.Transactions of ASME,Journalof Turbomachinery,2008.
    [104]Paduano J.D.,Epstein A.H.,Valavani L.,et al.Active Control of Rotating Stall ina Low-Speed Axial Compressor.Journal of Turbomachinery,1993,115:48~56.
    [105]Weigl H.,Paduano J.,Frechette A.,et al.Active Stabilization of Rotating Stall ina Transonic Single Stage Axial Compressor.ASME J.Turbomach.,1998,120:625~636.
    [106]Van Schalkwyk C.M.Active Control of Rotating Stall with Inlet Distortion.GTLReport No.222,1996.
    [107]Spakovszky Z.S.,Weigl H.J.,Paduano J.D.,et al.Rotating Stall Control in aHigh-Speed Stage with Inlet Distortion:Part I-Radial Distrotion.Trans.ASMEJ.Turbomach.,1999,121:510~516.
    [108]Spakovszky Z.S.,Schalkwyk C.M.,Weigl H.J.,et al.Rotating Stall Control in aHigh-Speed Stage with Inlet Distortion:Part II-Circuferential Distor-tion.Trans.ASME J.Turbomach.,1999,121:517~524.
    [109]Abed E.H.,Houpt P.K.Bifurcation Analysis of Surge and Rotating Stall in Axial FlowCompressors.NSFD-8803012,1990.
    [110]McCaughan F.E.Application of Bifurcation Theory to Axial Flow Compressor In-stability.Journal of Turbomachinery,1989.
    [111]Behnken R.L.,Andrea R.D.,Murray R.M.Control of Rotating Stall in a Low-Speed AxialFlow Compressor Using Pulse Air Injection:Modeling,Simulations and ExperimentalValidation.In Proc.Of the34thIAEE Conference,1995.
    [112]Liaw D.C.,Abed E.H.Active Control of Compressor Stall Inception:A BifurcationTheoretic Approach.The National Science Foundation Engineering Research CenterProgram,1994.
    [113]Eveker K.M.,Gysling D.L.,Nett C.N.,et al.Integrated Control of Rotating Stall andSurge in Aero-Engines.SPIE,1995.
    [114]Simon J.S.,Valavani L.A Lyapunov Based Nonlinear Control Scheme for Stabilizinga Basic Compression System Using a Close-coupled Control Valve.Proceedings of theAmerican Control Conference,1991,2398~2406.
    [115]Krstic M.,Protz J.M.,Paduano J.D.,et al.Backstepping Designs for Jet Engine Stalland Surge Control.Proceedings of the35thConference on Decision and Control,NewOrleans,LA,3049~3055,1995.
    [116]Sanadgol D.,Maslen E.H.Sliding Mode Controller for Active Control of Surge inCentrifugal Comressors with Magnetic Thrust Bearing Actuation.The9thInternationalSymposium on Magnetic Bearings,2004.
    [117]Laderman M.,Greatrix D.,Liu G.J.Fuzzy Logic control of Surge in a Jet EngineModel.The13thPropulsion Symposium,50thCASI Annual Conference,Montreal,2003.
    [118]Salunkhe P.B.,Reddy V.S.R.K.,Pradeep A.M.Tip Injection as a Means for RotatingStall Control in an Axial Flow Fan.Proceedings of the Institution of MechanicalEngineers,Journal of Power and Energy,2009,55~70.
    [119]Suder K.L.,Hathaway M.D.,Thorp S.A.,et al.Compressor Stability Enhancement UsingDiscrete Tip Injection.Transactions of the ASME,Jouranl of Turbomachi-nery,2001,123:14~23.
    [120]DeLaat J.C.,Southwick R.D.,Gallops G.W.High Stability Engine Control(HISTEC).AIAA Paper96-2586,1996.
    [121]DeLaat J.C.The High Stability Engine Control(HISTEC) Program:Flight Demon-stration Phase.AIAA Paper98-3756,1998.
    [122]Southwick R.D.High Stability Engine Control(HISTEC) Flight Test Results.AIAAPaper98-3757,1998.
    [123]Orme J.S.Development and Testing of a High Stability Engine Control(HISTEC)System.AIAA Paper98-3715,1998.
    [124]DeLaat J.C.High Stability Engine Control(HISTEC):Flight Demonstration Re-sults.SAE Paper985556,1998.
    [125]John S.,Orme,Delaat J.C.,et al.Development and Testing of High Stability EngineCongrol(HISTEC) System.NASA/TM-1198-206562,1998.
    [126]陈霆昊,张海波,孙健国.基于攻角预测模型的航空发动机高稳定性控制.航空动力学报,2010,25(7):1676~1682.
    [127]陈英,叶巍,周志文等.一种用于提高发动机气动稳定性的控制策略.燃气涡轮试验与研究,2012,25(3):26~30.
    [128]Hansen K.E.,Jorgensen P.,Larsen P.S.Experimental and Theoretical Study of Surgein a Small Centrifugal Compressor.ASME Transactions,Journal of Fluids Engi-neering,1981,103:391~395.
    [129]刘小河.非线性系统分析与控制引论.北京:清华大学出版社,2008.
    [130]Krstic M.,Kanellakopoulos I.,Kokotovic P.V.Nonlinear and Adaptive ControlDesign.Jonh Wiley&Sons Inc.,1995.
    [131]Krstic M.,Kokotovic P.V.Lean Backstepping Designs for Jet Engine CompressorModel.Proceedings of the4thIEEE Conference on Control Applica-tions,1995,1047~1052.
    [132]Gravdahl J.T.Modeling and Control of Surge and Rotating Stall in Compres-sors.Report98-6-W,Department of Engineering Cybernetics,Norwegian University ofScience and Technology,N-7034Trondhein,Norway,1998.
    [133]Gravdahl J.T.,Egeland O.Compressor Surge Control Using a Close-coupled Valve andBackstepping.Proceedings of the Amerecan Control Conference Albuquerque,NewMexico,1997.
    [134]乔继红.反演控制方法与实现.北京:机械工业出版社,2012.
    [135]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1998.
    [136]尹凤杰,井元伟,杨晖.基于连续滑模控制的主动队列管理算法及仿真.系统仿真学报,2006,18(8):2267~2288.
    [137]Tang Y.Terminal Sliding Mode Control for Rigid Robots.Automatica,1997,34:51~56.
    [138]Yu X.H.,Man Z.H.Fast Terminal Sliding-Mode Control Design for Nonlinear DynamicalSystems.IEEE Transactions on Circuits and Systems I:Fundamental Theory andApplication,2002,49(2):261~264.
    [139]Moreno J.A.,Osoris M.A Lyapunov Approach to Second-Order Sliding Mode Controllersand Observers.Proceedings of the47thIEEE Conference on Decision and Con-trol,Cancun,Mexico,2008.
    [140]Bartolini G.,Pisano A.,Punta E.,et al.A Survey of Applications of Second-orderSliding Mode Control to Mechanical Systems.Int.J.Control,2003,76(9/10):875~892.
    [141]Bartolini G.,Ferrara A.,Usai E.Chattering Avoidance by Second-Order Sliding ModeControl.IEEE Transactions on Automatic Control,1998,43(2):243~246.
    [142]Bartolini G.,Muntoni A.,Pisano A.,et al.Compressor Surge Suppression bySecond-Order Sliding Mode Control Technique.Proceedings of the17thWorld Congress,The International Federation of Automatic Control,Seoul,Korea,2008.
    [143]Bartolini G.,Pisano A.,Usai E.Digital Second-Order Sliding Mode Control forUncertain Nonlinear Systems.Automatica,2001,37:1371~1377.
    [144]Floquet T.,Barbot J.P.Super Twisting Algorithm-Based Step-by-Step Sliding ModeObservers for Nonlinear Systems with Unknown Inputs.International Journal ofSystems Science,2007,38(10):803~815.
    [145]Hoss B.,Leinhos D.,Fottner L.Stall Inception in the Compressor System of aTurbofan Engine.Transactions of the ASME,2000,122:32~44.
    [146]Dremin I.M.,Furletov V.I.,Ivanov O.V.,et al.Precursors of Stall and SurgeProcesses in Gas Turbines Revealed by Wavelet Analysis.Control EngineeringPractice,2002,10:599~604.
    [147]吴云,李应红,张朴等.某轴流式压气机气动不稳定的相关积分分析.热能动力工程,2006,21(2):145~149.
    [148]Bharadwaj S.,Venkateswaran N.,Schirle S.M.,et al.Method and Apparatus forContinuous Prediction Monitoring and Control of Compressor Health via Detectionof Precursors to Rotating Stall and Surge.United States Patent,US6532433B2,2003.
    [149]Krok M.J.,Venkateswaran N.,Kande N.S.Method for Detecting Compressor StallPrecursors.United States Patent,US7596953B2,2009.
    [150]Ziach M.,Majkut M.,Witkowski A.Application of the Wavelet Transform of PressureSignals for Detecting and Analyzing Rotating Stall Inception in Axial FlowLow-Speed Compressor Stage.The Archive of Mechanical Engineering,2011,LVIII:61~77.
    [151]符娆,雷勇.基于小波分析的压气机失速初始扰动信号处理.西北工业大学学报,2010,28(3):421~424.
    [152]王红红.WJ6发动机试车振动分析系统研究[硕士学位论文].西安:西北工业大学,2004.
    [153]彭启琮,邵怀宗,李明奇.信号分析导论.北京:高等教育出版社,2010.
    [154]李兵,张培林,米双山等.机械故障信号的数学形态学分析与智能分类.北京:国防工业出版社,2011.
    [155]夏勇,赵荣椿,江泽涛.一种基于数学形态学的分形维数估计方法.中国图像图形学报,2004,9(6):760~766.
    [156]Jin X.C.,Ong S.H.,Jayasooriah.A Practical Method for Estimating Fractal Di-mension.Pattern Recognition Letters,1995,16(5):457~464.
    [157]薛东辉,朱耀庭,朱光喜.分形维数的多尺度形态估计与目标提取.信号处理,1998,14(1):13~19.
    [158]王志贤.最优状态估计与系统辨识.西安:西北工业大学出版社,2003.
    [159]杨鉴,梁虹.随机信号处理原理与实践.北京:科学出版社,2010.
    [160]李伟刚.某型涡扇发动机过渡态寻优控制研究,[博士学位论文].西安:西北工业大学,2001.
    [161]Liang J.X.,Walker B.K.Constrained Nonliear Optimal Jet Engine AccelerationControl.AIAA-88-3178,1988.
    [162]Basso R.J.,Leake R.J.Computational Alternative to Obtain Time Optimal Jet EngineControl.NASA CR-149104,1976.
    [163]杨坤,谢寿生,谢锋.SQP方法在航空发动机加速寻优控制中的应用.光电与控制,2007,14(1):106~111.
    [164]刘大响,金捷.21世纪世界航空动力技术发展趋势与展望,中国工程科学,2004,6(9):1~7.
    [165]Jaw L.C.,Garg S.Propulsion Control Technology Development in the UnitedStates.NASA TM-2005-213978,2005.
    [166]张绍基.航空发动机控制系统的研发与展望.航空动力学报,2004,19(3):375~382.
    [167]陈万农.航空发动机数控系统通用仿真和开发平台的构筑.燃气涡轮试验与研究,2002,15(3):1~4.
    [168]Torella G.,Palmesano G.The Development of a Virtual Test Bed for Gas TurbineEngines.AIAA Paper2003-4651,39thAIAA/ASME/SAE/ASEE Joint Propulsion Conferenceand Exhibit,2003,Huntsville,Alabama.
    [169]黄向华,郑绪生.基于逐级叠加法的航空发动机气动模型研究.航空学报,2005,26(5):540~544.
    [170]骆广琦,桑增产,王如根等.航空燃气涡轮发动机数值仿真.北京:国防工业出版社,2007.
    [171]马昌凤.最优化方法及其Matlab程序实现.北京:科学出版社,2010.
    [172]陈耀楚.X型涡扇发动机过渡态寻优控制,[硕士学位论文].西安:西北工业大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700