冷冻浓缩设备改进及冰晶生长的微观模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷冻浓缩作为非热加工技术,可以最大限度的保留食品原有的生鲜风味和营养,其挥发性芳香成分损失和酶、色素等热敏性成分的变化极小,其独特的优势,将成为食品加工技术研究的热点之一,在理论和实践应用中都有着巨大的潜力。但由于冷冻浓缩产生的冰晶夹带率比较高且难以分离,未有合适的冷冻浓缩设备,从而限制了它的推广与使用。为解决冰晶夹带问题,国内外学者大多把目光停留在单位冰晶体积的层面上,主要凭经验或以实测资料为依据来控制冰晶的生长过程。本文利用相场法从微观上分析冰晶生长的机制,探索冰晶组织的形成规律和控制方法,较为系统地展开对冷冻浓缩技术的研究。具体研究工作和主要结论如下:
     (1)研制出实验室用冷冻浓缩设备。将结晶罐与生长罐合并,避免冰晶向结晶罐转移的过程中再次污染的危险。利用中心排冰法,有效地实现了大小冰晶的分离,降低了果汁的损失率。
     (3)西瓜汁为实验材料,经过15个小时,浓度从9(brix)浓缩到46.6(brix),西瓜汁在浓缩过程中,前期果汁的损失率远远大于后期的损失率,其第1~7小时冰晶中的可溶性固形物占总损失率的67.7%,第8~10小时西瓜汁损失率的12%,第11~15小时冰晶中的可溶性固形物占总损失率的20.3%。在浓缩前期由于冷媒和浓缩液温差大,冰晶生成量多,后期温差减小,冰晶生成量少。
     (4)推导出结晶罐总传热系数K=0.195kJ/(m2·s℃),实验室准备建设一条中等规模的冷冻浓缩设备,K可作为设计结晶罐传热面积的依据。
     (5)冰晶是典型的凝固组织,因其非平衡组织结构涉及到热量、质量和动量传输以及界面动力学和毛细作用效应相藕合的自由边界问题,故引入相场模型。用于模拟冷冻浓缩过程中冰晶生长的微观组织的演变过程。探讨了相场模型建立的基本原理、其数值求解的离散处理、稳定条件、初始条件和边界条件等问题。
     (6)利用相场模型对纯水的冰晶生长过程进行数值模拟,模拟四个过冷时间、三个过冷度下的冰晶生长的演化过程。
Freezing concentration as a non-thermal processing technologies, it is able to maximize the retention of the original fresh flavor of food and nutrition, the minimal changes in the Loss of volatile aromatic components and heat-sensitive components Of enzymes, color ,its unique advantages, will become the study of food processing technology, one of the hot spots. However, due to freeze concentration of ice crystals have a relatively high rate of entrainment, and it is difficult to be separated from the solution .The frozen concentrate that no appropriate equipment,its promotion and use is limited. Since a long time, in order to address the issue of entrainment of ice crystals, the unit size of ice crystals was concerned by domestic and foreign experts and scholars who con- trolled the growth of ice crystals based on the measured datas or main experience.This paper, the development of an appropriate frozen concentrated equipment used in laboratory . Through domestic and international field of metal micro-structure of the phase-field model, the law of formation of ice crystals and methods of controlling were explored. Specific research work and the main con- clusions were as follows:
     (1)Design a freeze concentration equipmentused in laboratory,crystallizer can be combined with the growth of pot that reduce the contamination,the remove ice methods can effective implementation of the separation of the size of ice crystals.
     (2)Design a freeze concentration equipmentused in laboratory,crystallization can be combined with the growth of pot that reduce the contamination,the remove ice methods can effective implementation of the separation of the size of ice crystals.
     (3)Watermelon juice for the experimental material Changes from 9(brix) to 46.6(brix). Watermelon juice in the enrichment process, Pre-loss rate of fruit juice is much larger than the late loss rate .its first 2 ~ 8 hours ,the loss rate of ice crystals in soluble solids reach to 71.8%,from 9~15h the loss rate of ice crystals in soluble solids reach to 27.1%, As a result, in the pre-freezing concentration , large temperature difference, ice crysta amount is large; in the later period ,small temperature differences ice crysta amount is small.
     (4) Obtain the heat transfer coefficient K=0.195kJ/(m2·s). Laboratory is going to build a set of medium equipment for freezing concentration, the K Can be used as the basis for the design of the crystallizer.
     (5)Ice crystal was a typical kind of solidfication structure. The phase-field model was introduced because of its non-equilibrium from its typical structure,involving energy,quality and momentum transfer,as well as the interface kinetics and the problem caused by capillarity effects coupled with the free boundary. Taken advantages of phase-field model which could change the sharp interface from the course of interface evolution into the diffuse interface, it was used to simulate the process of evolution of microstructure in the process of ice crystal growing of freeze concentration. The basic principles of phase-field,the discrete numerical solution, stability conditions, initial conditions and boundary conditions were discussed.
     (6)The growth process of ice crystals of supercooling water was numerically simulated by phase-field model, which including the course of evolution of ice crystal morphology at different cooling time, different degrees of supercooling.
引文
[1]邵长富等.软饮料工艺学[M].轻工业出版社1987,35-45.
    [2]冯毅,史淼直,宁方芹.中药水提取液冷冻浓缩的研究[J].制冷Vol.24 No.1 2005(90),5-8.
    [3] Huige NJJ.and Thijssen H.A.C.Production of large crystals bycontinuous ripening in a stirred tank[J].Crystal growth.1972(13/14):483-487.
    [4]杨桂馥,罗瑜.现代饮料生产技术[M].天津:天津科学技术出版社,1998.
    [5]冯毅.谭展机.冷冻浓缩的原理,现状及实验研究[M].广州食品工业科技Vol.18 No.4 63-65.
    [6] ATSUKO K,et a1.J ofFood Engineering,1996(27):1-15.
    [7] Marino Rodriguez,Susana Luque,JoseR.Alvarez,Jose Coca.Acompara rive study of reverse osmosis and freeze concentration for the removal of valeric acid from wastewaters[J].Desalination,127(2000):1-11.
    [8]于涛,马军,崔崇威.高浓度尿素废水冷冻浓缩极限[J].化工学报,2006,57(12):2943-2947.
    [9]于涛.制冷在废水处理与再生领域中的应用研究[J].制冷学报,2008(4):47-50.
    [10] M Muller and I.Sekoulov Waste. Water reuse by freeze concentration with failing film reactor. Water Sci. Tech.1992,26(7/8):1475-1482.
    [11]刘凌,薛毅,张勒.冷冻浓缩的应用与研究简介[J].化学工业与工程,1999,16(3):151-156.
    [12]下山田真,柴田正人等.日本食品科学工学会志.1997,(44):59-61.
    [13]小林登史夫.冷冻粉碎,冷冻浓缩的现状和食品开发.食品开发(日)1987,22(12)34-37.
    [14]刘凌,等.液体食品的渐进冷冻浓缩[J].食品与发酵工业. 1999,25(4):31-34.
    [15]冯毅,谭展机.冷冻浓缩在饮料加工中应用的可行性研究[J].饮料工业Vol.5 No.5 1-3.
    [16]华泽钊.低温生物医学与热物理[J].物理与工程,2001,11(6):1-5.
    [17] KHUSNATIDINOV N N,PETRENKO V F.Fast-growth technique for ice single crystals[J].Journal of Crystal Growth,1996,163(4):420-425.
    [18] MARTEL G J.Influence of dissolved solids On the mechanism of freeze-thaw conditioning[J]. Water Research,20OO,34(2):657-662.
    [19] AKYURT M,ZAKI G,HABEEBULLAH B.Freezing phenomena in ice-water systems[J].Energy Conversion and Management,2002,43 (14):1773-1789.
    [20]于涛,马军.冷冻浓缩水处理工艺中冰晶纯度影响因素分析[J].哈尔滨商业大学学报(自然科学版)Vo1.21 No.5 Oct.2O05 572-578.
    [21]高灵燕,王志沛,王孔云,王吉祥.冷冻浓缩工艺在啤酒行业的应用及发展趋势[J].酿酒科技.1996(5)48-49.
    [22] Weiss,R.M.&Ollis, D.F.(1980).Extracellular microbial polysaccharides I.Substrate,biomass,and product kinetic equations for batch xauthan gum fermentation. Biotechnol. Bioeng, XXII, 859-73.
    [23]国家环保局编.钢铁工业固体废物治理[M].北京:中国环境科学出版
    [24] Coulson,J.M.&ichardson,J.F.(1968).ChemicalEngineering,2nd edn.Vol.Deshpande,S.S.,Food Technol.,36(5),68-82.
    [25] Swientek R J.Food Processing,1991;52(11):62-64.
    [26] Matthews J S,Coggeshall N D.Anal CHem.1959;31:1124.
    [27] OLA FLESLAND.Freeze concentration by layer crystallization, Drying technology, 1995, 13(8&9): 1713-1739.
    [28] Gouw T H.Normal Freezing Progress in Separation and Application:Vol 1.New York:John Wiley and Sons Inc,1968:57-64.
    [29] Flesland O.Dry Technology,1995;13(89):1713-1739.
    [30] Huige N J J.Thijssen H A C.J Crystal Growth.1972:20(13&14):483-487.
    [31]李勇.食品冷冻加工技术[M].化学工业出版社24-28.
    [32] Deshpande S S,Bolin H R,Salunkhe D K.Food Technology,1982;36(5):68-82.
    [33] Dickinson J D,Eaborn C.Chemistry and Industry,1956;11(9):959.
    [34] Ling Liu,Miyawaki Osato and Koso Nakamura.Progressive freeze. Concentration of model liquid food.,Food Sci.Technol.Inc,Tokyo,1997(3):111-115.
    [35]范进填,黎伟文,孙过超.果汁冷冻浓缩过程中冰晶形成规律的研究[J].食品与发酵工业,1991,17(2):12-16.
    [36]冯骉.食品工程原理[M].中国轻工业出版社605-611
    [37] Hartel R.W. Freeze concentration of skim milk[J] Food Eng.1993(20):101-120.
    [38] Zhang Z L,Hartel R W.[J]Food Engineering,1996;29:23-28.
    [39] Zhonglai Zhang and R.W.Hartel.A multilayer freezer for freeze concentration of liquid milk.[J] Food Eng.1996(29):23-28.
    [40] Levent Bayindirli, Mustafa Ozilgen & Suat Ungan. Mathematical Analysis of Freeze Concentration of Apple Juice. Journal of Food Engineering 19(1993)95-107
    [41]高福成等.现代食品工程高新技术[M].北京:中国轻工业出版社1997.
    [42]张光跃,荆涛,柳百成.相场法原理及在微观组织模拟中的应用[J].机械工程学报,2003, 39(5):6-9.
    [43] Yu Y M,Yang G C, Zhao D W,et al. Research Progress on the Solidification Microstructure[J].Special Casting and Nonferrous Alloys,2002(3):30.
    [44] J.S.Langer,Lectures In The Theory of Pattern Formation.J. Souletie, J. Vannenimus,R.StoraChance and Matter, Les Houches Session XLVI,Singapore, 1987, North Holland, Amsterdam.
    [45] G.Caginalp, an Analysis of a Phase Field Model of a Free-Boundary.Archive for Rational Mechanics and Analysis.1986,92(3):205-245.
    [46] G.Caginalp,P. Fife. Higher-Order Phase Field Models and Detailed Anisotropy. Phys Rev B.1986,34(7):4940-4943
    [47] G.Caginalp,P.Fife.Phase-Field Methods for Interfacial Boundaries. Phys Rev B.1986,33(11):7792-7794.
    [48] Glick S M,Lupule S C. Dendritic Crystal Growth in Pure Materials[J].Journal of Crystal Growth, 2004,264:541
    [49] Brittan N A, Wheeler A A.Phase-field Modeling of Multi-phase Solidificatiion[J].Computer PhysicsCommunications,2002.147-230.
    [50]于艳梅.过冷熔体中枝晶生长的相场法数值模拟[D].西安:西北工业大学,2002.
    [51]田学雷.纯金属凝固过程枝晶生长的相场法研究[D].济南:山东大学,2007.
    [52] A.Karma,W.J.Rappel.Quantitative Phase-Field Modeling of Dendritic Growth in Two and Three Dimensions.Phys Rev E.1998,57(4):4323-4349.
    [53] A.Karma,A.Sarkissian. Morphological Instabilities of Lamellar Eutectics.Metal Mater Trans A.1996,27(3):635-656.
    [54] B.Nestler,A. A.Wheeler.A Multi-Phase-Field Model of Eutectic and Peritectic Alloys:Numerical Simulation of Growth Structures.Physica D.2000,138(1-2): 114-133.
    [55] B.Nestler,A.A.Wheeler,L.Ratke,Solidification of a Monotectic Ahoy with 141(1-2):133-154.et al.Phase-Field Model for Convection.Physica D,2000.
    [56] E.Fried,M.E.Gurtin.A Phase-Field Theory for Solidification Based on a General Anisotropic Sharp-Interface Theory with Interfacial Energy and Entronv. Phvsica D.1996.91(1-2):143-181
    [57] A.Karma,W.J.Rappel.Phase-Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics.Phys Rev E.1996,53(4): 83017-83020.
    [58] M.Przylecka,The Modeling of Structure and Properties of Carburized Low-Chromium Hypereutectoid Steels.J Mater Eng Perf.1996,5(2):165-191.
    [59] S.L.Wang.R. F.Sekerka.Algorithms for Phase Field Computation of the Dendritic Operating State at Large Supercoolings.J Comp.Phys 1996,127(1):110-117.
    [60] S. L. Wang, R. F. Sekerka. Computation Large Supercoolings by the Phase Field of the Dendritic Operating State at Model.Phys Rev E.1996,53(4):3760-3776.
    [61] M. Conti,Planar Isothermal Solidification from an Undercooled Melt: Unsteady Solute Segregation Studied with the Phase-Field Model.Phys Rev E.1997, 55(1):701-707.
    [62] M.Conti,Solidification of Binary Alloys:Thermal Effects Studied with the Phase-Field Model.Phys Rev E.1997,55(1):765-771.
    [63] M. Conti,Solute One-DimensionalTrapping in Directional Solidification at High Speed: A Study with the Phase-Field Model.Phys Rev E.1997,56(3):3717-3720.
    [64] S.G.Pavlik,R.F.Sekerka.Fluctuations in the Phase-Field Model of Solidification.Physica A.2000,277(3-4):415-431.
    [65] J.Z.Zhu T.Wang,A.J.Ardell.et al.Three-Dimensional Phase-Field Simulations of Coarsening Kinetics of Gamma' Particles in Binary Ni-Al Alloys. Acta Mater.2004,52(9): 2837-2845.
    [66] Y.S.Li, Z.Chen, Y. X. Wang, et al. Computer Simulation of Gamma' and Theta Phase Precipitation of Ni-Al-V Alloy Using Microscopic Phase-Field Method.Trans Non Metals Soc China.2005,15(1):57-63.
    [67] J.W.Cahn,P.Fife,o.Penrose.A Phase-Field Model for Diffusion-Induced Grain-Boundary Motion.Acta Mater.1997,45(10):4397-4413.
    [68] M.E.Gurtin,M.T.Lusk.Sharp-Interface Recrystallization in the Plane. Physica D. 1999,and Phase-Field Theories of 130(1-2):133-154.
    [69] A.Artemev,A.G.Khachaturyan.The Phase Field Model and Computer Simulation of Martensitic Transformation under Applied Stresses.Shape Mem Mater. 2000, 327-3:347-350.
    [70] A.Artemev,Y.Wang,A.G.Khachaturyan. Three-Dimensional Phase Field Model and Simulation of Martensitic Transformation in Multilayer Systems under Applied Stresses.Acta Mater.2000,48(10):2503-2518.
    [71] A Artemev,Y Jin,A.G.Khachaturyan. Three-Dimensional Phase Field Model of Proper Martensitic Transformation. Acta Mater.2001,49(7):1165-1177.
    [72]李方方,刘静,细胞尺度冰晶生长行为的相场数值模拟[J].低温物理学报2008(30)2:171-175.
    [73] Udaykumar H.S.and Mao L.,International of Heat and Mass Transfer, 45(2002),4793.
    [74]贾伟建,凝固微观组织相场法模拟[D].兰州理工大学硕士学位论文(2005) .
    [75] R Kobayashi.Modeling and numerical simulations of dendritic crystal growth.Physica D.1993,63:410-423
    [76] M Rappaz, A Karma. Multiscale Finite- Difference-Diffusion- Monte-Carlo Method for Simulating Dendritic Solidification.Preprint
    [77] ROWLINSON J S.Translation of J.D.vander walls“The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”[J]. Journal of Statistical Physics,1979,20(2):197-200.
    [78] LANGER J S. Directions in Condensed Matter (World Scientific, Singapore, 1986),p.164.
    [79] CAGINALP,G.Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations[J].Phys.Rev.A,1989,39(11):5887-5896.
    [80] WHEELER A A, BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Phys.Rev.A,1992,45(10):7424-7439.
    [81] KARMA A A,RAPPEL W J.Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J].Phys. Rev.E, 1996, 53(4):3017-3020.
    [82] KARMA A ,RAPPEL W J.Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Phys. Rev. E,1998,57(4):4323-4349
    [83] S L Wang, R F Sekerka. Computation of the dendritic operating state at large supercooling by the phase field model. Phys. Rev. E, 1996, 53(7): 3760-3776.
    [84] J F Mccarthy. One-dimensional phase field models with adaptive grids. Trans. of the ASME, 1998,120: 956-964.
    [85] S G Kim, W T Kim, J S Lee. et al. Large scale simulation of dendritic growth in pure undercooled melt by phase field model.[ISI] International, 1999, 39(4): 335-340.
    [86] Wang S. L. , Sekerka R. F. Wheeler A. A. etal , Physics D,69 1993 ,189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700