自激式振荡流热管热输送性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着便携时代的到来,电子产品出现飞速的发展,高效的处理速度要求芯片的集成度越来越高,为此芯片高热流密度散热问题已成为制约电子产品进一步发展的最大瓶颈之一。本文以微电子散热技术为研究背景对自激式振荡流热管(简称为振荡热管)展开研究,采用实验研究,理论推导,数值模拟,可视化观测等手段对其热输送性能进行深入的分析。
     实验中通过不同铜-水管式振荡热管的性能测试以及理论推导,分析管内径和特征传热长度对其热输送性能的影响。实验发现:增加管内径和减小特征传热长度均有利于其启动和稳定运行。在垂直底部加热的工况下,管内径是重要的影响因素,建议管内径大于0.8mm;而在水平一侧加热的工况下,特征传热长度的影响变大,建议特征传热长度应该保持在100mm左右。而综合考虑垂直底部加热和水平一侧加热的工况,认为最佳管内径为1.3mm。此外,还通过与小管径烧结热管的对比,发现在垂直底部加热的工况下,振荡热管可以取代传统烧结热管在更小的散热空间中使用,尤其是在高功率的发热工况。而水平一侧加热工况下,振荡热管只能在某些条件下贴近传统烧结热管的性能表现。同时,基于实验测试数据统计以及无因次分析法,拟合出管式振荡热管的性能预测公式,使得可以根据实际应用的条件来预测振荡热管的运行工况。
     本文同样对板式振荡热管热输送性能进行实验研究。由于其蛇形通道被内置到板块内,使得应用更为方便。实验中,使用铝板作为内置槽道的载体,丙酮作为工质,采用可视化装置观测其内部流动,并与传统管式振荡热管进行对比。发现板式振荡热管保持了管式振荡热管的运行特性,随着加热功率的增加而经历流型的变化,热输送性能不断提高。与同尺寸的铝板相比,板式振荡热管传热性能明显得到提高。此外,提高冷却温度或者加大加热段的比例,以及增加槽道的截面和数量均能使板式振荡热管获得更低的运行热阻,改善热输送性能。
     本文还通过CFD软件(GAMBIT和FLUENT)建立二维的振荡热管模型,对其内部流动和传热过程进行数值模拟。在数值模拟结果与实验数据,以及可视化观测对比后,发现MIXTURE模型要比VOF模型更适合于振荡热管的模拟。在数值模拟中,成功重现了振荡热管的内部工质流动和对应的温度变化,包括:加热段工质受热蒸发产生汽泡的过程;汽泡喷射跨域冷凝区受冷放热的过程以及工质回流加热段的过程;并由此所产生压差变化诱发的汽液塞振荡。最后还通过数值模拟分析管内径和特征传热长度对振荡热管的热输送性能的影响,结论基本与实验结果一致,证明数值模拟具有可靠性。
     综合对管式和板式振荡热管的热输送性能的研究结果,尝试把振荡热管技术应用到解决高热流密度散热问题中,并开发相关的散热模组,包括:管式振荡热管的显卡散热模组,板式振荡热管的1U服务器散热模组,板式振荡热管的LED工矿灯散热模组,管式振荡热管的LED圆筒灯散热模组。在与传统散热方案对比中,发现振荡热管技术确实具有良好的应用前景。
In the portable age, the need for increase in performance at the cost of size and power,demands smaller, as well as more efficient cooling solutions for the electronics systems.Self-Exciting Mode Oscillating-Flow Heat Pipe/Oscillating heat pipe (SEMOHP/OHP) is anew type of efficient heat transfer device, which is getting a great deal of attention due to itssimple design, small size and excellent thermal performance. It is predicted as one of themost promising solution for higher heat dissipation compact cooling. In this study,experimental tests, theoretical analysis, numerical simulations, visual observations wereused to investigate the heat transport capability of OHPs.
     Firstly, a series of experiments were performed to investigate the effect of heat transferlength and inner diameter on the heat transport capability of OHPs. In the experiments,OHPs with heat transfer length of100,150and200mm, consisting of4meandering turnsand inner diameter of0.4,0.8,1.3and1.8mm were adopted, and pure water was used as theworking fluid. The OHPs were set to operate at both horizontal and vertical bottom heatingmode. The results show that increasing inner diameter or decreasing heat transfer length isbeneficial to OHPs startup. An effective range of OHPs has been identified. Therecommended inner diameter of OHPs should be bigger than0.8mm in vertical bottomheating mode, while the heat transfer length should be controlled around100mm inhorizontal heating mode. In addition, compared to sintered heat pipes, it is found that OHPscan only approach them in horizontal heating mode, while exceed them in vertical bottomheating mode, for high heating power.
     Secondly, an experimental study was carried out to investigate the heat transportcapability of aluminum plate OHPs, which consisting of parallel and square channels. Sizes,different cross-sections and different number of turns were considered. In the experiments,acetone was used as working fluid. The study on the effect of heating mode orientations,cooling conditions and internal structures had been done through visualization observationand thermal performance tests. The flow visualization show that the aluminum plate OHPscan maintained the heat transfer characteristics of liquid and vapor slug oscillation as well asthe conventional tubular OHPs. The flow pattern changes and OHPs’ thermal performanceimproves with the increase of heating power. The trend in one-way direction circulation ofworking fluid emerges. The tests show that the gravity greatly influenced the thermalperformance of plate OHPs. Increasing the cooling temperature decreases the thermal resistance of plate OHPs. Increasing the number of turns and area of channel cross-sectioncan improve the heat transport capability of plate OHPs.
     Thirdly, in order to study the heat transfer mechanism of OHPs and predict the heattransport capability of OHPs, a comprehensive mathematical and physical model of OHPwas built to simulate the behavior of two-phase flow in vertical bottom heating mode. Waterwas used as working fluid. Volume of fluid (VOF) and mixture model in FLUENT was usedfor comparison in the simulation. The phase change process between liquid and vapor wasachieved by adding a user-defined function (UDF) source term. The continuum surface force(CSF) model was used for the effect of surface tension. The results show that the mixturemodel is more suitable for the simulation of two-phase flow in OHPs. Being agreed with theflow visualization, the numerical simulation is successful to reproduce the behavior of thetwo-phase flow in OHPs, including vapor generation in evaporation section and oscillationphenomena caused by the pressure difference. The quasi periodic thermal oscillation with thesame characteristic frequency for both evaporation section and condensation sectionindicates that the heat transfer is due to oscillation. The simulation results of OHPs withdifferent heat transfer lengths (L) and inner diameters (Di) in different heat loads, arecompared with the experimental results in the same condition as well. It demonstrates thatthe inner diameter has a more obvious impact on the thermal performance of OHP than theheat transfer length. Increasing inner diameter is beneficial for improving the thermalperformance of OHPs.
     Acorrding to the research results on the heat transport capability of OHPs, the uniqueheat sink designs using OHPs was developed for compact cooling, including GPU (graphicprocessing unit) heat sink,1U heat sink, LED (Light Emitting Diode) mining lamp,LED interior lights. Compared with conventional heat sink solutions, OHP heat sinks have agood application prospect.
引文
[1] Saini M., Webb R.L.. Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks forComputer Cooling [C]. Proc. ITherm2002,8th Intersocity Conf. On Thermal andThermomechanical Phenomena in Electronic System, May30-Jun1, SanDiego,CA,PP.1-8.
    [2] Webb R.L.. Next Generation Devices for Electronic cooling [C]. Proceedings of IMECE’03,200. ASME International Mechanical Engineering Congress, Washington, D.C.,November15th-21st,2003.
    [3] Gauger R.S.. Heat Transfer Devices [P]. U.S. Patent:2,350,348,1944.
    [4] Grover G..M.. U.S.Patent: No.3229759,1963.
    [5] Peterson G..P.. An Introduction to Heat Pipes[M]. Wiley, New York,1994.
    [6]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,1986.
    [7] Lin Z. R., Lee Z. Y., Zhang L. W., et al.. An Experimental Study of Heat TransferCharacteristics in Loop Heat Pipes with Rectangular Shaped Evaporator [C].Interpack2011-52017, Proceedings of the ASME2011Pacific Rim Technical Conference&Exposition on Packaging and Integration of Electronic and Photonic Systems, July6-8,2011, Portland, Oregon, USA.
    [8] Suo M., Griffith P.. Two-phase Flow in Capillary Tubes [J]. Transactions of the ASME,September,1964,576-582.
    [9] Akchi H.. Structure of a heat pipe [P]. US Patent:4921041,1990.
    [10] Akachi H.. Structure of micro-heat pipe [P]. US Patent:5219020,1993.
    [11] Akachi H.. Looped Capillary Heat Pipe[P]. Japanese Patent: No.Hei6-97147,1994.
    [12] Akachi H., Polasek F., Stulc P.. Pulsating heat pipe[C]. Proceeding of5th internationalheat pipe symposium. Melbourne: Pergamon Elsevier,1996:208-217.
    [13] Akachi H.. Tunnel-plate type heat pipe [P]. US Patent:5697428,1997.
    [14] Alunadali T., Faghri. A.. New Two-Phase Flow Map and Transition Accounting forSurface Tension Effects in Horizontal Miniature and Micro Tubes[J]. Journal of HeatTransfer,2001,1(123):958-968.
    [15] Shao W., Zhang Y. W.. Effects of Film Evaporation and Condensation on OscillatoryFlow and Heat Transfer in an Oscillating Heat Pipe[J]. Journal of Heat Transfer,2011,133(4):042901.
    [16] Shafii M. B., Faghri A., Zhang Y. W.. Thermal modeling of unlooped and loopedpulsating heat pipes[J]. Journal of Heat Transfer,2001,123(6):1159-1172.
    [17] Shafii M. B., Faghri A., Zhang Y. W.. Analysis of Heat Transfer in Unlooped andLooped Pulsating Heat pipes[J]. International Journal of Numerical Methods for Heat&Fluid Flow,2002,12(3):585-609.
    [18] Zhang Y.W., Faghri A.. Heat transfer in a pulsating heat pipe with open end [J].International Journal of Heat and Mass Transfer,2002,45(4):755-764.
    [19] Zhang Y.W., Faghri A., Shafii M. B.. Analysis of Liquid-vapor Pulsating Flow in aU-shaped Miniature Tube[J]. International Journal of Heat and Mass Transfer,2002(45):2501-2508.
    [20] Zhang Y. W., Faghri A.. Oscillatory Flow in Pulsating Pipes with Arbitrary Numbers ofTurns[J]. Journal of Thermophysics and Heat Transfer,2003,17(3):340-347.
    [21] Holley B., Fagbri A.. Analysis of pulsating heat pipe with capillary wick and varyingchannel diameter[J]. International Journal of Heat and Mass Transfer,2005(48):2635-2651.
    [22] Khandekar S., Groll M., Charoensawan P., et al. Pulsating heat pipe:Thermo-fluidiccharacteristics and comparative study with single phase thermosyphon [C]. Heattransfer2002Proceedings of the twelfth international heat transfer conference.
    [23] Khandekar S., Schneider M., Groll M.. Mathematical modeling of Pulsating heat pipe:state of the art and future challenges [C]. Proceedings of5th ISHMT-ASME-jointinternational conference on heat and mass transfer, isbn-0-07-047443-5,2002,856-862.
    [24] Khandekar S., Cui X., Groll M.. Thermal Performance Modeling of Pulsating HeatPipes by Artifical Neutral Network [C].12th IHPC,2002, Moscow, Preprint V2, B2,2002:1-5.
    [25]Groll M., Khandekar S.. Pulsating heat pipes: a challenge and still unsolved problem inheat pipe science [J]. Archives of thermodynamics,2002,4(23):17-28.
    [26]Khandekar S., Schneider M., Sch fer P., et al. Thermofluid dynamic study of flat-plateclosed-loop pulsating heat pipes [J]. Microscale Thermophysical Engineering,2002,6(4):303-317.
    [27] Khandekar S., Groll M., On the definition of pulsating heat pipe: an overview [C].Pro.5th Minsk international seminar (heat pipe, heat pumps and refrigerators), MinskBelarus,2003.
    [28]Groll M., Khandekar S., Pulsating heat pipe:progress and prospects [C]. Proceeding ofinternational conference on energy and the environment,2003, Shanghai, China,22-24.
    [29] Khandekar S., Dollinger N., Groll M.. Understanding Operational Regimes of PulsatingHeat Pipes: An Experimental Study [J]. Applied Thermal Engineering,2003.23(6):707-719.
    [30] Khandekar S., Charoensawan P., Groll M., et al. Closed loop pulsating heat pipes: PartB visualization and semi-empirical modeling [J]. Applied Thermal Engineering,2003,23(16):2021-2033.
    [31] Charoensawan P., Khandekar S., Groll M., et al. Closed loop pulsating heat pipes:PartA parametric experimental investigations [J]. Applied Thermal Engineering,2003,23(16):2009-2020.
    [32] Khandekar S., Groll M.. An insight into thermo-hydrodynamic coupling in closed looppulsating heat pipes [J]. International Journal of Thermal Sciences,2004,43:13-20.
    [33] Yang H.H., Khandekar S., Groll M.. Performance characteristics of pulsating heat pipesas integral thermal spreaders [J]. International Journal of Thermal Sciences,2009,48:815-824.
    [34] Khandekar S., Anant P. G.., Pavan K. S.. Multiple quasi-steady states in a closed looppulsating heat pipe[J]. International Journal of Thermal Sciences,2009,48:535–546.
    [35] Vadiraj A. H., Ashish G.., Khandekar S.. Thermal radiators with embedded pulsatingheat pipes: Infra-red thermography and simulations[J]. Applied Thermal Engineering,2011,31(6-7):1332-1346.
    [36] Hosoda M., Nishio S., Shirakashi R.. Study of meandering closed-loop heat-transportdevice (vapor-plug propagation phenomena)[J]. JSME International Journal, Series B,1999,42(4):737-744.
    [37] Miyazaki Y., Akachi H.. Heat transfer characteristics of looped capillary heat pipe[C].5th International Heat Pipe Symposium, Melbourne, Australia,1996.
    [38] Miyazaki Y.. Oscillatory flow in the oscillating heat pipe[C].11th International HeatPipe Conference, Tokyo, Japan,1999.
    [39] Wong T., Tong B. Y., Lim S. M., et al. Theoretical Modeling of Pulsating Heat Pipe.[C].Proc.11th Int. Heat Pipe Conf., Tokyo, Japan,1999:159-163.
    [40] Tong B. Y., Wong T. N.. Closed-loop pulsating heat pipe [J]. Applied ThermalEngineering,2001,21(18):1845-1862.
    [41] Wong T., Terdtoon P., Sakulchangsatjatai P.. Operation Modeling of Closed-end andClosed-loop Oscillating Heat Pipes at Normal Operating condition[J]. Applied ThermalEngineering,2004,24:995-1008
    [42] Rittidech S., Terdtoon P., Murakami M., et al. Correlation to predict heat transfercharacteristics of a closed-end oscillating heat pipe at normal operating condition[J].Applied Thermal Engineering,2003,23(4):497-510.
    [43] Rittidech S., Dangeton W., Soponronnarit S.. Closed-ended oscillating heat-pipe(CEOHP) air-preheater for energy thrift in a dryer[J]. Applied Energy,2005,81(2):198-208.
    [44] Rittidech S., Wannapakne S.. Experimental study of the performance of a solar collectorby closed-end oscillating heat pipe(CEOHP)[J]. Applied Thermal Engineering,2007,27(11-12):1978-1985.
    [45] Meena P., Rittidech S., Poomsa-ad N.. Application of closed-loop oscillating heat-pipewith check valves (CLOHP/CV) air-preheater for reduced relative-humidity in dryingsystems[J]. Applied Energy,2007,84(5):553-564.
    [46] Rittidech S., Pipatpaiboon N., Terdtoon P.. Heat-transfer characteristics of a closed-looposcillating heat-pipe with check valves[J]. Applied Energy,2007,84(5):565-577.
    [47]Rittidech S., Donmaung A., Kumsombut K.. Experimental study of the performance of acircular tube solar collector with closed-loop oscillating heat-pipe with check valve(CLOHP/CV)[J]. Renewable Energy,2009,34:2234–2238.
    [48] Bhuwakietkumjohn N., Rittidech S.. Internal flow patterns on heat transfercharacteristics of a closed-loop oscillating heat-pipe with check valves using ethanoland a silver nano-ethanol mixture[J]. Experimental Thermal and Fluid Science,2010,34:1000–1007.
    [49] Supirattanakul P., Rittidech S., Bubphachot B.. Application of a closed-loop oscillatingheat pipe with check valves (CLOHP/CV) on performance enhancement in airconditioning system[J]. Energy and Buildings,2011,43:1531–1535.
    [50]苏磊,张红.回路脉动热管运行稳定性分析[J].化工学报,2007,8:1931-1934.
    [51]马永锡,张红.振荡热管当量导热系数数值模拟与试验研究[J].石油化工设备,2009,38(6):11-14.
    [52]马永锡,张红.振荡热管模型中液膜的分析与假定[J].化学工程,2010,38(5):22-25.
    [53]苏磊,张红,丁雷江等.单回路紫铜—水脉动热管传热性能的实验研究[J].热能动力工程,2011,26(6):687-693.
    [54]苏磊,张红,丁锐等.单回路脉动热管温度振荡特性实验研究[J].中国电机工程学报,2011,31(20):67-74.
    [55]曲伟,马同泽.脉动热管的工质流动和传热特性实验研究[J].工程热物理学报,2002(5):596-598.
    [56] Qu W., Ma T.. Effects of the Polarity of Working Fluids on Vapor-liquid Flow and HeatTransfer Characteristics in a Capillary[J]. Microscale Thermophysical, Engineering,2002, MTE6(3):175-190.
    [57]曲伟,马同泽.环路型脉动热管的稳态运行机制[J].工程热物理学报,2004,25(2):323-325.
    [58]曲伟,周岩,马同泽.高功率脉动热管的流动和传热特性[J].工程热物理学报,2007(2):328-330.
    [59]周岩,曲伟.脉动热管的毛细管结构和尺度效应实验研究[J].工程热物理学报,2007(4):646-648.
    [60]周岩,曲伟.微小型脉动热管的传热性能实验研究[J].中国科学院研究生院学报,2007(4):425-430.
    [61] Qu W., Ma H. B.. Theoretical analysis of startup of a pulsating heat pipe[J].International Journal of Heat and Mass Transfer,2007(6):2309-2316.
    [62]冯剑超,曲伟.纳米流体脉动热管的性能实验[J].中国科学院研究生院学报,2009,26(1):50-56.
    [63]曲伟,袁达忠,李玉华.纳米流体脉动热管的流动与传热性能研究[J].工程热物理学报,2009,30(10):1697-1699.
    [64]李玉华,曲伟,袁达忠.角管脉动热管的结构和尺度效应研究[J].工程热物理学报,2009,30(12):2102-2104.
    [65] Da Z. Y., Wei Q., Ma T. Z.. Flow and heat transfer of liquid plug and neighboring vaporslugs in a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer,2010,53:1260-1268.
    [66]曲伟,杨彬,袁达忠.脉动热管扩热板的祸合性能[J].工程热物理学报,2010,31(8):1348-1350.
    [67] Ma H.B., Wilson C., Borgmeyer B.. Effect of nano-fluid on the heat transport capabilityin an oscillating heat pipe [J]. Applied Physics Letters,2006,88,143116.
    [68] Ma H. B., Wilson C., Yu Q.. An experimental investigation of heat transport capabilityin a nano-fluid oscillating heat pipe [J].Journal of Heat Transfer,2006,128:1213-1216.
    [69]周岩,马鸿斌.尺度效应对脉动热管启动和运行的影响[J].工程热物理学报,2007(1):140-142.
    [70] Qu W., Ma H. B.. Theoretical analysis of startup of a pulsating heat pipe[J].International Journal of Heat and Mass Transfer,2007,6:2309-2316.
    [71] Park K., Ma H. B.. Nano-fluid effect on heat transport capability in a well-balancedoscillating heat pipe [J]. Journal of Thermophysics and Heat Transfer,2007,21(2):443-445.
    [72] Jiao A.J., Ma H.B., Critser J.K.. Experimental investigation of cryogenic oscillating heatpipes[J]. International Journal of Heat and Mass Transfer,2009,52:3504–3509.
    [73] Cheng P., Scott T., Joe B., et al. An Investigation of Flat-Plate Oscillating Heat Pipes[J].Journal of Electronic Packaging2010,132(4), NO.041009
    [74] Thompson S.M., Ma H.B., Wilson C.. Investigation of a flat-plate oscillating heat pipewith Tesla-type check valves [J]. Experimental Thermal and Fluid Science2011,35(7):1265-1273.
    [75] Ji Y. L., Ma H. B., Su F. M., et al. Particle size effect on heat transfer performance in anoscillating heat pipe[J]. Experimental Thermal and Fluid Science,2011,35:724–727.
    [76] Thompson S.M., Cheng P., Ma H.B.. An experimental investigation of athree-dimensional flat-plate oscillating heat pipe with staggered microchannels[J].International Journal of Heat and Mass Transfer,2011,54:3951–3959.
    [77] Wang S.F., Nishio S.. Study on heat transport characteristic of closed loop SEMOS heatPipe [C]. ASME Summer Heat Transfer Conference, July17-22, San Francisco, USA,2005.
    [78] Wang S. F., Nishio S.. Heat transfer performance of a closed oscillating heat Pipe [C].IHTC-13August13-18, Sydeny, Australia,2006.
    [79]汪双凤,西尾茂文.加热段冷却段长度分配对脉动热管性能的影响[J].华南理工大学学报(自然科学版),2007(11):59-62.
    [80]汪双凤,林梓荣,张伟保.微胶囊流体脉动热管的热输送性能[J].华南理工大学学报(自然科学版),2009,37(3):58-66.
    [81] Wang S. F., Lin Z. R.. Experimental Study on Pulsating Heat Pipe with FunctionalThermal Fluids [J]. Int. J. Heat and Mass Transfer,2009,52(21-22):5276-5279.
    [82] Lin Z. R., Wang S. F.. Experimental Study on Microcapsule Fluid Oscillating HeatPipes [J]. Science in China E,2009,52(6):1601-1606.
    [83]林梓荣,汪双凤,张伟保等.功能热流体强化脉动热管的热输送特性[J].化工学报,2009,60(6):1373-1379.
    [84] Wang S.F., Lin Z.R., Zhang W.B. et al. Heat Transport Characteristics of an OscillatingHeat Pipe with Al2O3Nano-fluid [C]. Proceedings of the ASME20092ndMicro/Nanoscale Heat&Mass Transfer International Conference,2009, December18-21, Shanghai, China (MNHMT2009-18530)
    [84]商福民,刘登瀛,冼海珍等.振荡热管内不同形态纳米颗粒流动及传热特性[J].化工学报,2007,58(9):2200-2204.
    [85]商福民,刘登瀛,冼海珍等.自激振荡流热管内Cu-水纳米流体的传热特性[J].动力工程,2008,27(2):233-236.
    [86] Xian H. Z., Yang Y. P., Liu D. Y., et al. Heat Transfer Characteristics of Oscillating HeatPipe With Water and Ethanol as Working Fluids[J]. Journal of Heat Transfer,2010.
    [87]刘建红,商福民,刘登瀛.脉动热管间协同耦合强化传热特性实验分析[J].化工学报,2011,62(6):1549-1553.
    [88]屈健,吴慧英,唐慧敏.微小型振荡热管的流动可视化实验[J].航空动力学报,2009,24(4):766-771.
    [89] Qu J., Wua H. Y., Cheng P., et al. Non-linear analyses of temperature oscillations in aclosed-loop pulsating heat pipe[J]. International Journal of Heat and Mass Transfer52(2009)3481–3489.
    [90] Qu J., Wu H. Y., Cheng P.. Thermal performance of an oscillating heat pipe withAl2O3–water nanofluids[J]. International Communications in Heat and Mass Transfer,37(2010)111–115.
    [91]屈健,吴慧英,郑平.硅基微型振荡热管的流动可视化实验研究[J].中国科学:技术科学,2010,40(5):575~581.
    [92] Qu J., Wu H. Y.. Thermal performance comparison of oscillating heat pipes withSiO2/water and Al2O3/water nanofluids[J]. International Journal of Thermal Sciences,(2011)1-9.
    [93]屈健,吴慧英.微型硅基振荡热管传热特性[J].化工学报,2011,62(11):3046-3052.
    [94]张显明,徐进良,施慧烈.倾斜角度及加热方式对脉冲热管传热性能的影响[J].中国电机工程学报,2004(11):222-227.
    [95]胡建军,徐进良.汞-水混合工质脉动热管实验研究[J].化工学报,200859(5):1083-1090.
    [96] Song Y. X., Xu J. L.. Chaotic behavior of pulsating heat pipes[J]. International Journalof Heat and Mass Transfer,52(2009)2932–2941.
    [97]曹小林,周晋,晏刚.脉动热管的结构改进及其传热特性的实验研究[J].工程热物理学报,2004(5):807-809
    [98]曹小林,王伟,陈杰等.环路型脉动热管的工质流动和传热特性实验研究[J].热科学与技术,2007(1):56-59.
    [99]曹小林,王伟,陈杰等.环路型脉动热管启动特性的试验研究[J].流体机械,2009,37(3):57-60.
    [100]李燕,贾力.脉动热管传热性能实验研究[J].中国电机工程学报,2009,29(11):75-80.
    [101]李燕,贾力,张田田等.脉动热管实验研究[J].工程热物理学报,2009,30(11):1901-1903.
    [102]权力,贾力.板式脉动热管的实验研究[J].工程热物理学报,2010,31(6):1009-1012.
    [103]胡朝发,贾力.脉动热管气液塞振荡运动模型[J].化工学报,2011,62(1):113-117.
    [104]刘玉东,周跃国,周小三.脉动热管可视化实验普遍性问题研究[J].制冷与空调,2010,10(3):65-69.
    [105]刘玉东,周跃国,周小三等.脉动热管启动及运行问题研究进展[J].昆明理工大学学报(理工版),2010,35(1):67-73.
    [106]刘玉东,周跃国,周小三.脉动热管可视化实验前期难点问题研究[J].制冷学报,2010,31(3):37-41.
    [107]刘向东,时凯,郭雨含等.闭式振荡热管内流动状态与传热性能实验研究[J].工程热物理学报,2010,31(10):1736-1738.
    [108]徐德好,陈陶菲,刘向东等.板式脉动热管内气液两相流流型演化及传热分析[J].东南大学学报(自然科学版),2010,41(3):558-562.
    [109]陈陶菲,徐德好,刘向东.板式脉动热管强化传热方法研究[J].电子机械工程,2011,27(4):5-8.
    [110]刘向东,陈永平,张程宾等.闭式脉动热管启动性能的实验研究[J].宇航学报,2011,32(10):2300-2304.
    [111] Lin Y. H., Kang S. W., Chen H. L.. Effect of silver nano-fluid on pulsating heat pipethermal performance [J]. Applied Thermal Engineering,2008,28(11-12):1312-1317.
    [112] Lin Y. H., Kang S. W., Wu T. Y.. Fabrication of polydimethylsiloxane (PDMS)pulsating heat pipe[J]. Applied Thermal Engineering,2009(29):573-580.
    [113] Lee Y. W., Chang T. L.. Application of NARX neural networks in thermal dynamicsidentification of a pulsating heat pipe[J]. Energy Conversion and Management,2009),50:1069–1078.
    [114] Chen P. H., Lee Y. W., Chang T. L.. Predicting thermal instability in a closed looppulsating heat pipe system[J]. Applied Thermal Engineering,2009,29:1566–1576.
    [115]杨洪海,KHANDEKAR S., GROLL M..单回路闭式脉动热管内流型的实验研究[J].流体机械,2007(1):60-63.
    [116] Yang H.H., Khandekar S., Groll M.. Performance characteristics of pulsating heatpipes as integral thermal spreaders [J]. International Journal of Thermal Sciences,2009,48:815-824.
    [117]杨洪海,万京力,韩洪达.常规工况下多弯头数脉动热管运行性能的实验研究[J].热能动力工程,2009,124(11):77-80.
    [118]杨洪海,韩洪达, Groll M..倾斜角及充液率对脉动热管运行性能的影响[J].动力工程,2009,29(2):159-162.
    [119]韩洪达,杨洪海,尹世永等.脉动热管用于空调系统排风余热(冷)回收初探[J].暖通空调,2009,39(5):109-111.
    [120]崔晓钰,王妍,翁建华等.不同工质振荡热管的传热性能[J].上海理工大学学报,2009,31(6):539-542.
    [121]杨洪海,张晨, Groll M..圆管式及方槽板式脉动热管的比较[J].流体机械,2009,37(6):70-73.
    [122]杨洪海,林天伦,万勍,等.开式脉动热管传热极限的试验研究[J].动力工程,2009,29(10):936-940.
    [123]杨洪海,肖荪,Groll M..工质热物性对脉动热管运行性能的影响[J].工程热物理学报,2010,30(1):97-99.
    [124]林天轮,杨洪海.脉动热管用于空调排风余冷回收的试验研究节能[J].2010,8:22-25.
    [125]林天轮,杨洪海,周亚素等.空调用脉动热管换热器的最小启动温差研究[J].建筑热能通风空调,2011,31(3):19-21.
    [136] Lee Y.W., Chang T.L.. Application of NARX neural networks in thermal dynamicsidentification of a pulsating heat pipe[J]. Energy Conversion and Management50(2009)1069-1078.
    [137] Chen P.H., Lee Y.W., Chang T.L.. Predicting thermal instability in a closed looppulsating heat pipe system[J]. Applied Thermal Engineering29(2009)1566-1576.
    [138] Kyohei N., Toshiyuki M., Nagato Y., et al. Heat transfer performance of cryogenicoscillating heat pipes for effective cooling of superconducting magnets[J]. Cryogenics,2010,51(6):309-314.
    [139] Maydanik Y.F., Dmitrin V.I., Pastukhov V.G.. Compact cooler for electronics on thebasis of a pulsating heat pipe [J]. Applied Thermal Engineering2009,29:3511-3517.
    [140] Fumoto K., Kawaji M., Kawanami T.. Study on a Pulsating Heat Pipe WithSelf-Rewetting Fluid[J]. Journal of Electronic Packaging,2010,132(3):031005.
    [141] Nuntaphan A., Vithayasai S., Vorayos N., et al. Use of oscillating heat pipe techniqueas extended surface in wire-on-tube heat exchanger for heat transfer enhancement[J].International Communications in Heat and Mass Transfer2010,37:287-292.
    [142] Lips S., Bensalem A., Bertin Y., et al. Experimental evidences of distinct heat transferregimes in pulsating heat pipes (PHP)[J]. Applied Thermal Engineering,2010,30:900-907.
    [143] Riehl R.R., Santos N.D.. Water-copper nanofluid application in an open loop pulsatingheat pipe[J]. Applied Thermal Engineering (2011)1-15.
    [144]Stephen K. Influence of dispersion forces on phase equilibria between thin liquid filmsand their vapor [J]. International Journal of Heat and Mass Transfer,2002,45:4715-4725.
    [145]Park K, Lee K. S. Flow and heat transfer characteristics of the evaporating extendedmeniscus in a micro-capillary channel [J]. International Journal of Heat and MassTransfer,2003,46:4758-4594.
    [146] Katpradit T., Wongratanaphisan T., Terdtoon P., et al. Correlation to predict heattransfer characteristics of a closed end oscillating heat pipe at critical state[J]. AppliedThermal Engineering,2005,25:2138-2151.
    [147] Charoensawan P., Terdtoon P.. Thermal Performance Correlation of HorizontalClosed-Loop Oscillating Heat Pipes[C].20079th Electronics Packaging TechnologyConference,906-909.
    [148] Arslan G., Ozdemir M.. Correlation to predict heat transfer of an oscillating loop heatpipe consisting of three interconnected columns[J]. Energy Conversion andManagement,2008,49:2337-2344.
    [149] Khandekar S., Ashish G... Embedded Pulsating Heat Pipe Radiators [C].14thInternational Heat Pipe Conference (14th IHPC), Florianópolis, Brazil, April22-27,2007.
    [150] Xu G..P., Liang S.B., Vogel M., et al. Thermal Characterization of Pulsating HeatPipes[C].10th Intersociety Conference on Thermal and Thermomechanical Phenomenaand Emerging Technologies in Electronic Systems(ITherm2006),San Diego, CA,United states,May30-June2,2006.
    [151] Vassilev M., Avenas Y., Schaeffer C., et al. Experimental Study of a Pulsating HeatPipe with Combined Circular and Square Section Channels[C]. Industry ApplicationsConference42nd Annual Meeting(IAS),New Orleans, LA, United states, September23-27,2007.
    [152] Fumoto K., Kawaji M., Kawanami T.. Effect of Self-Rewetting Fluids on PulsatingHeat Pipe Thermal Performance[C]. Proceedings of the ASME20092ndMicro/Nanoscale Heat&Mass Transfer International Conference MNHMT2009December18-21,2009, Shanghai, China, MNHMT2009-18202.
    [153] Qu W., Yang B.. Performances of Flat Plate Pulsating Heat Pipes[C]. Proceedings ofthe ASME20092nd Micro/Nanoscale Heat&Mass Transfer International ConferenceMNHMT2009December18-21,2009, Shanghai, China, MNHMT2009-18358.
    [154] Quan L., Jia L.. Experimental Study on Heat Transfer Characteristic of Plate PulsatingHeat Pipe[C]. Proceedings of the ASME20092nd Micro/Nanoscale Heat&MassTransfer International Conference MNHMT2009December18-21,2009, Shanghai,China, MNHMT2009-18080.
    [155] Zuo M.T., North, Miniature High Heat Flux Heat Pipes for Cooling Electronics[C].Proc. Of SEE2000, Hong Kong,2000:573-579.
    [156] Dobson R.T., Theoretical and experimental modeling of an open oscillatory heat pipeincluding gravity[J]. International Journal of Thermal Sciences.2004,43:113-119.
    [157] Khandekar, S. Cui X., Groll M., Thermal Performance Modeling of Pulsating HeatPipes by Artificial Neutral Network[C].12th IHPC,2002, Moscow, Preprint V2, B2,2002:1-5.
    [158] Ma H.B., Borgmeyer B., Cheng P., et al. Heat Transport Capability in an OscillatingHeat Pipe[J]. Journal of Heat Transfer, AUGUST2008,130(8):,081501.
    [159] Sakulchangsatjatai P., Chareonsawan P., Waowaew T., Mathematical Modeling ofClosed-End Pulsating Heat Pipes Operating with a Bottom Heat Mode[J]. Heat TransferEngineering,2008,29(3):239–254
    [160] Givler R.C., Martinez M.J.. Modeling of Pulsating Heat Pipes, SANDIA REPORT,SAND2009-4520, Unlimited Release, Printed August2009.
    [161] Das S.P., Nikolayev V.S., Lefevre F., et al. Thermally induced two-phase oscillatingflow inside a capillary tube[J]. International Journal of Heat and Mass Transfer2010,53:3905–3913.
    [162] Nikolayev V.S.. A Dynamic Film Model of the Pulsating Heat Pipe[J]. Journal of HeatTransfer,2011,29(3):239-254.
    [163] Shao W., Zhang Y.W.. Effects of Film Evaporation and Condensation on OscillatoryFlow and Heat Transfer in an Oscillating Heat Pipe [J]. Journal of Heat TransferAPRIL2011,133(4):042901.
    [164] Brackbill J.U., Kothe D.B., Zemach C.. A Continuum Method for Modeling SurfaceTension[J]. J. Comput. Phys.,1992,100:335-354.
    [165] Manninen M., Taivassalo V., Kallio S.. On the mixture model for multiphase flow[J].VTT Publications288, Technical Research Centre of Finland,1996.
    [166] Schiller L., Naumann Z., Ver Z.. Deutsch. Ing.,77:318,1935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700