先进复合材料格栅加筋结构优化设计与损伤分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进复合材料格栅加筋结构(AGS)综合新材料技术和新结构设计的优点,不仅具有一般复合材料结构的比强度和比刚度高的特点,同时拥有环境鲁棒性、自动化制造技术等独特的优势,已被广泛应用于航天航空结构中,成为最具发展前途的新型结构形式之一。本文根据航天和航空飞行器中复合材料AGS板/壳构件和结构的特点,从总体和局部,统观和精细等层次,对该结构的分析模型、理论、方法和破坏过程开展了较为深入的研究,并独立开发了相应的分析软件包AGSANS。该项研究是国家重点基础研究发展计划973计划课题“超轻多孔材料和结构创新构型的多功能化基础研究”(2006CB601205)和国家自然科学基金面上项目“含损伤先进复合材料格栅加筋结构(AGS)破坏机理研究”(10302004)子课题的重要研究内容之一,同时还得到中国运载火箭研究院十五攻关预研项目《先进复合材料格栅加筋结构的力学分析与优化设计》的资助。本论文主要研究工作如下:
     1.复合材料AGS结构优化设计混合遗传算法
     复合材料AGS结构优化设计是一个非线性优化问题,且存在多约束、离散和连续变量并存等难点。基于这些难点,本文将遗传算法与单纯形法相结合提出了一种混合遗传算法,可以较快得到全局最优解。同时将遗传算法进行了改进,也对单纯形法中存在的若干问题给出了解决方案。优化目标为给定外载下使复合材料AGS圆柱壳的重量最小,同时满足稳定性和应变约束条件。其中,对AGS结构的分析是基于等效刚度模型。设计变量包括连续变量(肋骨厚度、斜肋铺设角度)和离散变量(蒙皮铺层、肋骨高度、斜肋间距)。通过对有无强度约束和不同加筋形式对优化结果的影响分析,发现整体稳定性为控制AGS圆柱壳结构安全度的最主要约束因素,等格栅结构在侧压下是最有效的结构形式。
     2.复合材料AGS圆柱壳的鲁棒优化设计方法
     通常在制造过程中,对构件尺寸和位置都规定了公差,因此,在进行结构设计时有必要将这些因素考虑在内。为此,本文基于上述混合遗传算法提出了一种针对非完善复合材料AGS圆柱壳的鲁棒优化设计方法,同时考虑了优化目标和约束的鲁棒性。为了简化运算过程,提高优化分析效率,通过敏度分析方法选取对优化结果影响较大的设计变量作为鲁棒优化设计变量(本问题为肋骨高度和斜肋铺设角度)。典型算例结果表明,鲁棒优化设计结果与传统确定性优化结果相比差别较大,表明鲁棒设计是很必要的。此外,AGS圆柱壳对初始几何非圆度缺陷不敏感。
     3.复合材料三角形精细Mindlin加筋板/壳单元
     由于AGS结构的复杂性和肋骨往往较高,以往的有限元分析模型都存在各种不足。本文构造了用于复合材料AGS结构分析的复合材料三角形精细Mindlin加筋板/壳单元,并推导了考虑几何大变形的非线性有限元列式。在构造过程中假定肋骨和蒙皮横向位移相同,但转角采用相同形函数分别插值,这样既保证两者变形协调性,又放松了肋骨转动的约束。在此单元中,肋骨放置的数量、位置和角度可以任意,为结构的单元网格剖分带来了很大的便利。通过算例计算结果对比,表明本单元具有较好收敛性能,并能够精确计算加筋结构的位移和面内应力,对于高肋格栅加筋结构表现出了独特的优越性。另外,基于该单元还对正交格栅加筋板和等格栅圆柱壳进行了特征值屈曲和后屈曲分析。
     4.复合材料AGS结构的损伤累积扩展分析
     由于复合材料AGS结构损伤行为的复杂性,有关该方面的报道还很少。本文基于精细加筋单元模型提出了一种用于AGS结构的损伤启始和扩展分析方法。该方法同时考虑了层内损伤和层间损伤,其中,层内损伤包括蒙皮纤维破坏、蒙皮基体开裂、蒙皮纤维-基体剪切破坏以及肋骨纤维破坏,而层间损伤为蒙皮分层损伤。对于层内损伤采用材料常数退化准则;而对于分层损伤,提出了一种新的等效刚度退化准则。另外基于三角形单元提出了一种适用于薄板和中厚层合板的层间剪切应力有限差分计算方法。通过典型算例证明了该损伤模型用于AGS结构分析的有效性,并详细分析了中心含孔复合材料正交各向异性格栅加筋曲板和光板在轴压下的损伤扩展机理和行为。
     5.复合材料AGS结构混合分析模型
     结合等效刚度模型和精细加筋单元模型构造了一种混合分析模型,即对于需要特殊研究的局部区域应用精细加筋单元离散,而在其他区域应用等效刚度板壳单元离散。这样不仅可以有效地分析AGS结构的局部力学性能,还可降低模型化的工作量,提高计算效率。计算结果表明格栅形状、肋骨间距和高度对等效刚度模型计算结果精度有重要的影响,并通过对带孔复合材料AGS板孔边特殊点应力值的分析,明确了混合法的使用限制。
Advanced composite grid stiffened (AGS) structures not only inherit the traditional excellent qualities of fiber-reinforced composite materials, e.g. high specific strength and stiffness, but also exhibit many unique advantages by combining new material technology and new structure design concepts, e.g. environmental robustness and automatic manufacturing. AGS structures appear to be a promising concept and have been widely used in aircraft and spacecraft design. According to the characteristic of composite AGS plate/shell, this dissertation investigates the model, theory, method and failure process for the AGS structures from global-local and macroscopic-microscopic views. In addition, a corresponding software (AGSANS) is developed. This study is a sub-part of the project of National Basic Research Program of China (973 Project) "Study on multi-functional innovation construction of extra-waighted and porous materials & structures" (No.2006CB601205) and National Science Foundation in China "The fracture mechanism of advanced grid stiffened structure (AGS) with damage" (No. 10302004). It is also supported by a grant from the National Key Technologies R&D Program of China Academy of Launch Vehicle Technology during the 10th Five-Year Plan Period "Optimal design and mechanics analysis for composite AGS structures". The main research work can be summarized as follows:
     1. Hybrid Genetic Algorithm of Composite AGS Structures
     Considering the characteristics for optimal design of AGS structures, such as nonlinear programming, multi-constraints, and mixed discrete-continuous design variables, etc, a new hybrid genetic algorithm (GA) is developed by combining the improving GA and simplex algorithm (SA), which achieves global optimal solutions more quickly. In the method, some solutions are offered for several traditional problems in SA. The present design problem is to minimize the weight of an AGS cylindrical shell under a given load condition with buckling and strength constraints. An equivalent stiffness model (ESM) is used to analyze the AGS structure. Continuous design variables (rib thickness and angle of diagonal ribs) and discrete variables (rib height, diagonal rib spacing and skin laminate stacking sequence) are both considered. Some numerical examples are discussed about the effects of strength constraints and grid configurations upon the optimal results. It is concluded that global buckling constraint is the key factor for identifying the safety of AGS cylindrical shell, and the triangular grid is the ideal configuration under transverse pressure.
     2. Robust Design for Composite AGS Cylindrical Shell
     Robust design for the structures is normally necessary, since the size and location of the members generally need high tolerance during manufacturing. Therefore, a robust optimization design method, based on the hybrid GA, for the AGS cylindrical shell with initial-imperfect is proposed, in which both robustness of objective function and constraint functions are considered. To simplify the optimization and reduce the computational cost, the two most sensitive variables, which are introduced in robust analysis, are distinguished from all utilizing sensitivity analysis. In the present analysis, they are rib height and angle of diagonal ribs. By optimizing an AGS cylindrical shell under axial compressure, it can be seen that the optimization results given by the proposed robust design method are quite different from the general deterministic optimization method, and the AGS structures are not sensitive to the initial imperfection.
     3. Refined Triangular Composite Stiffened Mindlin Plate/Shell Element
     Since the AGS structures are so complex and the ribs are normally higher than skin, the present finite element models are all insufficient. A new refined triangular composite stiffened Mindlin plate/shell element is formulated for simulating AGS structures. The corresponding expressions of geometric nonlinearity are also deduced. In the element, the rotations of the ribs and skin are interpolated, respectively, using the same shape functions, while their transverse deformations are regarded as equal. Therefore, the conditions of displacement compatibility are well maintained along the interface of rib and skin, and the rotational constraints of the stiffeners are released. There are no restrictions on the number and orientation of the ribs in establishing element mesh. The numerical results show its good convergence and effectiveness, especially for the case of the AGS structures of higher ribs. The element can be used to calculate the deformation and in-plane stress of stiffened structures accurately. The studies on the buckling and post-buckling behavior for ortho-grid plate and iso-grid cylindrical shell are also carried out.
     4. Progressive Failure Methodology for Composite AGS Structures
     Presenting, literatures on the failure analysis of AGS structures is minimal due to its complexity. In this study, a new progressive failure methodology is developed to simulate the onset and growth of multi-failure for composite AGS plates/shells on the basis of the refined stiffened element model (RSEM). The failure modes considered in this study are inter-laminar failure (i.e. delamination in skin) and intra-laminar failure including fiber failure, matrix cracking, fiber-matrix shear failure in skin, and fiber failure in the ribs. For intra-laminar failure modes, corresponding material degradation rules are introduced. However, a new equivalent degraded stiffness rule is proposed for delamination. Meanwhile, a scheme for calculating inter-laminar shear stresses of the triangular element is developed by employing a mixed approach of finite element and finite difference method, which is confirmed available for thin or moderate thick composite laminate plates. The methodology is validated by some typical examples and is employed to evaluate the progressive failure behavior of a composite orthotropic-grid curved panel with a centrally located cutout under compressive load.
     5. Mixed Analytical Model of Composite AGS Structures
     A new mixed analytical model by conjunction of ESM with RSEM is formulated to simulate the composite AGS structures. The strategy is to use SEM to model the local area, where the mechanical features attract more attention, while use ESM to model the non-local area. It can not only simulate the local behavior more exactly but also be more efficient. The numerical simulations show that the accuracy of ESM is remarkably influenced by the configuration of grid, distance and height of the ribs. The limitation of the mixed analytical model is also investigated by analyzing the stress of a special point at the edge of the cutout located at the central of a grid-stiffened plate.
引文
[1]朱晨,纪朝辉,郭英.复合材料在航空工程中的应用研究现状及展望.航空维修与工程.航空维修与工程,2003,3(25-27)
    [2]赵稼祥.航天先进复合材料的现状与展望.热固性树脂,2000,15(2):37-41.
    [3]赵稼祥.航天先进复合材料的现况与展望.飞航导弹,2000,1:58-63.
    [4]林德春,潘鼎,高健,等.碳纤维复合材料在航空航天领域的应用.玻璃钢,2007,1:18-28.
    [5]甘永学.纤维增强陶瓷基复合材料的研究及其在航空航天领域的应用.宇航材料工艺,1994,5:1-5.
    [6]陈祥宝.先进树脂基复合材料研究进展.航空工程与维修,2001,3:14-16.
    [7]Vasiliev V V & Razin A F.Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications.Composite Structures,2006,76(1-2):182-189.
    [8]Huybrechts S M & Meink T E.Advanced Grid Stiffened Structures for the Next Generation of Launch Vehicles.IEEE Aerospace conference,United States,1997:263-270.
    [9]Meink T E & Huybrechts S M.Hybrid Tooling for Advanced Grid Stiffened(Ags) Structures.SAMPE Technical Conference,1996.
    [10]Huybrechts S M & Stephen W T.Analysis and Behavior of Grid Structures.Composites Science and Techonology,1996,56(9):1001-1015.
    [11]Han D Y & Tsai S W.Interlocked Composite Grids Design and Manufacturing.Journal of Composite Materials,2003,37(4):287-316.
    [12]Chen H J.Analysis and Optimum Design of Composite Grid Structures:(Doctoral Dissertation).United States:Stanford University,1995.
    [13]古托夫斯基主编,李宏运译.先进复合材料制造技术.北京:化学工业出版社,2004.
    [14]Huybrechts S M,Meink T E,Wegner P M,et al.Manufacturing Theory for Advanced Grid Stiffened Structures.Composites Part A:Applied science and manufacturing,2002,33(2):155-161.
    [15]益小苏.先进复合材料技术研究与发展.北京:国防工业出版社,2006.
    [16]鲁云,朱世杰,马鸣图等.先进复合材料.北京:机械工业出版社,2003.
    [17]胡保全,牛晋川.先进复合材料.北京:国防工业出版社,2006.
    [18]章继峰,张博明,杜善义.平板型复合材料网格结构增强改进与参数设计.复合材料学报,2006,23(3):153-157.
    [19]Colwell T B.The Manufacturing and Application of Composite Grid Structure.Stanford:Stanford University,1996.
    [20]Vasiliev V V,Barynin V A & Rasin A F.Anisogrid Lattice Structures-Survey of Development and Application.Composite Structures,2001,54(2-3):361-370.
    [21]Rutan B,Hiel C & Goldsworthy B.From Concept Chaos to Clear Concepts.SAMPE J,1996,32(5):18-21.
    [22]Powell K D.Geodetic Aircraft Structure.Sport Aviation,1961:17-24.
    [23]Poulsen C M.Geodetic Construction.How the Vickers-Armstrong Wellington Is Built:Solving Novel and Sometimes Difficult Production Problems.Aircraft Production Part Ⅰ 1940:43-148;Part Assembly of Wellington Fuselages and Wings:Works Layout and Equipment.Aircraft Production,1940:180-188.
    [24]Mackay R.Wellington in Action.Texas:Squadron/Signal Publication,1986.
    [25]Huybrechts S M,Hahn S E & Meink T E.Grid Stiffened Structures:Survey of Fabrication,Analysis and Design Methods.Proceedings of the 12th International Conference on Composite Materials (Iccm/12).Paris,France;.July 1999.
    [26]Figger I E.Tetra-Core.Shell Aviation News,1971,391.
    [27]Duff B L.Method of Making a Filament Wound Sandwich Core.US Patent No.3,1967:300-354.
    [28]Wang S S,Srinivasan S,Su K B,et al.A Structural Efficiency Study of Isogrid-Stiffened Fiber Composite Laminate Shells:Buckling and Postbuclding Analysis and Experiments.Proceedings of the 10th International Conference on Composite Materials(Iccm/10).Canada;August 1995;Vol.5,Structures Woodhead Publishing Ltd.:59-68.
    [29]Slinchenko D,Verijenko V E,Lene F,et al.Optimum Design of Grid Cylindrical Structures Using Homogenized Model.Proceedings of the 12h International Conference on Composite Materials (Iccm/12).Paris,France July 1999(Electronic version).
    [30]Renfield L W,Deo R B & Reniery G D.Continuous Filament Advanced Composite Isogrid:A Promising Design Concept.In:Fibrous Composites in Structural Design.New York:Plenum Press,1980:215-239.
    [31]Kim T D,Koury J L,Telford K N,et al.Continuous Fiber Composite Isogrid for Launch Vehicle Applications.Proceedings of the 9th International Conference on Composite Materials(Iccm/9).Madrid;July 1993;Vol.6,Composite Properties and Applications.University of Zaragoza,1993:101-107.
    [32]Hou A & Gramoll K.Design,Damage Tolerance and Filament Wound Attach Fitting for Launch Vehicle.Journal of Advanced Material,1998,30(1):16-21.
    [33]Chen H J & Tsai S W.Analysis and Optimum Design of Composite Grid Structures.Journal of Composite Materials,1996,30(4):503-534.
    [34]Peter M W,Jeff M G,Steven M H,et al.Advanced Grid Stiffened Composite Payload Shroud for the Osp Launch Vehicle.IEEE Aero Space Conference Proceedings,2000.
    [35]温玄玲&陈浩然.等网格加筋复合材料圆柱壳的总体稳定性和中间框临界刚度计算.强度与环境,1986,6:19-25.
    [36]范华林,金丰年,方岱宁.格栅结构力学性能研究进展.力学进展,2008,38(1):35-52.
    [37]杜善义,章继峰,张博明.先进复合材料格栅结构(Ags)应用与研究进展.航空学报,2007,28(2):419-424.
    [38]白瑞祥,王蔓,陈浩然等.含损伤复合材料ags板的屈曲特征.复合材料学报,2005,22(4):136-141.
    [39]Tsai S W,Liu K S & Manne P M.Manufacture and Design of Composite Grids.Materials and Construction,1997,47(247-248):59-71.
    [40]Kim T D.Fabrication and Testing of Thin Composite Isogrid Stiffened Panel.Composite Structures,2000,49(1):21-25.
    [41]Kim T D.Fabrication and Testing of Composite Isogrid Stiffened Cylinder.Composite Structures,1999,45(1):1-6.
    [42]Fan H L,Meng F H & Yang W.Mechanical Behaviors of Carbon Fiber Reinforced Lattice Materials and Bending Effects.Archive of Applied Mechanics,2006,75(10-12):635-647.
    [43]Philipp B,Raimund R,Jan T,et al.A Semi-Analytical Modal for Local Post-Buckling Analysis of Stringer- and Frame-Stiffened Cylindrical Panels.Thin Walled Structures,2006,44:102-114.
    [44]Reddy A D.Behavior of Continuous Filament Advanced Composite Isogrid Structure:(Ph.D.Dissertation).Georgia Institute of Technology,Atlanta,GA,1980.
    [45]Timoshenko S P & Woinowsky K S.Theory of Plates and Shells.2nd Ed.,McGraw-Hill,New York,1959.
    [46]Troitsky M S.Stiffened Plates:Bending,Stability and Vibrations.Elsevier Science Publishing Company,Amsterdam,1976.
    [47]Kollar L & Hegedus I.Analysis and Design of Space Frames by the Continuum Method.Elsevier Science Publishing Company,Amsterdam,1985.
    [48]Sumec J.Regular Lattice Plates and Shells.Elsevier Science Publishing Company,Amsterdam,1990.
    [49]蒋鞠慧.复合材料加筋壳稳定性研究.玻璃钢/复合材料,2001:5-9.
    [50]章继峰,张博明,武湛君,等.平板型复合材料格栅结构载荷重构研究ⅰ:向前响应模型.复合材料学报,2007,24(4):154-160.
    [51]Zhang B,Zhang J,Wu Z,et al.A Load Reconstruction Model for Advanced Grid-Stiffened Composite Plates.Composite Structures,2008,82(4):600-608.
    [52]Jaunky N,Knight N F & Ambur D R.Formulation of an Improved Smeared Stiffener Theory for Buckling Analysis of Grid-Stiffened Composite Panels.Composites Part B:Engineering,1996,27(5):519-526.
    [53]Wodesenbet E,Kidane S & Pang S-S.Optimization for Buckling Loads of Grid Stiffened Composite Panels.Composite Structures,2003,60(2):159-169.
    [54]Kidane S,Li G,Helms J,et al.Buckling Load Analysis of Grid Stiffened Composite Cylinders.Composites Part B:Engineering,2003,34(1):1-9.
    [55]Wang A J & McDowell D L.In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs.Journal of Engineering Materials and Technology,2003,126(137-156).
    [56]吴德财,徐元铭,万青.先进复合材料格栅加筋板的总体稳定性分析.复合材料学报,2007,24(2):168-173.
    [57]Ambur D R & Rehfield L W.Effect of Stiffness Characteristics on the Response of Composite Grid-Stiffened Structures.Journal of Aircraft,1993,30(4):541-546.
    [58]Dial Finite Element Analysis System:(Version L3d2).Lockheed Missiles and Space Co.Inc.,Sunnyvale,CA,1987.
    [59]Ray & Satsangi.Finite Element of Laminated Hat-Stiffened Plates.Journal of Reinforced Plastics and Composites,1996,15:1174-1193.
    [60]Chen Y & Gibson R F.Composite Isogrid Structures with Integral Passive Damping.Proc.ASME Noise Control and Acoustics Division,2000:425-433.
    [61]Chen Y & Gibson R F.Analytical and Experimental Studies of Composite Isogrid Structures with Integral Passive Damping.Mechanics of Advanced Material and Structures,2003,10(2):127-143.
    [62]Chen Y & Gibson R F.Vibration Characteristics of Composite Isogrid Structures.Proc.Seventh Annual International Conference on Composites Engineering,Denver,Colorado,2000.
    [63]王蔓,陈浩然,白瑞祥,等.频率相关自由阻尼层复合材料加筋板动力分析.工程力学,2007,10:64-69.
    [64]Vipperman J S,Li D,Avdeev L,et al.Investigation of the Sound Transmission into an Advanced Grid-Stiffened Structure.Journal of Vibration and Acoustics,2003,125(3):257-266.
    [65]蒋诗才,邢丽英,李斌太,等.格栅结构吸波性能探索研究.航空材料学报,2006,26(3):196-198.
    [66]蒋诗才,邢丽英,李斌太,等.复合材料格栅结构单元力学性能预测.航空材料学报,2007,4:65-68.
    [67]Kolli M & Chandrashekhara K.Finite Element Analysis of Stiffened Laminated Plates under Transverse Loading.Composites Science and Technology,1996,56(12):1355-1361.
    [68]Kassegne S K & Reddy J N.Local Behavior of Discretely Stiffened Composite Plates and Cylindrical Shells.Composite Structures,1998,41(1):13-26.
    [69]Holopainen T E Finite Element Free Vibration Analysis of Eccentrically Stiffened Plates.Computers & Structures,1995,56(6):993-1007.
    [70]章向明,王安稳,梅炎祥.复合材料大变形任意加筋壳单元.工程力学,2003,20(5):134-138.
    [71]章向明,王安稳.复合材料大变形任意加筋板单元.工程力学,2001,18(3):131-135.
    [72]Satish Kumar Y V & Muldaopadhyay M.A New Triangular Stiffened Plate Element for Laminate Analysis.Composites Science and Technology,2000,60(6):935-943.
    [73]Hou A & Gramoll K.Design and Fabrication of Cfrp Interstage Attach Fitting for Launch Vehicles.Journal of Aerospace Engineering,1999,12(3):83-91.
    [74]孙雨果,严实,梁红.新型三维编织复合材料等网格结构力学性能分析.宇航学报,2007,28(4):827-830.
    [75]廖英强,刘建超,苏建河.C/E复合材料网格结构的稳定性分析.纤维复合材料,2006,4(28-30)
    [76]李超,刘建超,丘哲明.一种新型的材料结构—复合材料网格结构.航空材料学报,2003,23(s1):276.
    [77]李超,景宽.复合材料网格结构的研制发展历程.纤维复合材料,2004,47(4):47-58.
    [78]范华林.点阵复合材料制备及其性能研究:(博士论文).北京:清华大学,2006.
    [79]Hou A & Gramoll K.Compressive Strength of Composite Lattice Structures.Journal of Reinforced Plastic and Composites,1998,17(5):462-463.
    [80]傅强,庄茁.新型碳纤维格栅夹层结构模拟研究.强度与环境,2006,33(3):49-55.
    [81]Meink T E.Composite Grid Vs.Composite Sandwich:A Comparison Based on Payload Shroud Requirements.Aerospace Conference 1998 Proceedings,IEEE,1998,1:215-220.
    [82]Kidane S.Buckling Analysis of Grid Stiffened Composite Structures.B.Sc.:Addis Ababa University,1997.
    [83]Fan H L,Meng F H & Yang W.Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers.Composite Structures,2007,81(4):533-539.
    [84]Narayana Naik G,Gopalakrishnan S & Ganguli R.Design Optimization of Composites Using Genetic Algorithms and Failure Mechanism Based Failure Criterion.Composite Structures,2008,83(4):354-367.
    [85]Woodcock R L.Free Vibration of Advanced Anisotropic Multilayered Composites with Arbitrary Boundary Conditions.Journal of Sound and Vibration,2008,312(4-5):769-788.
    [86]Paluch B,Grediac M & Faye A.Combining a Finite Element Programme and a Genetic Algorithm to Optimize Composite Structures with Variable Thickness.Composite Structures,2008,83(3):284-294.
    [87]Kathiravan R & Ganguli R.Strength Design of Composite Beam Using Gradient and Particle Swarm Optimization.Composite Structures,2007,81(4):471-479.
    [88]Fares M E,Youssif Y G & Alamir A E.Design and Control Optimization of Composite Laminated Truncated Conical Shells for Minimum Dynamic Response Including Transverse Shear Deformation.Composite Structures,2004,64(2):139-150.
    [89]程文渊,崔德刚.基于pareto遗传算法的复合材料机翼优化设计.北京航空航天大学学报,2007,33(2):145-148.
    [90]Schmit L A,Kicher T P & Morrow W M.Structural Synthesis Capability for Integrally Stiffened Waffle Plates.AIAA Journal,1963,1(12):2820-2836.
    [91]Jones R T & Hague D S.Application of Multivariable Search Techniques to Structural Design Optimization.NASA CR-2038,1972.
    [92]Anderson M S,Stroud W J,Darling B J,et al.Pasco:Structural Panel Analysis and Sizing Code.User's Manual.NASA TM 80182,1981.
    [93]Simitses G J & Ungbhakorn V.Minimum-Weight Design of Stiffened Cylinders under Axial Compression.AIAA Journal,1975,13(6):750-755.
    [94]Simitses G J.Optimization of Stiffened Cylindrical Shells Subjected to Destabilizing Loads.Structural Optimization Status and Promise,Progress in Astronautics and Aeronautics,edited by M.P.Karmat,Vol.150,AIAA,Washington,DC,1992:663-704.
    [95]Nagendra S,Haftka R T & Gurdal Z.Design of a Blade Stiffened Composite Panel by Genetic Algorithm.Proceedings of the AIAA/ASME/ASCE/AHS/ASC 34th Structures,Structural Dynamics,and Materials Conference,AIAA,Washington,DC,1993:2418-2436.
    [96]Harrison P N,Leriche R & Haftka R T.Design of Stiffened Panels Aby Genetic Algorithm and Response Surface Approximations.Proceedings of the AIAA/ASME/ASCE/AHS/ASC 36th Structures,Structural Dynamics,and Materials Conference,AIAA,Washington,DC,1995:58-68.
    [97]Crossley W A & Laananen D H.Genetic Algorithm-Based Optimal Design of Stiffened Composite Panels for Energy Absorbtion.Proceedings of the 52nd Annual Forum of the American Helicopter Society,AIAA,Reston,VA 1996:1367-1376.
    [98]Todoroki A & Sekishiro M.Stacking Sequence Optimization to Maximize the Buckling Load of Blade-Stiffened Panels with Strength Constraints Using the Iterative Fractal Branch and Bound Method.Composites Part B:Engineering,2007,In Press,Corrected Proof.
    [99]Terada Y,Todoroki A & Shimamura Y.Stacking Sequence Optimizations Using Fractral Branch and Bound Method for Laminated Composites.JSME Int J Ser A,2001,44(4):490-498.
    [100]Todoroki A & Terada Y.Improved Fractal Branch and Bound Method for Stacking Sequence Optimizations of Laminated Composite Stiffener.AIAA Journal,2004,42(1):141-148.
    [101]Reddy A D,Valisetty R R & Rehfield L W.Continuous Filament Wound Composite Concepts for Aircraft Fuselage Structures.Journal of Aircraft,1985,22(3):249-255.
    [102]Philips J L & Gurdal Z.Structural Analysis and Optimum Design of Geodesically Stiffened Composite Panels.Center for Composite Materials and Structures,Virginia Polytechnic Inst.and State Univ.,Blacksburg,VA,1990.
    [103]Gendron G & Gurdal Z.Optimal Design of Geodesically Stiffened Composite Cylindrical Shell.33rd Structures,Structural Dynamics,and materials Conferece,AIAA,Washington,DC,1992:2431-2441.
    [104]Bushnell D.Theoretical Basis of the Panda Computer Program for Preliminary Design of Stiffened Panels under Combined in-Plane Loads.Computers & Structures,1987,27(4):541-563.
    [105]BushneU D.Panda2-Program for Minimum Weight Design of Stiffened,Composite,Locally Buckled Panels.Computers & Structures,1987,25(4):469-605.
    [106]Bushnell D.Recent Enhancements to Pnda2.Proceedings of the AIAA/ASME/ASCE/AHS/ASC 37th Structures,Structural Dynamics,and Materials Conference,AIAA,Washington,DC,1996:126-182.
    [107]Bushnell D & Bushnell W D.Approximate Method for the Optimum Design of Ring and Stringer Stiffened Cylindrical Panels and Shells with Local,Inter-Ring,and General Buckling Modal Imperfections.Computers & Structures,1996,59(3):489-527.
    [108]Jaunky N,Knight N F & Ambur D R.Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints.Composite Structures,1998,41(3-4):243-252.
    [109]Ambur D R & Jaunky N.Optimal Design of Grid-Stiffened Panels and Shells with Variable Curvature.Composite Structures,2001,52(2):173-180.
    [110]Alinia M M.A Study into Optimization of Stiffeners in Plates Subjected to Shear Loading.Thin-Walled Structures,2005,43(5):845-860.
    [111]Jadhav P & Mantena P R.Parametric Optimization of Grid-Stiffened Composite Panels for Maximizing Their Performance under Transverse Loading.Composite Structures,2007,77(3):353-363.
    [112]Akl W,Ruzzen M & Baz A.Optimal Design of Underwater Stiffened Shells.Struct Multidise Optim,2002,23:293-310.
    [113]Alfred O H & Gilles F.Pareto-Optimal Methods for Gene Ranking.Journal of VLSI Signal Processing Systems,2004,38(3):259-275.
    [114]Zhang W H & Gao T.A Min-Max Method with Adaptive Weightings for Uniformly Spaced Pareto Optimum Points.Computers & Structures,2006,84(28):1760-1769.
    [115]Wang X,Hansen J S & Oguamanam D C D.Layout Optimization of Stiffeners in Stiffened Composite Plates with Thermal Residual Stresses.Finite Elements in Analysis and Design,2004,40(9-10):1233-1257.
    [116]Svanberg K.The Method of Moving Asymptotes:A New Method for Structural Optimization.International Journal for Numerical Methods in engineering,1987,24:359-373.
    [117]荣晓敏,徐元铭,吴德财.复合材料格栅结构优化设计中的计算智能技术.北京航空航天大学学报,2006,32(8):926-929.
    [118]Bisagni C & Lanzi L.Post-Buckling Optimisation of Composite Stiffened Panels Using Neural Networks.Composite Structures,2002,58(2):237-247.
    [119]Lanzi L & Giavotto V.Post-Buckling Optimization of Composite Stiffened Panels:Computations and Experiments.Composite Structures,2006,73(2):208-220.
    [120]沈真.美国空军飞机主结构损伤容限研究计划概述.航空航天部六二三所技术报告:Q/623S-9303107,1993.
    [121]沈真,章怡宁,黎观生,矫桂琼.复合材料飞机结构耐久性/损伤容限设计指南.北京:中国航空研究院编,航空工业出版社,1995.
    [122]Mujumdar P M & Suryanarayan S.Flexural Vibrations of Beams with Delaminations.Journal of Sound and Vibration,1988,125(3):441-461.
    [123]Adams R D & Bacon D G.Effect Fiber-Orientation and Laminate Geometry on Properties of Cfrp.Journal of Composite Material,1973,7:402-428.
    [124]Talreja R.Damage Development in Composites:Mechanics and Modeling.Journal of Strain Analysis for Engineering Design,1989,24(4):215-222.
    [125]Talreja R.Damage Characterization:Fatigue of Composite Materials.Ed.By Reifsnider K L,1991:79-102.
    [126]Lemaitre J.A Course on Damage Mechanics.Spring-Verlag,1992.
    [127]Nguyen B N.Damage Modeling of Laminated Composites by the Use of Multilayer Volume Elements.Composites Science and Technology,1998,58(6):891-905.
    [128]Renard J,Favre J P & Jeggy T.Influence of Transverse Cracking on Ply Behavior:Introduction of a Characteristic Damage Variable.Composites Science and Technology,1993,46(1):29-37.
    [129]Laws N,Dvorak G J & Hejazi M.Stiffness Changes in Unidirectional Composites Caused by Crack Systems.Mechanics of Material,1983,2:123-137.
    [130]Ousset Y.Numerical Simulation of Delamination Growth in Layered Composite Plates.Eur.J.Meeh A/Solids 1999,18:291-312.
    [131]Rybicki E F & Kanninen A.A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral.Engrg.Fracture Mech,1977,9:931-938.
    [132]Storakers B & Anderson B.Nonlinear Plate Theory Applied to Delamination in Composites.J.Mech.Phys.Solids,1988,36:689-718.
    [133]Roudolff F & Ousset Y.Comparison between Two Approaches for the Simulation of Delamination Growth in a D.C.B.Specimen.Aerospace Science and Technology,2002,6:123-130.
    [134]Chen H & Bai R.Postbuckling Behavior of Face/Core Debonded Composite Sandwich Plate Considering Matrix Crack and Contact Effect.Composite Structures,2002,57(1-4):305-313.
    [135]Icardi U.Co Plate Element for Global/Local Analysis of Multilayered Composites,Based on a 3d Zig-Zag Model and Strain Energy Updating.International Journal of Mechanical Sciences,2005,47(10):1561-1594.
    [136]Gruttmann F & Wagner W.Delamination Analysis of Thin Composite Structures Using a Multidirector Formulation.Advances in Analysis and Design of Composites,1996:51-59.
    [137]Naik G N & Marry A V.A Failure Mechanism-Based Approach for Design of Composite Laminates.Composite Structures,2002,57:385-391.
    [138]Choi H Y & Chang F K.A Model for Predicting Damage in Graphite/Epoxy Laminated Composites Resulting from Low Velocity Point Impact.Journal of Composite Materials,1992,26(14):2134-2169.
    [139]Petrossian Z & Wisnom M R.Prediction of Delamination Initiation and Growth from Discontinuous Plies Using Interface Elements.Composites Part A:Applied Science and Manufacturing,1998,29(5-6):503-515.
    [140]张彦,来新民,朱平,等.复合材料铺层板低速冲击作用下损伤的有限元分析.上海交通大学学报,2006,40(8):1348-1353.
    [141]Vijayaraju K,Mangalgiri P D & Dattaguru B.Experimental Study of Failure and Failure Progression in T-Stiffened Skins.Composite Structures,2004,64(2):227-234.
    [142]Key C T,Garnich M R & Hansen A C.Progressive Failure Predictions for Rib-Stiffened Panels Based on Multicontinuum Technology.Composite Structures,2004,65(3-4):357-366.
    [143]Tsai S W & Wu E M.A General Theory of Strength for Anisotropic Materials.Journal of Composite Material,1971,5:58-80.
    [144]John Higgins P E,Wegner P,Viisoreanu A,et al.Design and Testing of the Minotaur Advanced Grid-Stiffened Fairing.Composite Structures,2004,66(1-4):339-349.
    [145]Yap J W H,Thomson R S,Scott M L,et al.Influence of Post-Buckling Behaviour of Composite Stiffened Panels on the Damage Criticality.Composite Structures,2004,66(1-4):197-206.
    [146]Thomson R S & Scott M L.Modelling Delaminations in Postbuckling Stiffened Composite Shear Panels.Computational Mechanics,2000,26:75-89.
    [147]Wang J T & Raju I S.Strain Energy Release Rate Formulae for Skin-Stiffener Debond Modeled with Plate Elements.Engineering Fracture Mechanics.Engineering Fracture Mechanics,1996,54(2):211-228.
    [148]Yap J W H,Scott M L,Thomson R S,et al.The Analysis of Skin-to-Stiffener Debonding in Composite Aerospace Structures.Composite Structures,2002,57(1-4):425-435.
    [149]Bai R X & Chen H R.Numerical Analysis of Delamination Growth for Stiffened Composite Laminated Plates Applied Mathematics and Mechanics,2004,25(4):405-417.
    [150]Chen H,Wang M & Bai R.The Effect of Nonlinear Contact Upon Natural Frequency of Delaminated Stiffened Composite Plate.Composite Structures,2006,76(1-2):28-33.
    [151]Prusty B G,Ray C & Satsangi S K.First Ply Failure Analysis of Stiffened Panels-a Finite Element Approach.Composite Structures,2001,51(1):73-81.
    [152]Gan C,Gibson R F & Newaz G M.Analytical/Experimental Investigation of Energy Absorption in Grid-Stiffened Composite Structures under Transverse Loading.Experimental Mechanics,2004,44(2):185-194.
    [153]白瑞祥,王蔓,陈浩然等.含损伤复合材料ags板的屈曲特性.复合材料学报,2005,22(4):136-141.
    [154]白瑞祥,王蔓,陈浩然等.具有分层损伤的不同加筋形式复合材料层合板的后屈曲性态研究.计算力学学报,2006,23(2):186-190.
    [155]白瑞祥,王蔓,陈浩然等.冲击后含损伤复合材料格栅加筋板的后屈曲.复合材料学报,2006,23(3):141-145.
    [156]王蔓,李泽成,白瑞祥.复合材料格栅加筋板的分层扩展特性.吉林大学学报(工学版),2007,37(1):229-233.
    [157]Roark R J & Young W C.Fromulas for Stress and Strain.5th ed.,McGraw-Hill,1975.
    [158]Lekhnitskii S G.Anisotropic plates.Gordon and Breach,Science Publishers,New York,1968.
    [159]黄炎.复合材料三角形加筋圆柱壳的总体失稳分析.复合材料学报,1987,4(1):25-31.
    [160]Taguchi G.Taguchi on robust technology development:bringing quality engineering upstream.New York:ASME press,1993.
    [161]Lee K H,Eom I S,Park G J,Lee WI.Robust design for unconstrained optimization problems using Taguchi method.AIAA Journal,1996,34(5):1059-1063.
    [162]Park G J,Hwang W J,Lee W I.Structural optimization post-process using Taguchi method.JSME International Journal,Series A,1994,37:166-172.
    [163]陈国良,王煦法,庄镇泉,等.遗传算法及其应用.北京:人民邮电出版社,1999.
    [164]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [165]李守巨,刘迎曦,王登刚.基于遗传算法的岩体初始应力场反演.煤炭学报,2001,26(1):13-17.
    [166]路景,周春艳.基于种群多样性评价的自适应遗传算法.计算机仿真,2008,25(2):206-231.
    [167]张军,林程,张国明.基于遗传算法的客车车身骨架优化设计.北京理工大学学报,2008,28(1):45-49.
    [168]赵希人,王显峰,唐慧妍,等.基于遗传算法优化的小波神经网络对船舶受扰力及力矩建模预报.船舶力学,2008,12(1):25-30.
    [169]Goldberg D E.Genetic Algorithms in Search,Optimization,and Machine Learning.Addison-Wesley Publishing Company,1989.
    [170]吴贵生.实验设计与数据处理.冶金工业出版社,1997.
    [171]DeJong K A.An Analysis of the Behavior of a Class of Genetic Adaptive Systems.Ph.D Dissertation,University of Michigan,1975.
    [172]Brindle A.Genetic Algorithms for Function Optimization.Ph.D Dissertation,University of Alberta,1981.
    [173]Back T.The Interaction of Mutation Rate,Selection and Self-Adaptation within a Genetic Algorithm.In:Paralled Problem Solving from Nature 2,North Holland,1992,84-94.
    [174]Booker L B,Goldberg D E & Holland J H.Classifier Systems and Genetic Algorithms.Artificial Intelligence,1989,40:135-282.
    [175]Syswerda G.Uniform Crossover in Genetic Algorithm.In Proc.of 3rd Int.Conf.on Genetic Algorithms,Morgan Kaufmann,1989,2-9.
    [176]Michalewicz Z.Genetic Algorithms+Data Struction=Evolution Program.Springer,1992.
    [177]Srinivas M & Patnaik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms.IEEE Trans Systman and Cybernetics,1994,24(4):656-667.
    [178]陈立周.机械优化设计方法.北京:工业出版社,2005.
    [179]崔华林.机械优化设计方法与应用.东北工学院出版社,1989.
    [180]周承倜.弹性稳定理论.四川人民出版社,1980
    [181]Au F T K.,Cheng Y S,Tham L G,Zeng G W.Robust design of structures using convex models.Computers and Structures,2003,81:2611-2699.
    [182]Sarp A,Viktor E V,Alexander R.Minimum sensitivity design of laminated shells under axial load and external pressure.Composite Structures,2001,54:139-142.
    [183]于利磊,唐文勇,张圣坤,范模.基于理想点法的双目标结构鲁棒设计.上海交通大学学报,2003,37(8):1193-1197.
    [184]Guo M W,Harik I E & Ren W X.Buckling Behavior of Stiffened Laminated Plates.International Journal of Solids and Strnctures,2002,39:3055-3099.
    [185]Chen W J & Cheung Y K.Refined 9-Dof Triangular Mindlin Plate Elements.international Journal for Numerical Methods in Engineering,2001,51:1259-1281.
    [186]Zienkiewicz O C & Taylor R L.The Finite Element Method.Fourth Edition,London:Mcgraw-Hill Book Co.,1991.
    [187]Ge Z J & Chen W J.Refined Triangular Discrete Mindlin Flat Shell Elements.Computational Mechanics,2003,33:52-60.
    [188]Rossow M P & Ibrahimkhail A K.Constraint Method Analysis of Stiffened Plates.Composite Structures,1978,8:51-60.
    [189]ANSYS Software.Ansys User's Manual.Ver.9.0.
    [190]刘文国,任文敏,张维.加肋斜度对加肋壳稳定性的影响.工程力学,2000,17(4):1-6.
    [191]杨光松.损伤力学和复合材料损伤.国防工业出版社,1995.
    [192]Chang FK,Lessard LB.Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings:Part Ⅰ-analysis.J compos Mater 1991;25:2-43.
    [193]Hashin Z.Failure criteria for unidirectional fiber composites.J Appl Mech 1980;47(2):329-334.
    [194]Chai Y,Gadke M.Impact damage simulation and compression after impact of composite stiffened panels.DLR Report IB 131-99/20,1999.
    [195]Kim S J,Hwang J S,Kim J H.Progressive failure analysis of pin-loaded laminated composites using penalty finite element method.AIAA Journal,1998,36(1):75-80.
    [196]Lessard L B,Shokrieh M M.Two-dimensional modeling of composite pinned-joint failure.Journal of Composite Materials,1995,29(5):671-697.
    [197]Chang F K,Chang K Y.A progressive damage model for laminated composites containing stress concentration.Journal of Composites Material,1987,21(9):834-855.
    [198]Camanho P P,Matt hews F L.A progressive damage model for mechanically fastened joint s in composites laminates.Journal of Composite Materials,1999,33(24):2248-2280.
    [199]张爽,王栋,郦正能等.复合材料层合板机械连接结构累积损伤模型和积压性能试验研究.复合材料学报,2006,23(2):163-168.
    [200]Goyal V K,Jaunky N R,Johnson ER.Damodar R.Ambur.Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts.Composite Structures,2004;64:91-105.
    [201]Yang J,F U Y and Wang X.Variational analysis of delamination growth for composite laminated cylindrical shells under circumferential concentrated load.Composite Science and Technology,2007;67:541-550.
    [202]Turon A,Davila C G,Camanho PP and Costa J.An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models.Engineering Fracture Mechanics,2007;74:1665-1682.
    [203]吕恩琳.复合材料力学.重庆:重庆大学出版社,1992.
    [204]Wu Z,Chen W J.A new higher-order shear deformation theory based on global-local superposition and refined triangular plate element of composite laminate.Chinese Journal of Computational Mechanics,2005;22(6):639-645.
    [205]Azam T,Tobias O.Global buckling bchaviour and local damage propagation in composite plates with embedded delaminations.International Journal of Pressure Vessels and Piping,2003,80:9-20.
    [206]PAGANO N J.Exact solutions for composite laminates in cylindrical bending.Journal of Composite Materials,1969;3:398-441.
    [207]Tan S C.A progressive failure model for composite laminates containing openings.Journal of Composite Materials,1991;25(5):556-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700