MMP9及VEGF诱导血管生成在中耳胆脂瘤增殖中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     采用CD105做为微血管标记物,并以Ki-67作为胆脂瘤增殖的指标研究胆脂瘤上皮下结缔组织微血管生成在胆脂瘤增殖中的作用以及MMP9和VEGF在诱导血管生成中的作用,期望有助于揭示胆脂瘤的发病机理,并为其预防和治疗提供理论和临床依据。
     方法:
     通过免疫组织化学染色方法(二步法)检测MMP9、VEGF、Ki-67和CD105在45例中耳胆脂瘤组织和10例正常外耳道皮肤中的表达;采用Image-Pro plus6.0图像分析软件读取胆脂瘤标本和外耳道正常皮肤标本MMP9、VEGF蛋白的平均光密度值;计数MVD来评价微血管生成。
     结果:
     1、中耳胆脂瘤组织中见新生的微血管较丰富、密集,且在形态上表现出异常的改变。正常外耳道皮肤组织中的微血管较少,稀疏,没有明显形态学上的改变。45例中耳胆脂瘤组织中的平均MVD为28.3±7.7,10例正常外耳道皮肤平均MVD为6.1±2.5,两组间差异有统计学意义(t=8.905,p<0.001)。
     2、中耳胆脂瘤组织中Ki-67蛋白的阳性表达率显著高于正常外耳道皮肤(χ2=7.305,P<0.01);随着胆脂瘤上皮下结缔组织微血管密度(MVD)的增加,其Ki-67阳性表达率也相应地增加。
     3、中耳胆脂瘤组织中VEGF蛋白的平均光密度值为(0.3816±0.04205),正常外耳道皮肤中VEGF蛋白的平均光密度值为(0.2106±0.02105),两组间差异有统计学意义(t=4.804,p<0.01);随着VEGF平均光密度值增加,胆脂瘤上皮基质周围微血管密度(MVD)也相应地增加。
     4、中耳胆脂瘤组织中MMP9蛋白的平均光密度值为(0.2816±0.04103),正常外耳道皮肤中MMP9蛋白的平均光密度值为(0.2016±0.01803),两组间差异有统计学意义(t=3.184,p<0.01);显著高于正常外耳道皮肤,随着MMP9平均光密度值增加,胆脂瘤上皮基质周围微血管密度(MVD)也相应地增加。
     5、相关性分析显示VEGF和MMP9在诱导血管生成过程中具有协同作用(r=0.851,p=0.000)。
     结论:
     1、中耳胆脂瘤上皮下结缔组织中存在微血管增生。
     2、胆脂瘤上皮细胞具有较强的增殖活性;胆脂瘤上皮下结缔组织中微血管增生可以为胆脂瘤上皮的异常高度增殖提供较丰富的血供和营养。
     3、MMP9和VEGF蛋白诱导血管生成在中耳胆脂瘤增殖中起重要作用;MMP9和VEGF在诱导胆脂瘤血管生成过程中具有协同作用。
Objective:
     To observe the expression and significance of VEGF,MMP9,CD105 and Ki-67 in human middle ear cholesteatoma tissues and to investigate the correlation between their expression and the epithelial hyper- proliferation and development of cholesteatoma.The labeling index for Ki-67 was used to assess the proliferative activity and to examine the hyperproliferate state of keratinocyte in cholesteatoma tissues. The CD105 was used to label the microvessel in cholesteatoma tissues.
     Method:
     We examined the expression of VEGF,MMP9,CD105 and Ki-67 by immunohistochemical staining in 45 samples from middle ear cholesteatoma and 10 epithelial cells samples from the external auditory meatus. The computer image quantitative analysis was used to examin the expression of VEGF,MMP9, and Ki-67. The microvasculars of cholesteatoma were measured by MVD which were immunohistostained with CD105.
     Result:
     1.The microvasculars of cholesteatoma matrix were plentiful and close.But the microvasculars of the skin of external acoustic meatus were less and more raritas than cholesteatoma.The mean MVD was 28.3±7.7(n=45) in cholesteatoma and 6.1±2.5(n=10)in the skin of external acoustic meatus.There were statistical significance between the two groups(t=8.905,p<0.001).
     2.The the expression of VEGF,MMP9 in cholesteatoma and in normal skin epithelial tissues:
     The positive immunohistostaining of MMP9 and VEGF appeared all the layers, MMP9 and VEGF protein was localized mostly in the cytoplasm,and it showed the tendency of gradual increasing from basal layer to corneous layer. The normal skin epithelial tissues showed weakly positive.The results showed that VEGF in cholesteatoma tissues (91.43%) was higher than that in normal skin epithelial tissues (40.00%), the expression level of VEGF in cholesteatoma tissues was significantly increased (P<0.01). The results also showed that MMP9 in cholesteatoma tissues (68.57%) was higher than that in normal skin epithelial tissues (20.00%), the expression level of MMP9 in cholesteatoma tissues was significantly increased (P<0.01). The expression of MMP9 and VEGF was present positive correlation in cholesteatoma tissues (P<0.05).
     3. The results showed that Ki-67 in cholesteatoma tissues (64.44%) was higher than that in normal skin epithelial tissues (20.00%),the expression level of Ki-67 in cholesteatoma tissues was significantly increased(P<0.01). With the increased of mean MVD, the expression level of Ki-67 in cholesteatoma tissues increased.
     Conclusion:
     1、there were microvascular proliferation in the presence of cholesteatoma tissues.
     2、More cells in cell cycle and the strong proliferation activity in cholesteatoma epithelium. Microvascular proliferation can be highly abnormal proliferation of cholesteatoma epithelium provide rich blood supply and nutrition, the high proliferation of epithelial cells in cholesteatoma cholesteatoma matrix dependent on microvascular.
     3、VEGF and MMP9 protein plays an important role in human middle ear cholesteatoma proliferation. Correlation analysis showed that VEGF and MMP9 in the induction of angiogenesis has a synergistic effect.
引文
[1]. Folkman J. Tumor angiogenesis:therapeutic implications[J]. N Engl J Med. 1971;285(21 ):1182-1186.
    [2].William G, Stetler-Stevenson. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention[J]. The Journal of Clinical Investigation. 1999:May ,Volume 103 ,Number 9.
    [3]. Gabriele Bergers, Rolf Brekken, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nature cell biology. 2000 oct; Vol2.
    [4].Sudhoff H,Dazert S,Gonzales AM, et a1.Angiogenesis and Angiogenic Growth Factors in Middle Ear Cholesteatoma[J].Am J Otol.2000; 21(6):793-798.
    [5].陈雄,孔维佳.血管内皮生长因子在中耳胆脂瘤中的表达及其临床意义[J].中华耳科学杂志. 2004; 2(2):129-132.
    [6].李厚恩,汪磊.胆脂瘤上皮基底膜的免疫组化观察.海军总医院学报. 1999年03期.
    [7]. Wikstrom P, Lissbrant L F, Stattin P, et al. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer [J]. Prostate, 2002; 51(4):268-275.
    [8]. Beresford MJ, Harris AL, Ah-See M, et al. The relationship of the neoangiogenic marker,endoglin, with response to neoadjuvant chemotherapy in breast cancer[J]. Br J Cancer ,2006; 95: 1683-1688.
    [9]. Li C, Gardy R, Seon BK, et al. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis[J]. Br J Cancer, 2003; 88:1424-1431.
    [10]. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1995; 36(2):169-180.
    [11]. Fosnsatti E, Sigalotti L, Ar slan P, et al. Emerging role of endoglin (CD105) as a marker of angiogenesis with clinical in human malignancies [J]. Curr cancer drug targets.2003, 3(6):
    [12].Eid H, Geczi L, Magori A, et al. Drug resistance and sensitivity of germ cell testicular tumors: evaluation of clinical relevance of MDR / P2gp,P53,and metallot hionein proteins [J].Anticancer Res,1998; 18 (4): 3059-3064.
    [13].Fonsatti E, Maio M. Highlights on endoglin (CD105):from basicfindings towards clinical applications in human cancer[J]. J Transl Med, 2004; 2:18.
    [14].Bobik A. Transforming growth factors and vascular disorders[J]. Arterioscler Thromb Vasc Biol, 2006; 26:1712-1720.
    [15].Akagi K, Ikeda Y, Sumiyoshi Y, et al. Estimation of angiogenesis with anti-CD105 immunostaining in the process of colorectal cancer development. Surgery. 2002; 131(1 Suppl):S109-13.
    [16].Brewer CA, Setterdahl JJ, Li MJ, et al. Endoglin expression as a measure of microvessel density in cervical cancer. Obstet Gynecol. 2000; 96(2):224-8.
    [17].Sudhoff H, Bujia J, Fisseler EA, et al. Expression of a cell-cycle-associated nuclear antigen(MIB1) in cholesteatoma and auditory meatal skin [J]. Laryngoscope,1995; 105:1227-1231.
    [18].许昱,金康业,董卫国. Ki-67和转化生长因子-a在中耳胆脂瘤中的表达[J].中华耳鼻咽喉科杂志.1999; 34(5):320.
    [19].Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease[J]. Biochem Pharmacol, 2008; 75(2):346-359.
    [20].Sato T, Sakai T, Noguchi Y, et al. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases[J].Gynecol Oncol, 2004; 92(1):47-56.
    [21].Suzuki K, Enghild JJ, Morodomi T, et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase -3[J]. Biochemistry, 1990; 29:10261-10270.
    [22].Butler GS, Butler MJ, Atkinson SJ, et a1. The TIMP2 membrane type 1 metalloproteinase“receptor”regulates the concentration and efficient activation of progelatinase A:a kinetic study[J]. J Biol Chem, 1998; 273: 871-880.
    [23].Karadag A, Ogbureke KU, Fedarko NS, et al. Bone sialoprotein, matrix metallo-proteinase-2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion[J]. J Natl Cancer Inst, 2004; 96(12):956-965.
    [24].王军,余力生.基质金属蛋白酶2和9在不同部位的中耳胆脂瘤的表达.中华耳鼻咽喉头颈外科杂志.2009;44 (1) .
    [25].Mehta D, Daudia A, Birchall JP, et al. The localization of matrix metalloproteinases -8 and -13 in cholesteatoma, deep-meatal and post-auricular skin:a comparative analysis [J].Acta Otolaryngol, 2007; 127(2):138-142.
    [26].Suchozebrska-Jesionek D, Szymański M, Kurzepa J, et al. Gelatinolytic activity of matrix metalloproteinases 2 and 9 in middle ear cholesteatoma[J].J Otolaryngol Head Neck Surg, 2008; 37(5):628-632.
    [27].徐志文,倪海峰.胆脂瘤型中耳炎骨质破坏机制及手术治疗.国外医学(耳鼻咽喉科学分册).2005(4).
    [28].K?h?ri VM, Saarialho-Kere U. Matrix metallo-proteinases in skin[J].Exp Dermatol, 1997; 6(5):199-213.
    [29]. Moldovan NI. Angiogenesis, l'enfant terrible of vascular biology is coming of age. J Cell Mol Med. 2005; 9(4):775-6.
    [30]. Manders P, Beex LV, Tjan-Heijnen VC, et al. Vascular endothelial growth factor is associated with the efficacy of endocrine therapy in patients with advanced breast carcinoma. Cancer. 2003; 98(10):2125-32.
    [31].刘晓谦,张锟,王雪峰,等.VGEF、bFGF、PTEN表达与胶质瘤恶性程度及预后因素的研究.中华神经外科杂志,2004;20:14-17.
    [32].Iedel F,Gotte K,Bergler W,et a1. Inverse correlation of apoptotic and angiogenic markers in squamous cell carcinoma of the head and neck [J]Oncol Rep,2001; 8(3):471-476.
    [33].王翦刘运生.垂体腺瘤中MMP-9与VEGF的表达及其与侵袭性的关系.中华神经医学杂志,2005; 4(6):563-566.
    [1]Sudhoff H,Dazert S,Gonzales AM,et a1. Angiogenesis and Angiogenic Growth Factors in Middle Ear Cholesteatoma[J].Am J Otol, 2000, 21(6): 793-798.
    [2]Folkman J.Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 2 85(21): 1182-1186.
    [3]Anand-Apte B,Pepper MS,Voest E,et a1. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3[J]. Invest Ophthalmol Vis Sci, 1997,38(5):817-823.
    [4]Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease[J]. Biochem Pharmacol,2008, 15;75(2): 346-359.
    [5]Sato T, Sakai T, Noguchi Y, et al. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases[J]. Gynecol Oncol, 2004,92(1): 47-56.
    [6] Suzuki K, Enghild JJ, Morodomi T, et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase-3[J]. Biochemistry, 1990,29:10261-10270.
    [7]Butler GS, Butler MJ, Atkinson SJ, et a1.The TIMP2 membrane type 1 metalloproteinase“receptor”regulates the concentration and efficient activation of progelatinase A:a kinetic study[J]. J Biol Chem,1998, 273: 871-880.
    [8]Karadag A, Ogbureke KU, Fedarko NS, et al.Bone sialoprotein, matrix metallo-proteinase-2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion[J]. J Natl Cancer Inst, 2004,16;96(12): 956-965.
    [9]Hayakawa T.Structures and functions of TIMPs[J].Connective Tissue, 2001,33(1):33-42.
    [10]李保林,林丛尧,冯茂辉,等.大肠癌组织中基质金属蛋白酶-2/9、基质金属蛋白酶抑制剂-1的表达及对微血管生成和肿瘤转移的影响[J].临床外科杂志,2004,12(11):6642666.
    [11]梁君,刘铭球,谢梅,等.肺癌组织中MMP-9及TIMP-1的表达与转移、预后相关性研究[J].中国肺癌杂志,2003,6(1):46-50.
    [12]Würtz S?, Schrohl AS, S?rensen NM,et al.Tissue inhibitor of metalloproteinases -1 in breast cancer[J]. Endocr Relat Cancer, 2005, 12(2):215-227.
    [13] Mehta D, Daudia A, Birchall JP, et al. The localization of matrix metalloproteinases-8 and -13 in cholesteatoma, deep-meatal and post -auricular skin:a comparative analysis [J]. Acta Otolaryngol, 2007,127(2) :138-142.
    [14]Suchozebrska-Jesionek D, Szymański M, Kurzepa J, et al. Gelatinolytic activity of matrix metalloproteinases 2 and 9 in middle ear cholesteatoma[J].J Otolaryngol Head Neck Surg,2008, 37(5):628-632.
    [15]K?h?ri VM,Saarialho-Kere U.Matrix metalloproteinases in skin[J]. Exp Dermatol, 1997,6(5): 199-213.
    [16]刘建治,林国经,黄建民,等.基质金属蛋白酶-1及白细胞介素-1αmRNA在中耳胆脂瘤中的表达[J].中华耳鼻咽喉头颈外科学杂志, 2002,37(1): 30-33.
    [17] Peek FA, Huisman MA, Berckmans RJ, et al. Lipopolysaccharide concentration in cholesteatoma[J]. Otol Neurotol and bone resorption, 2003, 24(5): 709-713.
    [18]Kobayashi H, Kazuhito Asano,Kanai K,et al. Suppressive Activity of Vitamin D3 on Matrix Metalloproteinase Production From Cholesteatoma Keratinocytes In Vitro[J]. Mediators of Inflammation,2005;4(2005) 210-215.
    [19]William G,Stetler-Stevenson. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention[J]. The Journal of Clinical Investigation,1999,103:9. [20]Bergers G, Brekken R, McMahon G, et al.Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. NatCell Biol, 2000,2(10):737-744.
    [21]Fonsatti E, Maio M.Highlights on endoglin (CD105):from basicfindings towards clinical applications in human cancer[J].J Transl Med,2004, 2:18.
    [22]Bobik A.Transforming growth factors and vascular disorders[J]. Arterioscler Thromb Vasc Biol,2006,26:1712-1720.
    [23]Beresford MJ, Harris AL, Ah-See M, et al.The relationship of the neoangiogenic marker,endoglin, with response to neoadjuvant chemotherapy in breast cancer[J]. Br J Cancer,2006, 95: 1683-1688.
    [24]Li C, Gardy R, Seon BK, et al.Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis[J]. Br J Cancer,2003,88:1424-1431.
    [25]杨向茹,李西秦,马敏,等.基质金属蛋白酶及其抑制剂和转化生长因子-β在中耳胆脂瘤的表达[J].中华耳鼻喉科杂志,2002,37(4):121-123.
    [26]Sch?nermark M, Mester B, Kempf HG, et al.Expression of matrix metallo- proteinness and their inhibitor in human cholesteatmas[J]. Acta Otolaryngol,1996,116(3):451-456.
    [27]Still K, Robson CN, Autzen P,et al.Localization and quantification of mRNA for matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metallo- proteinase-2 (TIMP-2) in human benign and malignant prostatic tissue[J]. Prostate, 2000,42(1): 18-25.
    [28]陈洪雷,刁路明,陈德基,等.大鼠肺癌侵袭转移中明胶酶A及其抑制剂的动态表达[J].中华肿瘤杂志,2002,24(2):118-122.
    [1] Jacobs P .Van Buchem disease. Postgrad Med J, 1977; 53:497-506.
    [2] Van Hul W, Balemans W, Van Hul E, et al. Van Buchem disease (hyperostosiscorticalis generalisata) maps to chromosome 17q12-q21.Am J Hum Genet, 1998; 62(2): 391-399.
    [3] Scopelliti D, Orsini R, E Ventucci, et al.Van Buchem disease. Maxillofacial changes, diagnostic classification and general principles of treatment. Minerva Stomatol, 1999; 48(5): 227-34.
    [4] Balemans W, Patel N, Ebeling M, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet.2002; 39: 91-97.
    [5] Loots GG, Kneissel M, KellerH, et al.Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res,2005; 15: 928 -935.
    [6] Baron R, Rawadi G.Targeting the Wnt/?-Catenin Pathway to Regulate Bone Formation in the Adult Skeleton. Endocrinology, 2007; 148: 2635-2643.
    [7] Balemans W, Ebeling M, Patel N, et al.Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet, 2001; 10: 537-543.
    [8] Balemans W, Van Wesenbeeck L, Van Hul W ,et al. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int . 2005; 77(5): 263-74.
    [9]田昭俭,姜法伟.泛发性骨皮质增厚症1例.实用放射学杂志,1997; 13(2):119-120.
    [10]柯志超,蒋欣,林美金,等.泛发性骨皮质增厚症1例.罕少疾病杂志,2006; 13(6):59.
    [11]汪群,陶孝信,王松,等.泛发性骨皮质增厚症1例.医学影像学杂志,1998; 8(1): 59-60.
    [12]吕世娟,郁万江,赵禾身.家族性泛发性骨皮质增厚症3例.中华放射学杂志,1994; 28(1):61-62.
    [13] Prabhu N, Joseph S, Gupta A, et al. Syringohydromyelia with Van Buchem disease. AJNR Am. J. Neuroradiol, 1997; 18: 393-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700