离心压缩机系统内无叶扩压器失速的三维模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无叶扩压器失速是离心压缩机系统内常见的非稳定流动现象之一,它限制了扩压器的稳定工作范围,也限制了离心压缩机整机的稳定工作范围,并影响整机的运行可靠性。认识无叶扩压器内的非定常流动特性,掌握预测无叶扩压器失速的方法,对于扩展其运行范围,改善其工作效率意义重大。而深入研究和理解无叶扩压器内的流动现象,对于无叶扩压器的优化以及与压缩机系统中其他部件的匹配也具有指导意义。
     本文建立了三种离心压缩机系统内无叶扩压器失速的三维模型,研究了无叶扩压器内的非稳定流动及其失速特性。本文首先通过求解线性化的三维不可压缩欧拉方程,建立了研究无叶扩压器失速问题的三维不可压缩理论模型。研究了无叶扩压器入口非扰动流径向速度在轴向上的分布对扩压器扰动流场以及对失速特性的影响。此外还研究了周向波数,叶轮叶片后弯以及无叶扩压器宽度对扩压器稳定性的影响。模型的计算结果显示,无叶扩压器入口流动的轴向分布会激发内流场轴向速度扰动。同时,对三种不同的入口流动轴向分布类型的研究发现,符合Fj0rtoft提出的非稳定流动必要条件的分布类型临界流量系数最大,即最不稳定。对周向波数的研究发现,最不稳定波数与实验中常见的失速团个数一致,通常在2~4。对叶片后弯的研究证实了后弯对于提高无叶扩压器稳定性的作用,且无叶扩压器越长,扩稳效果越明显。在叶片后弯且入口流动轴向分布不均一情况下发现的多重共振现象则为实验中得到无叶扩压器内可能相继出现两种不同转速失速团的现象提供了一种理论解释。此外,研究还发现增加无叶扩压器的宽度,在保持入口流动轴向分布不变的情况下可以增加长扩压器的稳定性。
     在三维不可压缩模型的基础上,本文进一步通过求解线性化的三维可压缩欧拉方程,建立了研究无叶扩压器失速问题的三维可压缩理论模型。研究了不同入口马赫数下,无叶扩压器入口非扰动流径向速度在轴向上的分布,周向波数,叶轮叶片后弯角以及无叶扩压器宽度对于扩压器失速的影响,得到了相应的临界流量系数和失速团转速。模型的计算结果显示,无叶扩压器内的扰动流参数幅值随入口马赫数的升高明显增大。对于较短的无叶扩压器,入口流动的轴向分布对其稳定性的影响较为明显;而对于较长的无叶扩压器,入口马赫数对其稳定性的影响较大。周向波数对无叶扩压器稳定性的影响效果随马赫数的变化较小,叶片后弯的相对扩稳效果随马赫数的变化亦不明显,而增加无叶扩压器的宽度但保持入口流动轴向分布不变的所带来的扩稳效果,随着入口马赫数的上升而增强。在较高的入口马赫数下,临界流量系数很接近但相应失速团转速相差明显的多重共振现象,不仅出现在较短的无叶扩压器内,也会出现在中等长度的无叶扩压器内。
     在平行壁面无叶扩压器失速模型的基础上,本文通过求解非正交坐标系下的线性化三维可压缩欧拉方程,建立了一种可用于研究非平行壁面无叶扩压器失速问题的理论模型,研究了不同轮盖型线对扩压器稳定性的影响,以及非平行壁面无叶扩压器内,周向波数,叶轮叶片后弯角,以及无叶扩压器入口段收缩对于扩压器失速的影响,得到了相应的临界流量系数和失速团转速。模型的计算结果验证了收缩型轮盖对无叶扩压器的扩稳效果,且扩稳效果随着收缩率以及入口马赫数的上升而增强。在非平行壁面无叶扩压器内,最不稳定波数有所减小,但仍然大于1。叶片后弯对非平行壁面无叶扩压器同样具有扩稳效果,但多重共振在较短的非平行壁面无叶扩压器内被抑制。研究还发现,在无叶扩压器入口宽度与出口宽度保持不变的前提下,无叶扩压器入口段收缩越大,稳定性越高。
     最后,将本论文所开发的无叶扩压器三维不可压缩模型,三维可压缩模型以及用于非平行壁面无叶扩压器的可压缩模型得到的失速预测结果,与文献中以及课题组的低速离心压缩机系统的实验结果,Honeywell高速离心压缩机系统的CFD结果,以及文献中非平行壁面无叶扩压器实验结果进行了比较。结果表明,对于宽度较大的无叶扩压器,忽略边界层的核心流模型可以得到较好的预测结果,且三维模型的预测结果比二维模型更准确。
Vaneless diffuser stall is one of the most commonly seen unsteady flow phenomena in centrifugal compression system, which limits the steady operating range of the compression system as well as of the diffuser itself, and impacts operation reliability. In order to extend steady operation range and to improve the performance of the vaneless diffusers as well as the whole compression system, it is important to investigate the unsteady flow and to predict the stall limit of vaneless diffusers. Also, a further study and better understanding of the flow field in vaneless diffusers will have instructional value in optimizing diffuser geometries and matching of diffusers with other parts of the compression system.
     In this thesis, three three-dimensional vaneless diffuser stall models in centrifugal compression system were developed. Unsteady flow and stall characteristics in vaneless diffusers were studied. A three-dimensional vaneless diffuser stall model for incompressible flow was first proposed by solving linearized three-dimensional Euler equations for incompressible flow, and the effects of axial distribution of inlet radial velocity of undisturbed flow on disturbed flow and on stall characteristics were studied. Also studied were the effects of wave number, impeller backswept angle and diffuser width on diffuser stability. The results showed that axial velocity component of the disturbed flow would be provoked by inlet distortion of undisturbed radial velocity. And study of three different types of inlet distribution showed that the one which meet the conditions of general unsteady flow proposed by Fj0rtoft was least stable. The study of wave number showed that the least stable wave number consisted with the stall cell number found in most experimental measurements, which is 2 to 4. Impeller backswept angle stabilized vaneless diffusers and the stabilizing effect was more obvious for long diffusers. The multiple resonances found in diffusers with impeller backswept angle and inlet distortion provided a theoretical explanation of the experimental findings that a low-speed rotating stall cell could happen just after a high-speed rotating stall cell in vaneless diffusers. If the undisturbed inlet radial velocity distribution slop was kept, stability would be improved for long diffusers when the diffuser width increases.
     A three-dimensional vaneless diffuser stall model for compressible flow was then established based on the previous model for incompressible flow by solving linearized three-dimensional Euler equations for compressible flow. The effects of axial distribution of inlet radial velocity of undisturbed flow , wave number, impeller backswept angle and diffuser width on stall characteristics under different inlet Mach number were studied, and critical inlet mass flow rate and rotating speed of stall cells were predicted. The results showed that the amplitudes of disturbed flow parameters increased with inlet Mach number. For short diffusers, axial distribution of inlet radial velocity had more obvious effects on diffuser stability, while for long diffusers inlet Mach number had more obvious effects on diffuser stability. The effects of wave number on diffuser stability changed little with inlet Mach number, so did the relative stability extension brought by impeller backswept angle. However, the stabilizing effects of increasing diffuser width but keeping distribution slop increased with inlet Mach number. Under higher inlet Mach number, multiple resonances of which critical inlet mass flow rates were close to each other but rotating speed of stall cells were of difference were found not only in short diffusers but also in diffusers of medium length.
     Based on the developed stall models for vaneless diffusers with parallel walls, a three-dimensional stall model for vaneless diffusers with unparallel walls was then established via solving linearized three-dimensional Euler equations for compressible flow in non-orthogonal coordinates. The effects of different types of shroud wall on diffuser stability were studied. Also studied were the effects of wave number, impeller backswept angle and contraction of diffuser inlet part on diffuser stability in unparallel wall diffusers, and the critical inlet mass flow rate and rotating speed of stall cells were predicted. The results showed the stabilizing effects of shroud walls with contractions, and the effects increased with contraction ratio and inlet Mach number. For unparallel wall diffusers, the least stable wave number was smaller than that for parallel wall diffusers, but still higher than one. Impeller backswept angle showed stabilizing effect in unparallel wall diffusers. However, multiple resonances found in parallel wall diffusers were restrained in unparallel wall diffusers with short length. The study also found that contraction of diffuser inlet part had stabilizing effect on diffusers and the effect increased with contraction ratio even the inlet and outlet width of these diffusers were not changed.
     At last, the predicted stall characteristics from the developed three-dimensional vaneless diffuser stall model for incompressible flow and for compressible flow, and from the three-dimensional model for diffusers with unparallel walls were compared with the results from open literatures and the test rig established in our lab of low speed centrifugal compression system, the results from Honeywell CFD simulation of high speed centrifugal compression system, and the results from open literature of experimental measurements in an unparallel wall diffuser respectively. The comparison showed that for wide diffusers the predictions from the developed models based on core flow theory were satisfying and three-dimensional models gave better predictions than two-dimensional ones.
引文
1.朱报桢,郭涛,离心压缩机,陕西,西安交通大学出版社,1989
    2.舒士甄,叶轮机械原理,北京,清华大学出版社,1991
    3. Stenning A. H., Stall Propagation in Axial Compressors, NACA TN3580, 1956
    4. Stenning A. H. and Kriebel, A. R., Stall Propagation in a Cascade of Airfoils, Transactions of the ASME, Vol.80, pp.777, 1958
    5. Emmons H. W., Pearson C. E., Grant H. P., Compressor Surge and Stall Propagation, Trans.ASME, Vol.77, 1955
    6. Emmons H. W., Kronauer R. E. and Rockett J. A., A Survey of Stall Propagation—Experiment and Theory, Journal of Basic Engineering, Trans. ASME, Series D, Vol.81, 409–416, 1959
    7. Cumpsty N. A., Compressor Aerodynamics, Longaman Group, 1989
    8. Iura T. and Rannie W. D., Experimental Investigations of Propagating Stall in Axial-Flow Compressors, Transactions of ASME, Vol.76, pp.463-471, 1954
    9. Greitzer E. M., Surge and Rotating Stall in Axial Flow Compressors, Part I: Theoretical Compression System Model, ASME Journal of Engineering for Power, Vol.98, pp.190-198, 1976
    10. Greitzer E. M., Surge and Rotating Stall in Axial Flow Compressors, Part II: Experimental Results and Comparison with Theory, ASME Journal of Engineering for Power, Vol.98, pp.199-217, 1976
    11. Greitzer E. M., Review—Axial Compressor Stall Phenomena, ASME Journal of Fluid s Engineering, Vol.102, June, 1980
    12. McCaughan X. X., Application of Bifurcation Theory to Axial Flow Compressor Instability, ASME Journal of Turbomachinery, Vol.110, pp.426-433, 1988
    13. Pinsley J. E., Guenette G. R.., Epstein A. H., and Greitzer E. M., Active Stabilization of Centrifugal Compressor Surge, ASME Journal of Turbomachinery, Vol.113, pp.723-732, 1991
    14. Gysling D. L., Dugundji J. Greitzer E. M., and Epstein A. H., Dynamic Control of Centrifugal Compressor Surge Using Trilored Structures, ASME Journal of Turbomachinery, Vol.113, pp.710-722, 1991
    15. Simon J. S., Valavani L., Epstein A. H., and Greitzer E. M., Evaluation of Approaches to Active Compressor Surge Stabilization, ASME Journal of Turbomachinery, Vol.115,pp.57-67, 1993
    16. Day I. J., Active Suppression of Rotating Stall and Surge in Axial Compressors, ASME Journal of Turbomachinery, Vol.115, pp.40-47, 1993
    17. Moore F. K., A Theory of Rotating Stall of Multistage Axial Compressors: Part I—Small Disturbances, ASME Journal of Engineering for Gas Turbines and Power, Vol.106, 313–320, 1984
    18. Moore F. K., A Theory of Rotating Stall of Multistage Axial Compressors: Part II—Finite Disturbances, ASME Journal of Engineering for Gas Turbines and Power, Vol.106, 321–326, 1984
    19. Moore F. K., A Theory of Rotating Stall of Multistage Axial Compressors: Part III—Limit Cycles, ASME Journal of Engineering for Gas Turbines and Power, Vol.106, 327–336, 1984
    20. Durham J., Non-axisymmetric Flows in Axial Compressors, Mechanical Engineering Science, Monograph No.3, Oct., 1965
    21. Longley J. P. and Hynes T. P., Stability of Flow Through Multistage Axial Compressors, ASME Journal of Turbomachinery, Vol.112, pp.126-132, 1990
    22. Paduano J., Epstein A. H., Valavani L., Longley J. P., Greitzer E. M., and Guenette G. R., Active Control of Rotating Stall in a Low-Sped Axial Compressor, ASME Journal of Turbomachinery, Vol.115, pp48-56, 1993
    23. Haynes J. M., Hendricks G. J., and Epstein A. H., Active Stabilization of Rotating Stall in a Three-Stage Axial Compressor, ASME Journal of Turbomachinery, Vol.116, pp.226-239, 1994
    24. McDougall N. M., Cumpsty N. A., and Hynes T. P., Stall Inception in Axial Compressors, ASME Journal of Turbomachinery, Vol.112, pp.116-125, 1990
    25. Garnier V. H., Epstein A. H., and Greitzer E. M., Rotating Waves at a Stall Inception Indication in Axial Compressors, ASME Journal of Turbomachinery, Vol.113, p.290-301, 1991
    26. Day I. J., Stall Inception in Axial Flow Compressors, ASME Journal of Turbomachinery, Vol.115, pp.1-9, 1993
    27. Moore F. K. and Greitzer E. M., A Theory of Post-stall Transients in Axial Compression Systems Part I: Development of Equations, ASME Journal of Engineering for Gas Trubines and Power, Vol.108, pp.68-76, 1986
    28. Moore F. K. and Greitzer E. M., A Theory of Post-stall Transients in Axial CompressionSystems Part II: Application, ASME Journal of Engineering for Gas Trubines and Power, Vol.108, pp.231-240, 1986
    29. Greitzer E. M., A Note on Compressor Exit Static Pressure Mal-distribution in Asymmetric Flow, Cambridge University Engineering Dept. Report CUED/A-Turbo/TR 79, 1976
    30. Ham C. J. and Williams D. D., Some Applications of Actuator and Semi-actuator Disk Theory to the Problem of Intake/Engine Compatibility, Paper No.83-TOKYO-IGTC-50, 1983
    31. O’Brien W. F., Ng W. F., and Richardon S. M., Calculation of Unsteady Fan Rotor Response Caused by Downstream Flow Distortions, Journal of Propulsion, Vol.1, No.6, 1985
    32. Longley J. P. and Greitzer E. M., Inlet Distortion Effects in Aircraft Propulsion System Integration, AGARD Lecture Series LS-183, May, 1992
    33. Nagano S., Machinda Y. and Takata H. Dynamic Performance of Stalled Blade Rows, Japan Society of Mechanical Engineering, Paper #11, presented at Tokyo Joint International Gas Turbine Conference, Tokyo Japan, Oct. 1971
    34. Mazzawy R. S., Multiple Segment Parallel Compressor Model for Circumferential Flow Distortion, ASME Journal of Engineering for Power, Vol.99, Apr., 1977
    35. Turner R. C., The Effect of Axial Spacing on the Surge Characteristics of Two Mismatched Axial Compressor Stages, Aeronautical Research Council, CP No.431, 1959
    36. Longley J. P., Measured and Predicted Effects of Inlet Distortion on Axial Compressors, ASME Paper No.90-GT-314, 1990
    37. Chue R., Hynes T. P., Greitzer E. M., Tan C. S.m and Longley J. P., Calculations of Inlet Distortion Induced Compressor Flowfield Instability, Int. J. Heat Fluid Flow, Vol.10, No.3, Sept, 1989
    38. Strang E. J., Influence of Unsteady Losses and Deviation on Compression System Stability with Inlet Distrotion, M.S. Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 1991
    39. Hendricks G. J. and Gysling D. L., A Theoretical Study of Sensor-Actuator Schemes for Rotating Stall Control, Paper No. AIAA 92-3486, 1992
    40. Linearb, Linearised Two-Dimensional, Actuator Disk and Semi-actuator Disk Computer Code, Rolls-Royce Report, United Kingdom, 1980
    41. Kodama H., Performance of Axial Compressor with Nonuniform Exit Static Pressure,ASME Journal of Turbomachinery, Vol.108, pp.76-81, 1986
    42. Bonnaure L. P., Modeling High Speed Multistage Compressor Stability, M. S. Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 1991
    43. Mazzawy R. S., Surge-Induced Structural Loads in Gas Turbines, ASME Journal of Engineering for Power, Vol.102, pp.162-168, 1980
    44. Cargill A. M. and Freeman C., High-Speed Compressor Surge with Application to Active Control, ASME Journal of Turbomachinery, Vol.113, pp.303-311, 1991
    45. Longley J. P., A Review of Nonsteady Flow Models for Compressor Stability, ASME Journal of Turbomachinery, Vol.116, pp.202-215, 1994
    46. Cheshire L. J., Design and Development of Centrifugal Compressors for Aircraft, Proceedings of the Institution of Mechanical Engineers, London, England, Vol.153, 1945
    47. Dean R.C. and Senoo Y., Rotating Wakes in Vaneless Diffusers, Journal of Basic Engineering, Vol.82, 563-574, 1960
    48. Jansen W., Rotating Stall in a Radial Vaneless Diffuser, ASME Journal of Basic Engineering, Vol.86, 750–758, 1964
    49. Senoo Y., Kinoshita Y. and Ishida M., Asymmetric Flow in Vaneless Diffusers of Centrifugal Blowers, Journal of Fluid Engineering, Trans. ASME, Series I, Vol. 99, 104–114, 1977
    50. Senoo Y. and Kinoshita Y., Influence of Inlet Flow Conditions and Geometries of Centrifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow, Journal of Fluid Engineering, Trans. ASME, Series I, Vol. 99, 98–103, 1977
    51. Senoo Y. and Kinoshita Y., Limits of Rotating Stall and Stall in Vaneless Diffuser of Centrifugal Compressors, ASME Paper No. 78-GT-19, 1978
    52. Kinoshita Y. and Senoo Y., Rotating Stall Induced in Vaneless Diffusers of Very Low Specific Speed Centrifugal Blowers, Journal of Engineering for Gas Turbines and Power, Vol.107, 514-521, 1985
    53. Japikse D., A Critical Evaluation of Stall Concepts for Centrifugal Compressors and Pumps, Stability, Stall and Surge in Compressors and Pumps, presented at The Winter Annual Meeting of AMSE, 1-10, 1984
    54. Abdelhamid A. N., Analysis of Rotating Stall in Vaneless Diffusers of Centrifugal Compressors, Canadian Aeronautics and Space Journal, Vol.26, 118–128, 1980
    55. Abdelhamid A. N., Effects of Vaneless Diffuser Geometry on Flow Instability in Centrifugal Compression Systems, Canadian Aeronautics and Space Journal, Vol. 29,259–266, 1983
    56. Abdelhamid A. N. and Bertrand J., Distinctions Between Two Types of Self-excited Gas Oscillations in Vaneless Radial Diffusers, Canadian Aeronautics and Space Journal, Vol.26, 105–117, 1980
    57. Frigne P. and Van den Braembussche R., Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor with Vaneless Diffuser, ASME Journal of Engineering for Gas Turbines and Power, Vol.106, 468–474, 1984
    58. Frigne P. and Van den Braembussche R., A Theoretical Model for Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor, ASME Journal of Engineering for Gas Turbines and Power, Vol.107, 507–513, 1985
    59. Schumann L. F., A Three-Dimensional Axisymmetric Calculation Procedure for Turbulent Flows in a Radial Vaneless Diffuser, ASME Journal of Engineering for Gas Turbines and Power, Vol.108, 118–124, 1986
    60. Tsurusaki H, Imaichi K and Miyake R, A Study on the Rotating Stall in Vaneless Diffusers of Centrifugal Fans (1st Report, Rotational Speeds of Stall Cells, Critical Inlet Flow Angle), JSME International Journal, Vol.30, 279–287, 1987
    61. Moore F. K., Weak Rotating Flow Disturbances in a Centrifugal Compressor with a Vaneless Diffuser, ASME Journal of Turbomachinery, Vol.111, 442–449, 1989
    62. Tsujimoto Y., Yoshida Y. and Mori Y., Study of Vaneless Diffuser Rotating Stall Based on Two-Dimensional Inviscid Flow Analysis, ASME Journal of Fluids Engineering, Vol.118, 123–127, 1996
    63. Shin Y. H., Kim K. H. and Son B. J., An Experimental Study on the Development of a Reverse Flow Zone in a Vaneless Diffuser, JSME International Journal Series B, Vol.41, 546–555, 1998
    64. Ahmed S.A. and Abidogun K.B., Detailed Flow Measurements in a Vaneless Diffuser Model, Canadian Aeronautics and Space Journal, Vol.46, 125–130, 2000
    65. Ahmed S.A., Characteristics of Unsteady-Flow Phenomena in a Channel Radial Diffuser, Canadian Aeronautics and Space Journal, Vol.48, 169–180, 2002
    66. Abidogun K.B., Effects of Vaneless Diffuser Geometries on Rotating Stall, Journal of Propulsion and Power, Vol.22, 542–549, 2006
    67. Otugen M.V. and So R.M.C, Diffuser Stall and Rotating Zones of Separated Boundary Layer, Experiments in Fluids, Vol.6, 521-533, 1988
    68. Watanabe H., Konomi S. and Ariga I., Transient Process of Rotating Stall in RadialVaneless Diffusers, ASME paper No.94-GT-161, 1994
    69. Ferrara G., Ferrari L., Mengoni C. P., De Lucia M. and Baldassarre L., Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor. Part I: Influence of Diffuser Geometry on Stall Inception, ASME paper No. GT-2002-30389, 2002
    70. Ferrara G., Ferrari L., Mengoni C. P., De Lucia M. and Baldassarre L., Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor. Part II: Influence of Diffuser Geometry on Stage Performance, ASME paper No. GT-2002-30390, 2002
    71. Cellai A., Ferrara G.., Ferrari L., Mengoni C.P. and Baldassarre L., Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor. Part III: Influence of Diffuser Geometry on Stall Inception and Performance (2nd Impeller Tested), ASME paper No. GT-2003-38390, 2003
    72. Ferrara G., Ferrari L. and Baldassarre L., Experimental Characterization of Vaneless Diffuser Rotating Stall. Part V: Influence of Diffuser Geometry on Stall Inception and Performance (3rd Impeller Tested), ASME paper No. GT-2006-90693, 2006
    73. Carnevale E. A., Ferrara G., Ferrari L. and Baldassarre L., Experimental Characterization of Vaneless Diffuser Rotating Stall. Part VI: Reduction of Three Impeller Results, ASME paper No. GT-2006-90694, 2006
    74. Ljevar S., Seulers J., De Lange H. C. And Van Steenhoven A. A., Vaneless Diffuser Core Flow Instability and Rotating Stall Characteristics, In Proceedings of the IMechE, Fluid Machinery Group– Ninth European Fluid Machinery Congress, 379–389, 2006
    75. Ljevar S., De Lange H. C. and Van Steenhoven, A. A., Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser, International Journal of Rotating Machinery, Vol.2006, 1–11, 2006
    76.高闯,谷传纲,王彤,戴正元,大宽度无叶扩压器旋转失速特征的数值分析,上海交通大学学报,Vol.41,pp.1518-1521,2007
    77. Spakovszky Z. S., Application of Axial and Radial Compressor Dynamic System Modeling, Ph.D Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 2001
    78.高闯,谷传纲,王彤,肖军,无叶扩压器内的射流—尾迹型扰动分析,动力工程,Vol.29,pp.326-329,2009
    79. Dubitsky O. and Japikse D., Vaneless Diffuser Advanced Model, ASME Journal ofTurbomachinery, Vol.130, 1–10, 2008
    80.高闯,谷传纲,王彤,肖军,叶轮和扩压器几何参数对离心压缩机末级性能和失速的影响,中国电机工程学报,Vol.27,pp.83-86,2007
    81. Chuang G., Chuangang G., Tong W., and Bo Y., Analysis of Geometries' Effects on Rotating Stall in Vaneless Diffuser with Wavelet Neural Networks, International Journal of Rotating Machinery, Vol.2007, pp.1-10, 2007
    82.高闯,谷传纲,王彤,舒信伟,基于小波神经网络的无叶扩压器失速分析,航空动力学报,Vol.23,pp.693-698,2008
    83. Dou H. S. and Mizuki S., Analysis of the Flow in Vaneless Diffusers with Large Width-to-Radius Ratios, ASME Journal of Turbomachinery, Vol.120, 193-201, 1998
    84. Dou H. S., Investigation of the Prediction of Losses in Radial Vaneless Diffusers, ASME paper No.91-GT-323, 1991
    85. Scano L. and Arnulfi G..L., Rotating Stall Model and Simulation of Two-Stage Centrifugal Compressors, ASME paper No.GT2007-27922, 2007
    86. Ludtke K. Aerodynamic Tests on Centrifugal Process Compressors - the Influence of the Vaneless Diffuser Shape, ASME Journal of Engineering for Power, Vol.105, 902-909, 1983
    87. Zhu Y. K. and Sjolander S., Effect of Geometry on the Performance of Radial Vaneless Diffusers, ASME Journal of Turbomachinery, Vol.109, 550-556, 1987
    88. Sato T., Oh J. M. and Engeda A. Experimental and Numerical Investigation of the Flow in a Vaneless Diffuser of a Centrifugal Compressor Stage. Part 1: experimental investigation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.219, 1053-1059, 2005
    89. Sato T., Oh J. M. and Engeda A. Experimental and Numerical Investigation of the Flow in a Vaneless Diffuser of a Centrifugal Compressor Stage. Part 2: numerical investigation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.219, 1061-1068, 2005
    90. Yang C., Zhang D. Z., Ma C. C. and Hu L. P., Investigation into the Interaction of Centrifugal Compressor Impeller and Vaneless Diffuser, Journal of Beijing Institute of Technology, Vol.15, 273-277, 2006
    91.汤华,杜建一,初雷哲,赵晓路,徐建中,无叶扩压段型线对离心压缩机性能的影响,工程热物理学报,Vol.27, 959-961, 2006
    92.高丽敏,刘波,王欢,无叶扩压器对离心压缩机流场及性能影响的数值研究,中国机械工程,Vol.17,pp.2098-2101,2008
    93. Lee Y. T., Luo L. and Bein T. W., Direct Method for Optimization of a Centrifual Compressor Vaneless Diffuser, ASME Journal of Turbomachinery, Vol.123, 73-80, 2001
    94.高闯,谷传纲,王彤,舒信伟,基于模糊理论的三维无叶扩压器多目标优化,上海交通大学学报,Vol.40,pp.1192-1195.
    95. Turumen-Saaresti T., Reunanen A. and Larjola J., Computational and Experimental Study of Pinch on the Performance of a Vaneless Diffuser in a Centrifugal Compressor, Journal of Thermal Science, Vol.15, 306-313, 2006
    96. Turumen-Saaresti T., Reunanen A. and Larjola J., Experimental Study of Pinch in Vaneless Diffuser of Centrifugal Compressor, ASME paper No.GT2009-60162, 2009
    97. Maksoud T. M. A. and Johnson M. W., Mean and Turbulent Flow Measurements within the Vaneless Diffuser of a Centrifugal Compressor, In Proceedings of the IMechE Conference on Turbomachinery, 175-182, 1987
    98. Pinarbasi A. and Johnson M. W., Three-Dimensional Flow Measurements in Conical and Straight Wall Centrifugal Compressor Vaneless Diffusers, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.210, 51-61, 1996
    99. Inoue M. and Cumpsty N. A., Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers, ASME Jounral of Gas Turbines and Power, Vol.106, 455-467, 1984
    100.Mounts J. S. and Brasz J. J., Analysis of the Jet/Wake Mixing in a Vaneless Diffuser, ASME paper No.92-GT-418, 1992
    101.William H. P., Saul A. T., and William T. V., et al., Numerical Recipes: The Art of Scientific Computing, 3rd Edition, Cambridge University Press, 2007
    102.Drazin P.G. and Reid W.H., Hydrodynamic Stability, 2nd Edition, Cambridge University Press, 2004
    103.Stone H. L., Iterative Solution of Implicit Approximation of Multidimensional Partial Differential Equations. SIAM Journal of Numerical Analysis, Vol.5, 530-558, 1968
    104.Sankar N L and Tassa Y, An Algorithm for Unsteady Transonic Potential Flow Past Airfoils, Lecture notes in Physics, pp. 367-372, 1981
    105.Sankar N. L., Malone J. B. and Tassa Y., An Implicit Conservative Algorithm for Steady and Unsteady Three-Dimensional Potential Flows, AIAA paper No.81-1016, 1981
    106.Schneider G. E. and Zedan M., A Modified Strongly Implicit Procedure for theNumerical Solution of Field Problems, Numerical Heat Transfer, Vol.4, pp.1-19, 1981
    107.Chen H., A Discussion on Volute Design Method for Radial Inflow Turbines, Proceedings of ASME Turbo Expo 2009, GT2009-59110, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700