下呼吸道铜绿假单胞菌耐药机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究下呼吸道铜绿假单胞菌β-内酰酶,主要是超广谱β-内酰酶(ESBLs)、AmpC酶的表达情况,以及产酶菌和非产酶菌的耐药性,探索铜绿假单胞菌的耐药机制并指导临床合理使用抗生素。方法:收集来源下呼吸道的铜绿假单胞菌114株,首先采用纸片扩散法(即K-B法),用亚胺培南(IMP)、头孢噻肟(CTX)、头孢他啶(CAZ)、头孢噻肟/克拉维酸(CD03)、头孢他啶/克拉维酸(CD02)、头孢西丁(FOX)、头孢吡肟(FEP)、氯唑西林(OB5)8种药敏纸片检测铜绿假单胞菌的ESBLs、AmpC酶以及3种不同表型的AmpC酶产生情况;然后使用微量肉汤稀释法检测上述菌株对常用的20种抗生素的MIC值,依据NCCLS推荐的标准分析产酶菌株与不产酶菌株耐药性。结果:1.使用K-B法,在114株铜绿假单胞菌中检出产ESBLs菌10株(8.8%),检出产AmpC酶菌79株(69.5%),检出同时产ESBLs和AmpC酶菌4株(3.5%)。产AmpC酶的菌株表现为3种表型,高产高表达型61株(53.5%)、低产高表达型33株(27.5%)、低产低表达型43株(37.7%)。高产高表达Ampc酶菌株明显多于低产高表达型和低产低表达型,其差异具有显著性。2.铜绿假单胞菌对氨苄西林/舒巴坦(A/S)、氨苄西林(AM)、头孢噻吩(CF)、头孢唑林(CFZ)、头孢西丁(FOX)、头孢呋新(CRM)、复方新诺明(T/S)、头孢泊肟(CPD)的耐药率都在90%以上;对头孢曲松(CRO)、头孢噻肟(CTX)耐药率分别为74.6%、85.1%。对β-内酰胺类抗生素复合剂哌拉西林胞唑巴坦(P/T)、氨苄西林/舒巴坦(A/S)敏感率分别为75.8%和3.5%;对头孢他啶(CAZ)、亚胺培南(IMP)的敏感率分别为86.8%、75.8%。3.产ESBLs的菌株对IMP、头孢吡肟(FEP)、CAZ敏感率在60%以上;对其它抗生素的敏感率均在30%以下。产AmpC酶的菌株对阿米卡星(AK)、CAZ均耐药率6.3%,均敏感率60.8%;对AK、IMP均耐药率15.2%,均敏感率58.2%。三
    
    安徽医科大学硕士学位论文
    种不同AmpC酶表型的菌株,低产低表达型对呱拉西和他哇巴坦(P汀)、呱拉西
    林(PI)、氨曲南(ATM)、CAZ、FEP、IN[P的敏感率均明显高于低产高表达型和
    高产高表达型,其差别具有显著性。结论:1.采用玲B法,联合CTX、CD03和
    CAZ、CD02可以提高铜绿假单胞菌ESBLs的检出率。临床实验室通过使用CTX、
    CD03、CAZ、CD02、IN于5种药片可以快速检测AmPC酶及其不同的表型。2.下
    呼吸道铜绿假单胞菌ESBLs产生率低,Am解酶产生率高。3.铜绿假单胞菌对多
    种抗生素耐药,对产ESBLs的铜绿假单胞菌治疗上可选用INIP、CAZ、FEP;对
    产AmpC的菌株联合AK和协任、AK和CAz。4.下呼吸道铜绿假单胞菌高产AmpC
    酶产生可能是对p一内酞胺类抗生素耐药的主要机制。
Objective: To study on the incidence of beta-lactamses, mainly including ESBLs and AmpC beta-lactamases of Pseudomonas aeruginosa in lower respiratory tracts, and drug-resistance of those beta-lactamse positive and negative strains, and to investigate drug-resistant mechanism of Pseudomonas aeruginosa and to instruct clinical application of antibiotics reasonably. Methods: We collected 114 strains of Pseudomonas aeruginosa coming from lower respiratory tracts, firstly K-B method was adopted to detect ESBLs, AmpC enzymes and three different phenotypes of AmpC beta-lactamase with eight discs including IMP, CTX, CAZ, CD03, CD02, FOX, FEP, OB5. Then Trace Broth Dilution Method was adopted to detect MICs of 20 different antibiotics used frequently, and we analysed drug-resistance of those beta-lactamase positive and negative strains according to NCCLS standards. Results: 1. We detected 114 isolates of Pseudomonas aeruginosa, 10(8.8%) isolates of 114 were considered as ESBLs positive strains, 79(69.5%) isolates w
    ere considered as producing AmpC beta- lactamases, and 4(3.5%) isolates were considered as both ESBLs and AmpC beta- lactamases positive strains. The isolates of producing AmpC enzymes were grouped into three phenotypes: high producing and high expressing beta-lactamase production, low producing and high expressing beta-lactamase production and low producing and low expressing beta-lactamase production. The strains of producing high producing and high expressing beta-lactamases were more than the other. There is a significant difference between them. 2. The resistant rate of A/S, AM, CF, CFZ, FOX, CRM, T/S, CPD to Pseudomonas aeruginosa was above 90%; the rate of CRO, CTX was 74.6%> 85.1%, respectively. The sensitive rate of -lactam comparator P/T, A/S was 75.8%, 3.5%, respectively.The sensitive rate of CAZ, IMP was 86.8%, 75.8% respectively. 3. The sensitive rate of IMP, FEP, CAZ to ESBL positive strains was more
    
    
    than 60%, but the rates of the others were below 30%. The resistant rate of AK and CAZ to AmpC beta-lactamase positive strains was 6.3%, while the sensitive rate was 60.8%. The resistant rate of AK and IMP to AmpC enzyme positive strains was 15.2%, and the sensitive rate 58.2%. Among three different AmpC phenotypic strains, the sensitive rate of P,T, PI, ATM, CAZ, FEP, IMP to low producing and low expressing AmpC beta-lactamase positive strains was higher than high producing and high expressing AmpC beta-lactamase positive strains and low producing and high expressing AmpC beta-lactamase positive strains. The difference between them was significant. Conclusions: 1. The detective rate of ESBLs of Pseudomonas aeruginosa may be IMProved by using CTX, CD03 and CAZ, CD02 in K-B method. In clinical laboratory, AmpC beta-lactamases and their different phenotypes may be detected rapidly by using 5 discs of CTX, CD03, CAZ, CD02, IMP. 2. The incidence of ESBLs of Pseudomonas aeruginosa in lower respiratory tracts was
    low, but the incidence of AmpC beta-lactamases was very high. 3. Pseudomonas aeruginosa was resistant to many antibiotics. IMP, CAZ and FEP may be selected in treating ESBLs positive Pseudomonas aeruginosa infections. AK, IMP and AK, CAZ may be selected unitedly in treating AmpC enzymes positive strains infections. 4. High producing AmpC beta-lactamase may be beta-lactams main resistance mechanism of Pseudomonas aeruginosa in lower respiratory tracts.
引文
1.全国肺部感染和肺部慢性疾病学术会议纪要.中华结核和呼吸杂志,1994;17(1):11
    2.叶任高,陆再英主编.内科学(第五版).北京:人民卫生出版社出版,2000;6
    3.余国华.呼吸病区呼吸道交叉感染的潜在危险因素调查.中华结核和呼吸杂志,1989;12(2):82
    4. Nakae T. Role of membrane permeability in determining antibiotic resistance in Pseudomonas aeruginosa. Microbiol Immunol, 1995 ;39(4):221~229
    5. Li XZ, Nikaido H, Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1995;39(9) 1948~1953
    6. Poole K, Gotoh N, Tsujimoto H, et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol, 1996;21 (4):713~724
    7. Kohler T, Michea Hamzehpour M, Henze U, et al. Charaterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol, 1997;23(2):345~354
    8. Mine T, Morita Y, Kataoka A, et al. Expression in Escherichia coli of a new multidrug efflux system, MexXY, from Pseudomonas aeruginosa, dntimicrob Agents Chemother, 1999;43(2):415~417
    9. Bush K, Jacoy GA, Medeiros AA. A functional classification scheme for betalactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 1995;39(6): 1211~1233
    10. Nordmamn P. Trends in beta-bactam resistance among Enterobacteriaceae. Clin Infect Dis, 1998;27 supple 1:100~106.
    11. Pitout JD, Thomson KS, Hanson ND, et al. Beta-lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsilla pneumoniae, Escherichia coli and Protenus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother, 1998;42(6): 1350~1354
    12. Vahaboglu H, Ozturk R, Aygun G, et al. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study.
    
    Antimicrob Agents Chemother, 1997;41 (10):2265~2269
    13. Jaeoby GA, Medeiros AA. More extended-spectrum β-lactamases. Antimicrob Agents Chemother, 1991 ;3(9)5:1697~1704
    14.蒋晓飞,洪秀华,孙景勇,等.多重耐药铜绿假单胞菌超广谱β-内酰胺酶分析.中华微生物学和免疫学杂志,2002;22(4):443~446
    15. Nordrnann P, Guibert M. Extended-spectrum β-lactamases in Pseudomonas aeruginosa. J Antimierob Chemother, 1998;42(2): 128~131
    16. Nordmann P, Roneo E, Naas T, et al. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1993; 37(5):962~969
    17. Bauernfeind A, Setmplinger I, Jungwirth R, et al. Characterization of betalaetamase gene blaPER-2, which encodes an extended-spectrum class A betalaetamase. Antimiorob Agents Chemorher, 1996;40(3):616~620
    18. Naas T, Poirel L, Karim A, et al. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum β-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett, 1999; 176(2):411~419
    19. Mugnier P, Dubrous P, Casin I, et al. A TEM-derived extended-spectrum betalactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1996;40:(11)2488~2493
    20. Marchandin H, Jean-Pierre H, De Champs C, et al. Production of a TEM-24 plasmid-mediated extended-spectrum beta-laetamase by a chinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2000;44(1):213~216
    21. Naas T, Philippon L, Poirel L, et al. An SHV-derived extended-spectrum betalactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1999;43:(5) 1281~1284
    22. Minami S, Akama M, Araki H, et al. Imipenem and eephem resistant Pseudomonas aeruginosa earring plsmids coding for class B β-laetarnase. J Antimicrob Chemother, 1996;37(3):433~444
    23. Iyobe S, Kusadokoro H, Ozaki J, et al. Amino and substitutions in a variant of IMP-1 metallo-beta-laetamase. Antimicrob Agents Chemother, 2000;44(8):2033~2037
    24. Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenemhydrolyzing metallo-beta-laetamase and its plasmid and integron-brone gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother,
    
    2000;44(4):891-897
    25. Senda K, Arakawa Y, Nakashima K, et al. Multifocal outbreaks of metallo betalactamase producing Pseudomonas aeruginosa resistant to broad-spectrum betalactams, including carbapenems. Antimicrob Agents Chemother, 1996;40(2):349~353
    26. Danel F, Hall LM, Livermore DM. Laboratory mutants of OXA-10 beta-lactamase giving ceftazidime resistance in Pseudomonas aeruginosa, J Antimicrob Chemother, 1999;43(3):339~344
    27. Danel F, Hall LM, Gur D, et al. OXA-15, an extended spectnm variant of OXA-2 β-lactamase isolated from a Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1997;41(4):785-790
    28. Philippon LN, Naas T, Bouthors AT. OXA-18, a class D clavulanic-acid inhibited extend-spectrum beta-lactamase from Pseudomonas aernginosa, dntimicrob Agents Chemother, 1997;41(10):2188~2195
    29. Mugnier P, Casin I, Bouthors AT, et al. Novel OXA-10-derived extended-spectrum beta-lactamases selected in vivo or in vitro. Antimicrob Agents Chemother,1998;42(12):3113~3116
    30. Poirel L, Girlich D, Nass T, et al. OXA-28, an extended-spectrum variant of OXA-10 from Pseudomonas aernginosa and its plasmid and integron-located gene. Antimicrob Agents Chemother, 2001 ;45(2):447~453
    31. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing 9th informational supplemented.Wayne, NCCLS, PA,1999
    32. National Committee for Clinical Laboratory Ctandards. Performance standards for antimicrobial susceptibility testing. Approved standard M100-S9. Pennsylvania: NCCLS, 1999;72~75
    33. Jones RN. IMPortant and emerging beta-lactamase-mediated resistances in hospitalbased pathogens: the AmpC enzymes. Diagn Microbiol Infect Dis, 1998;31(3):461~466
    34. Stapleton P, Shannon K, Phillips I. DNA sequence differences of ampD mutants of Citrobacter freundii. Antimicrob Agents Chemother, 1995 ;39(11):2494~2498
    35. Bauerfeind A, Wagner S, Jungwirth R, et al. A novel class C β-lactamase (FOX-2) in Escherichia coli conferring resistance to cephamycins. Antimicrob Agents
    
    Chemother, 1997;41(9):2041~2046
    36. Coudron PE, Moland ES, Thomson KS. Occurence and detection of AmpC β-lactamase among Escherichia Coli, Klebsiella pneumoniae, and proteus mirabilis isolates at a veterans medical center. J Clin Microbiol, 2000;38(5): 1791~1796
    37. Thomson KS, Sanders CC, Moland ES. Use of microdilution panels with and without beta-lactamase inhibitors as a phenotypic test for beta-lactamase production among Escheriehia coli, Klebsiella spp., Enterobacter spp., Citrobacter frenndii, and Serratia marcescens. Antimicrob Agents Chemother, 1999;43(6): 1393~1400
    38.陈民钧.细菌对β-内酰胺药的耐药性及检测方法.中华检验医学杂志,2001;24(4):197~200
    39. Sanders CC, Sanders WE Jr. Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob Agents Chemother, 1979;15:(6)792~797
    40. Livermore DM, Brown DF. Detection of β-lactamase-mediated resistance. J Antimicrob Chemother, 2001;48 suppl 1:59~64
    41.吴伟元,陈民钧.AmpC酶的研究进展.中国抗感染化疗杂志,2001;1(1):67~71
    42. Li XZ, Ma D, Livermore DM, et al. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother, 1994;38:1742~1752
    43. Bryan LE, Van den Elzen HM, Tseng JT. Transferable drug resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1972; 1 (1):22~29
    44. Bonfiglio G, Laksai Y, Franchino L, et al. Mechanisms of β-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey. J Antimicrob Chemother, 1998;42(6):697~702
    45. Stefani S, Bonfiglio G, Bianchi C, et al. Susceptibilty survey of Piperacillin/ tazabatam and some β-lactam comparators in Italy. Drugs Exp Clin Res, 1998;24(2): 105~113
    46.侯天文,尹晓琳,许素菊,等.铜绿假单胞菌产生β-内酰胺酶表型检测及其药敏分析、中华微生物学和免疫学杂志,2002;22(4):426
    47.李真,戴丽,张亚莲,等.下呼吸道产超广谱β-内酰胺酶革兰阴性菌耐药性分析及临床意义.中华医院感染学杂志,2002;12(1):13~15
    48. Vahaboglu H, Ozturk K, Aygun G. Widespread detection of PER-1 type extended
    
    -spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother, 1997;41(10):2265~2269
    49. Paterson DL, Yu VL. Extended-spectrum beta-lactamases: a call for IMProved detection and control. Clin Infect Dis, 1999;29(6): 1419~1422
    50.李家斌,王中新,俞云松,等.超广谱β-内酰胺最佳底物探讨.中华检验医学杂志,2001;24(4):236~237
    51. Normark S. β -Lactamase induction in Gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist, 1995; 1(1): 111~114
    52. Chen HY, Yuan M, Livermore DM. Mechanisms of resistance to β-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J Med Microbiol, 1995;43(4):300~309
    53. Chen HY, Yuan M, Ibrahim-Eimagboul IB, et al. National survey of susceptibility to antimicrobials amongst clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother, 1995;35(4):521~534
    54. Sanders CC, Sanders WE Jr, Goering RV. In vitro antagonism of β-lactam by cefoxitin. Antimicrob Agents Chemother, 1982;21(6):968~975
    55. Campbell JIA, Ciofu O, Hoiby N. Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different β-lactamase expression phenotypes but are homogeneous in ampC-ampR genetic region. Antimicrob Agents Chemother, 1997; 41(6): 1380~1384
    56. Langaee TY, Gagnon L, Huletsky A. Inactivation of ampD Gene in Pseudomonas aeruginosa lead to moderate-basal-level and hyperindueible AmpC β-lactamase expression. Antimicrob Agents Chemother, 2000;44(3):583~589
    57. Pai H, Kim JW, Kim J, et al. Carbapenem resistance mechanism in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother, 2001;45(2):480~484
    58. Sader HS, Tosin I, Sejas L, et al. Comparative evaluation of the in vitro activity of three Combination of beta-lactams with beta-lactamase inhibitors: piperacillin/ tazobactam, ticarcillin/clavulanic acid and ampilillin/sulbactam. Braz d Infect Dis, 2000;4(1):22~28
    59. Nikaido H, Normark S. Sensitivity of Escherichia coli to various β-lactams is determined by interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol,
    
    1987;1(1):29~36
    60. Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev, 1995;8(4):557~584
    61. Sanders CC, Sanders WE Jr. Type I β-lactamase of gram-negative bacteria: interactions with β-lactam antibiotics. J Infect Dis, 1986;154(5):792~800
    62. Powers RA, Blazquez J, Weston GS, et al. The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase. Protein Sci, 1999;8(11):2330~2337.
    63. Kadima TA, Weiner JH. Mechanism of suppression of piperacillin resistance in enterobacteria by tazobactam. Antimicrob Agents Chemother, 1997;41 (10):2177~2183
    64. Pfaller MA, Jones RN, Marshall SA, et al. Inducible ampC beta-lactamase producing gram-negative bacilli from blood stream infections: frequency, antimicrobial susceptibility, and molecular epidemiology in a national surveillance program (SCOPE). Diagn Microbiol Infect Dis, 1997;28(4):211~219
    65. Bamaud G, Labia R, Raskine L, et al. Extension of resistance to eefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiol Lett, 2001; 195 (2): 185~190
    66. Livermore DM, Williams JD. β-lactams: mode of action and mechanisms of bacterial resistance. In Antibiotics in Laboratory Medicine, (Lorian, V, Ed), Williams and Wilkins Baltimore MD, 1996:502~578
    67. Mimoz O, Elhelali N, Leotard S, et al. Treatment of experimental pneumomia in rats caused by PER-1 extended-spectrum beta-lactamase-producing strain of Pseudomonas aeruginosa. J Antimicrob Chemother, 1999;44(1):91~97
    68. Livermore DM, Oakton KJ, Carter MN, et al. Activity of ertapenem (MK-0826) versus Enterobacteriaceae with potent beta-lactamases. Antimicrob Agents Chemother, 2001 ;45(10):2831~2837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700