总压畸变对超声速压气机流场结构影响的机理探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机的性能和稳定性与进气畸变息息相关。如果无视进气畸变的影响,就会使压气机的气动性能恶化、效率和稳定裕度降低,甚至诱发旋转失速或喘振。因此,流场畸变的研究意义重大。本课题以某型高负荷超声速轴流压气机的一级为研究对象,应用全周非定常数值模拟的方法开展工作。重点研究设计工况下不同进口总压畸变条件时,动静叶栅内流场对畸变来流的响应机制。
     因为本文的研究对象为某型轴流式压气机一级的改型,其性能参数都较原型有所改变,所以就要重新绘制特性曲线。本文主要绘制90%、100%和110%设计转速下的压气机特性曲线,并采用Fluent和Numeca两种计算软件进行模拟,以便验证数值模拟结果的软件无关性。而后将数值模拟网格应用自适应功能加密,从总参数和关键截面内流场验证了网格无关性。
     本文对于非定常问题的研究均采用标记流道的方法,首先全面细致的探究了插板深度为进口外径(半径)38.2%的畸变类型。结果表明,畸变会使得压气机时均质量流量和等熵效率降低,并引起压气机可用稳定裕度的损失。通过对一个周期各时间步流场的研究,着重揭示了动静叶区域对于畸变来流的非定常响应。动叶区域,主要关注畸变影响下动叶流道中激波的结构、强度、位置的变化;静叶区域,重点分析畸变影响下静叶流道分离规律。并且从机理上探究了动静叶区域对于畸变响应的原因。
     对多种不同插板深度畸变的研究表明,随着插板深度的增加,压气机的时均质量流量和效率会随之下降。静叶的流动分离主要集中在叶顶和叶根处,静叶叶根处的分离会对叶顶分离产生抑制。当插板深度大于一定的程度后,进一步增加插板深度,只会使得动叶和静叶区域完全畸变区的流道数目增加(单纯范围上的扩大),而并不会加重单个流道的流动恶化程度。并且对于本文所研究的压气机来说,轮缘处的畸变更影响效率,而轮毂处的畸变更影响流量(即通流能力)。
This paper is a presentation of a numerical simulation study on one stage axial flow compressor which is supersonic and high loaded. As the inlet distortion is closely related with the performance and the stability of compressor, it could deteriorate the aerodynamic performance of the compressor, decreases the efficiency and debases the stability margin,induse the appearance of rotating stall or surge. So the research of distortion have great significance. Applying the unsteady full-annulus simulation, the key point is how inner flow field of the rotor and stator response to the different inlet total pressure distortions in design condition.
     The object of study is the modification of one stage compressor. Therefore parameters are changed from the original one. So we need to redraw the characteristic curves. This paper mainly draw the characteristic curves under 90%,100%and110% of designed speed. These curves are simulated by Fluent and Numeca (two different softwares). Thus the results about software independence are proved. Employing the adaptive mesh refinement function to adapt the grid, the grid independence is proved from the general parameters and inner flow field of key sections.
     The marked single passage is used to investigate the unsteady simulation. First, the distortion that insert-board depth is 38.2% of inlet radius is deeply studied. The results are showed that the time averaged mass flow rate and efficiency of compressor are decreased, the available stability margin are reduced. Via the study of flow field in each time step of one period, the response mechanism between inlet distortion and inner flow field is emphatically revealed. In the rotor flow field, the variation of shock structure, intensity and position under effect of distortion is analyzed in detail; in the stator flow field, the separation law of stator end-wall is studied. What's more the causation is explored profoundly.
     Via the studied about different deepness of insert-board distortions, indicated that with the increasing of the deepness, the time-averaged mass flow rate and efficiency of compressor are both decreased. The flow separation of stator mainly concentrate in the end-wall, the separation in stator hub will suppress the separation in casing area. Once the depth increased to definite value, the deeper insert-board reach, the more full development separation passages increase. But the degree of deterioration would not become more serious in those separation passages. To the compressor this paper studied, the distortion near the flange impacts the efficiency of the compressor closely,while that near the hub impacts the mass flow rate closely.
引文
[1]孙鹏.总压畸变对跨声速风扇流场结构影响的全流道数值模拟:(博士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [2]K. Dragan, S. Udo, L. Eugen. Hub-Corner Stall in Compressor Cascades:A Comparison Between Experimental And Numerical Results. ISABE,2009:1335.
    [3]PEAESON H, MCKENZIE A. Wakes in axial compressors. Journal of the Royal Aeronautical Society,1959:63(3) 42-47.
    [4]Carta, F.O.. Analysis of Unsteady Aerodynamic Effects on Axial Flow Compressor Stage with Distorted Inflow. Project Squid—Technical Rep,1972, UARL-A-UP.
    [5]Melick, H.C.. Analysis of Inlet Flow Distortion and Turbulence Effects on Compressor Stability. NASA CR 114577,1973.
    [6]Greitzer,E. M.. Surge and Rotating Stall in Axial Flow Compressors:Part I. ASME Journal of Engineering for Power,April 1976, Vol.98.
    [7]Greitzer, E. M.. Surge and Rotating Stall in Axial Flow Compressors:Part II. ASME Journal of Engineering for Power,April 1976, Vol.98.
    [8]Roberts, F., Plourde, G. A., Smakula, F.. Insights into Axial compressor Response to Distortion. AIAA Paper,1968:No.68-565.
    [9]Braithwaite, W. M., Graber Jr., E. J., Mehalic, C. M.. The Effect of Inlet Temperature and Pressure Distortion on Turbojet Performance. AIAA/SAE9th Propulsion Conference, Nevada. November 5-7 1973:AIAA Paper No.73-1316.
    [10]Adamczyk, J. J.. Unsteady Fluid Dynamic Response of an Isolated Rotor with Distorted Inflow. AIAA Paper:No.74-49.
    [11]Mazzawy, R. S.. Multiple Segment Parallel Compressor Model fo Circumferential Flow Distortion. ASME Journal of Engineering for Power, April 1977.
    [12]GREITZER E M, TAN C S, WISLER D C, et al. Unsteady Flows in Turbomachines:Where's the Beef?. ASME Unsteady Flows in Aero-propulsion,1994.
    [13]Rai,M. M.. Three-Dimensional Navier-Stokes Simulations of Turbine Rotor-Stator Interaction:Part I- Methodology. AIAA Journal of Propulsion and Power.1989,15(3): 305-319.
    [14]Rao,K. V., Delaney, R. A.. Investigation of Unsteady Flow Through a Transonic Turbine Stage:Part I- Analysis. AIAA Paper, Orlando.1990:90-2408.
    [15]Jameson,A.. Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows Past Airfoils and Wings. AIAA Paper, Honolulu.1991:91-1596.
    [16]He,L.I.. Method of simulating Unsteady Turbomachinery Flows with Multiple Perturbations. AIAA Journal.1992,30(11):2730-2735.
    [17]Burgos, A. B., Corral,R.. Application of Phase-Lagged Boundary Conditions to Rotor/Stator Interaction. ASME, New Orleans.2001:ASME Paper 2001-GT-0586.
    [18]Billonnet, G., Fourmaux,A., Toussaint, C.. Evaluation of Two Competitive Approaches for Simulating the Time-Periodic Flow in an Axial Turbine Stage. Proceedings of the 4th European Conference on Turbomachinery, Fierence.2001.
    [19]Jung, A. R., Mayer, J. F., Stetter, H.. Simulation of 3-D Unsteady Stator/Rotor Interaction in Turbomachinery Stages of Arbitrary Pitch Ratio. ASME, Birmingham.1996: ASME Paper 96-GT-69.
    [20]Laumert, B., Martensson, H., Fransson, T. H.. Simulation of Rotor/Stator Interaction with a 4D Finite Volume Method. ASME, Amsterdam.2002:ASME Paper GT-2002-30601.
    [21]Rai,M. M., Madavan, N. K.. Multi-Airfoils Navier-Stokes Simulations of Turbine Rotor-Stator Interaction. AIAA, Boston.1988:AIAA Paper 88-0361.
    [22]Dawes, W. N.. A Numerical Study of the Interaction of a Transonic Compressor Rotor Overtip Leakage Vortex with the Following Stator Blade Row. ASME, Hague.1994:ASME Paper 94-GT-156.
    [23]M. Kefalakis, K. D. Papailiou. Active Flow Control For Increasing The Surge Margin Of An Axial Flow Compressor. ASME, Barcelona Spain.2006:ASME Paper GT2006-90113.
    [24]M. Vahdati, G. Simpson, M. Imregun. Unsteady flow and aeroelasticity behaviour of aero-engine core compressors during rotating stall and surge. ASME, Barcelona Spain. 2006:ASME Paper GT2006- 90308.
    [25]F. Montomoli, E. Naylor, H. P. Hodsonl, L. Lapworth. Unsteady effects in cantilevered axial compressors:a multistage simulation. ISABE. Montreal Canada.2009:ISABE 2009-1104.
    [26]赵全春.压气机试验用的三种压力畸变发生器及试验结果.航空发动机,1995(3):28-38.
    [27]王存诚,蔡可军,张东.下游部件对压气机性能影响的分析.清华大学学报(自然科学版),1997(2).
    [28]张士杰,袁新,叶大均.低展弦比跨音速轴流风扇转子流场三维数值模拟.工程热物理学报,2001(5):566-568.
    [29]乔渭阳,蔡元虎.燃气涡轮发动机压缩系统稳定性数值模拟的研究.燃气涡轮试验与研究,2001(2):19-25.
    [30]蒋康涛,徐纲,张宏武,等.单级跨音压气机整圈三维动静叶干涉的数值模拟.航空动力学报,2002(5):549-555.
    [31]蒋康涛.低速轴流压气机旋转失速的数值模拟研究:(博士学位论文).北京:中国科学院研究生院(工程热物理研究所),2004.
    [32]高丽敏,刘海湖,刘波,等.多级轴流压气机全三维流动特性的数值研究.西北工业大学学报,2008(1):1-5.
    [33]张皓光,楚武利,吴艳辉,等.进口总压畸变对压气机性能及流场影响的机理研究.机械科学与技术,2010(7):880-885.
    [34]陈玉春,胡梦觉,陆传华,等.压力畸变对涡扇发动机稳定性影响的试验.推进技术,2002(2):146-149.
    [35]李传鹏,胡骏.旋转进气畸变对轴流压气机气动稳定性影响实验研究.航空动力学报,2004(4):433-437.
    [36]张靖煊,童志庭,聂超群.低速轴流压气机进口总压畸变与旋转失速关联的实验研究.航空动力学报,2007(5):803-807.
    [37]阎国军,骆广琦,江勇,等.某型发动机进口压力畸变实验研究与分析.实验流体力学,2007(1):36-40.
    [38]屠宝锋,胡骏,王志强,等.进气畸变下低速轴流压气机失速起始特性试验.推进技术,2010(4):428-432.
    [39]张士杰,袁新,叶大均.跨音速轴流压气机级三维粘性流场全工况数值模拟.工程热物理学报,2003(1):43-45.
    [40]刘前智.双级风扇三维粘性非定常流动的数值解.航空动力学报,2003(6):768-771.
    [41]丁可金,楚武利,卢新根,等.单级轴流压气机内部三维流动的数值模拟.流体机械,2005(8):21-23.
    [42]曹国强,梁冰,包明宇.基于FLUENT的叶轮机械三维紊流流场数值模拟.机械设计与制造,2005(8):22-24.
    [43]贾海军.轴流压气机跨声速三维流场数值模拟:(博士学位论文).西安:西北工业大学,2006.
    [44]李传鹏,胡骏,王英锋,等.进气畸变对压气机稳定性的影响.工程热物理学报,2006(5):778-780.
    [45]王春利.风扇/压气机气动稳定性的数值模拟研究:(博士学位论文).西安:西北工业大学,2007.
    [46]郑宁,邹正平,徐力平.风扇进气畸变三维非定常数值模拟技术研究.航空动力学报,2007(1):60-65.
    [47]张靖煊.畸变条件下轴流压气机叶顶间隙流对流动失稳影响的非定常机制:(博士学位论文).北京:中国科学院研究生院(工程热物理研究所),2007.
    [48]李亮.进口总压畸变稳定性评定方法研究:(博士学位论文).南京:南京航空航天大学,2008.
    [49]贾海军,吴虎,黄健.畸变条件下跨声速轴流压气机内部流动分析.力学与实践,2009(5):8-14.
    [50]陈美宁,朴英,王大磊.总压进气畸变对压气机转子气动影响的数值模拟.航空动力学报,2009(8):1792-1798.
    [51]侯敏杰,乔渭阳.进气畸变在风扇/压气机内传递的数值研究.西北工业大学学报,2004(2):153-156.
    [52]芮长胜,吴虎.周向稳态总压畸变在多级轴流压气机中传递的逐级模拟研究.航空动力学报,2007(12):2031-2035.
    [53]王乐明,李军,张百灵,等.总压畸变在三级轴流压气机中的传递性能研究.航空动力学报,2008(12):2302-2307.
    [54]许开富,乔渭阳,罗华玲.畸变进气条件下风扇三维非定常流动数值模拟.热能动力工程,2009(5):571-576.
    [55]张百灵,刘超,李军,等.某多级压气机畸变传递过程中相关参数影响研究.空军工程大学学报(自然科学版),2010(1):1-4.
    [56]李美林,林峰,陈静宜,等.周向进口畸变对压气机失速过程的影响.工程热物理学报,2005(6).
    [57]张靖煊,林峰,张宏武,等.旋转进口畸变与轴流压气机旋转失速相关联的模型与实验探索.工程热物理学报,2007(2):229-231.
    [58]蒋华兵,陆亚钧,袁巍,等.进气畸变对低速轴流压气机失速特性的影响.航空动力学报,2008(2):355-360.
    [59]张环,胡骏,屠宝锋,等.旋转进气畸变对压气机气动稳定性及失速起始特性的影响.航空动力学报,2008(11):2095-2100.
    [60]吴艳辉,楚武利,张皓光.轴流压气机失速初始扰动的研究进展.力学进展,2008(5):571-584.
    [61]Giles,M. B.. Stator/Rotor Interaction in a Transonic Turbine. AIAA Journal of Propulsion and Power.1990,6(5):621-627.
    [62]Clark, J. P., Stetson, G.M., Magge, S.S.. The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and 1/2 Stage Transonic Turbine and a Comparison with Experimental Results. ASME,Munich.2000:ASME Paper 2000-GT-0446.
    [63]Arnone, A., Pacciani.R.. Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method. ASME,Houston.1995:ASME Paper 95-GT-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700