往复挤压快速凝固Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%)合金的疲劳性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过快速凝固(RS)、往复挤压(RE)、单次挤压(EX)工艺制备了Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%)合金(下简称“快速凝固挤压镁合金”)。利用OM、SEM等方法分析了合金的组织与相组成,测试了合金的室温力学性能及其疲劳性能,分析了合金的疲劳断口形貌,得到以下主要结论:
     1、与常规凝固合金相比,快速凝固挤压镁合金的组织得到细化,合金中二次相更加均匀的分布于基体中。合金的硬度值HV_5、抗拉强度和延伸率分别为88.0 kg╱mm~2,348MPa和20%。
     2、快速凝固挤压镁合金对应10~6循环周次时的疲劳极限为159.2MPa,为其抗拉强度的46%,此比值较其它种类镁合金高。
     3、快速凝固挤压镁合金疲劳源主要在表面形成。表面与近表面处的第二相或夹杂物、缺陷等容易成为疲劳起始的核心,但未发现试样内部的夹杂或第二相成为疲劳核心或显著影响裂纹的传播方向。疲劳裂纹扩展区由小的平面状断面组成,但微观上没有发现疲劳辉纹的存在。瞬断区特征与静载下拉伸断口相似。
     4、快速凝固挤压镁合金的细小晶粒、Zn、Zr等原子固溶到基体中产生的固溶强化、强化相颗粒的第二相强化等均可有效的提高快速凝固挤压镁合金的抗疲劳强度。
The microstructures and phase compositions of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%) alloy prepared by rapid solidification and reciprocating extrusion were studied by optical microscope,scanning electronic microscope.Mechanical properties at room temperature of the alloy as well as the fatigue behavior were tested.The fatigue fracture morphologies of the alloy were analyzed.The conclusions are as follows:
     1.Compared with conventionally solidified Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr alloy,the microstructures of the Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr alloy prepared by rapid solidification and reciprocating extrusion are much finer,and the secondary phases distribute more uniform.The hardness HV_5,tensile strength and elongation of the alloy are 88.0 kgf/mm~2, 348MPa and 20%,respectively.
     2.The fatigue limit of the alloy is 159.2MPa with 10~6 cycles.The ratio of fatigue limit to tensile strength of the alloy is 46%,which is higher than other magnesium alloys.
     3.The fatigue cracks originate from surface of the alloy generally.Secondary phases, inclusions and defects at surface and subsurface can become the fatigue initiative nucleus easily. It could not be observed that the inclusions or secondary phases in the interior of the fatigue sample become fatigue source or influence the crack direction of propagation obviously. Fatigue crack extended section is composed of small planar cross-sections,whereas fatigue striations were not observed.The character of instant failure section is similar to tensile fracture with dead-load.
     4.The grains of the alloy is fine.Zn、Zr dissolved in the matrix can strengthen the alloy by solution strengthening.Meanwhile,the alloy is strengthened with secondary phases by dispersion strengthening.As a result,the fatigue resistance of the alloy is improved effectively.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论及其应用[M].北京:机械工业出版社,2002:1-12.
    [2]J.Polmar.Magnesium alloy and applications[J].Materials Science and Technology.1994,10(1):256-258.
    [3]宁兴龙.镁合金在自行车上的应用[J].稀有金属快报,2003,9:11-12.
    [4]朱绒霞.服役环境下镁合金材料腐蚀的研究[J].装备环境工程,2006,3(2):50-52.
    [5]黄伟九,侯滨,庞佑霞等.两种压铸镁合金的微动磨损行为研究[J].摩擦学学报,2005,25(3):225-228.
    [6]王振平.改铝合金为镁合金生产铸件的实践及效益分析[J].铸造,2000,49(9):556-557.
    [7]何京林,彭伟平,李培杰等.镁合金冷却叶轮的动态分析[J].机械强度,2005,27(5):696-698.
    [8]陈晓龙.镁合金球体成形技术研究[J].机械工人(热加工),2004,6:58-60.
    [9]高洪涛.镁合金疲劳性能的研究现状[J].铸造技术,2003,24:266-269.
    [10]陈立佳,刘正,胡壮麒等.镁合金疲劳行为的研究现状及展望[J].沈阳工业大学学报,2005,2(3):253-256.
    [11]关绍康等.高温镁合金的研究进展及其在汽车工业中的应用[J].机械工程材料,2003,27(8):49-54.
    [12]《稀有金属手册》编辑委员会.稀有金属手册(下册)[M].北京:冶金工业出版社,1995:779-827.
    [13]X.F.Guo,J.Kinstler,L.Glazman,D.Shechtman.High Strength Mg-Zn-yoCe-Zr Alloy Bars Prepared by RS and Extrusion Technology[J].Materials Science.2005(488-489):495-498.
    [14]张荣生等.金属快速凝固方法的数学模型[J].钢铁研究学报,1994,6:77-83.
    [15]李月珠编.快速凝固技术和材料[M].北京:国防工业出版社,1993:5-63.
    [16]S.W.Lee,Y.S.Liao.Premium 7075 Aluminium alloys produced by reciprocating extrusion[J].Advanced engineering materials,2004,6(12):936-943.
    [17]徐锦锋等.AZ91D镁合金的快速凝固特征[J].中国有色金属学报,2004,6:939-944.
    [18]杨文朋.快凝结合挤压制备镁合金及其组织与力学性能[D].西安:西安理工大学,2007:16-72.
    [19]S.SURESH[美],王中光等[译].材料的疲劳[M].北京:国防工业出版社,1999:1-11.
    [20]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991:1-20.
    [21]束德林.金属力学性能用[M].北京:机械土业出版社,1999:2-8.
    [22]M.什科利尼克[苏],陈玉琨等[译].疲劳试验方法手册[M].北京:机械工业出版社,1983:1-10.
    [23]C.C.奥斯古德[美],李寿同等[译].疲劳设计[M].北京:科学出版社,1982:125-128.
    [24]孙智,江利,应鹏展.失效分析--基础与应用[M].北京:机械工业出版社,2004:142-155.
    [25]廖景娱.金属构件失效分析[M].北京:化学工业出版社,2003:4-10.
    [26]S.戈康达[美],颜鸣皋等[译].金属的疲劳与断裂[M].上海科学技术出版社,1983:13-27.
    [27]张文毓.TA5钛合金板材低周疲劳断口分析[J].稀有金属材料与工程,1998,27(3):156-160.
    [28]S.R.斯旺森编[美],黄子健[译].疲劳试验[M].上海科学技术出版社,1982:58-65.
    [29]姚启均.金属力学性能试验常用数据手册[M].北京:机械工业出版社,1994:130-146.
    [30]D.K.Xu,L.Liu,Y.B.Xu,E.H.Han.The fatigue crack propagation behavior of the forged Mg-Zn-Y-Zr alloy[J].Alloys And Compounds,2007(437):107-111.
    [31]岳增武,周敬恩等.30Cr2Ni4MoV钢的疲劳裂纹门槛值与闭合力[J].理化检验.物理分册,1997,33(6):37-38.
    [32]杨富民,孙晓峰,管恒荣等.K40S钴基高温合金的高温低周疲劳行为[J].金属学报,2002,38(10):1053-1056.
    [33]宋波,刘勇兵,安健等.钕及固溶处理对AM60合金组织和力学性能的影响[J].铸造技术,2006,27(12):1299-1302.
    [34]李渊,曾祥国,吴清文等.铸造镁合金的材料性能测试和喷丸处理的有限元数值分析[J].重庆大学学报,2005,28(6).95-97.
    [35]杨友,刘勇兵,方懿等.AZ91D+xNd压铸镁合金拉伸和疲劳断裂模式[J].铸造,2007,56(1):41-45.
    [36]高镇同.疲劳应用统计学tMl.北京:国防工业出版社,1986:129-162.
    [37]徐景.疲劳强度[M].高等教育出版社,1988:98-114.
    [38]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1994:52-85.
    [39]赵少汴,王忠保.疲劳设计--方法与设计[M].北京:机械土业出版社,1995:22-46.
    [40]赵少汴,王忠保.疲劳设计[M].北京:机械工业出版社,1992:58-98.
    [41]方懿.Nd对压铸AZ91镁合金高周疲劳性能的影响[D].长春:吉林大学,2006:13-45.
    [42]刘晓莹.不同成型工艺镁合金高周疲劳性能研究[D].长春:吉林大学,2007:32-42.
    [43]Eisenmeier G,Holzwarth B,Hoppel H W et al.Cyclic deformation and fatigue behavior of the magnesium alloy AZ91[J].Materials Science and Engineering,2001(319-321):578-582.
    [44]Mayer H,Papakyriacou M,Zettl B,et al.Influence of porosity on the fatigue limit of die-casting magnesium and aluminum alloys[J].Fatigue,2003(25):245-256
    [45]申健.挤压变形镁合金的低周疲劳性能[D].沈阳:沈阳工业大学,2005:13-22.
    [46]Wang X S,Lu X,Wang D H.Investigation of surface fatigue microcrack growth behavior of cast Mg-Al alloy[J].Materials Science and Engineering,2004(364):11-16.
    [47]L.M.Peng,X.Q.Zeng,Y.P.Zhu,W.J.Ding.Effect of solid-solution treatments on the microstructure and mechanical properties of AM60B+xRE and AZ91D+xRE magnesium alloy[J].Materials Research,2003(17):97-104.
    [48]Srivatsan T S,Wei L,Chang C F.The cyclic strain resistance,fatigue life and final fracture behavior of magnesium alloys[J].Engineering Fracture Mechanics,1997,56(6):735-758.
    [49]Eisenmeier G,Holzwarth B,Hoppel H.W.et al.Cyclic deformation and fatigue behavior of the magnesium alloy AZ91[J].Materials Science and Engineering,2001(319-321):578-582.
    [50]Mayer H,Papakyriacou M,Zettl B,et al.Influence of porosity on the fatigue limit of die-casting magnesium and aluminum alloys[J].Fatigue,2003(25):245-256.
    [51]Wang X S,Lu X,Wang D H.Investigation of surface fatigue microcrack growth behavior of cast Mg-Al alloy[J].Materials Science and Engineering,2004(364):11-16.
    [52]杨友,刘勇兵,杨晓红等.稀土元素对AZ91D压铸镁合金高周疲劳性能的影响[J].金属热处理,2006,31(7):18-22.
    [53]王弘,高庆等.40Cr钢超高周疲劳性能及疲劳断口分析[J].中国铁道科学,2003,24(6):93-98.
    [54]曾荣昌,韩恩厚,柯伟等.挤压镁合金AM60的腐蚀疲劳[J].材料研究学报,2005,19(1):1-7.
    [55]Shih T S,Liu W S,Chen Y J.Fatigue of as-extruded AZ61A magnesium alloy[J].Materials Science and Engineering,2002(325):152-162.
    [56]Kobayashi Y,Shibusawa T,Ishikawa K.Environmental effect of fatigue crack propagation of magnesium alloy[J].Materials Science and Engineering,1997,234-256.
    [57]李鹏亮,周敬恩,席生岐等.1Cr12Ni2W1Mo1V钢等离子淬火后的疲劳行为[J].金属热处理,2006,31(11):60-63.
    [58]曾荣昌.变形镁合金AZ80的腐蚀疲劳机理[J].材料研究学报,2004,18(6):561-567.
    [59]施剑林,李包顺,陆正兰等.3Y-TZP多晶材料密度、断裂相变与力学性能的相互关系[J].材料研究学报,1996,10(1):51-56.
    [601 Bag A,Zhou W.Tensile and fatigue behavior of AZ91 D magnesium alloy[J].Materials Science,2001(20):457-459.
    [61]Kobayashi Y,Shibusawa T,Ishikawa K.Environmental effect of fatigue crack propagation of magnesium alloy[J].Materials Science and Engineering,1997(234-236):220-222.
    [62]杨友,刘勇兵,杨晓红等.AZ91系列压铸镁合金高周疲劳断口形貌分析[J].铸造,2006,55(2):135-139.
    [63]高灵清,朱金华.TA5钛合金焊板的疲劳断口分析[J].金属热处理,2006,31(8):91-92.
    [64]那顺桑.金属材料工程专业实验教程[M].北京:冶金工业出版社,2004:42-58.
    [65]徐春杰.细品Mg-Zn-Y合金的制备、组织、性能[D].西安:西安理工大学,2007:75-86.
    [66]傅惠民,刘成瑞.S-N曲线和P-S-N曲线小子样测试方法[J].机械强度,2006,28(4):552-555.
    [67]Carsten Potzies and Karl Ulrich Kainer.Fatigue of magnesium alloy[J].Advanced Engineering Materials,2004,6(5):281-289.
    [68]D.K.Xu,L.Liu,Y.B.Xu,E.H.Han.The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime[J].Alloys And Compounds,2006(12):1-6.
    [69]D.K.Xu,L.Liu,Y.B.Xu,E.H.Han.The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime[J].Scripta Materialia,2007(56):1-4.
    [70]毛雪平.30Cr2MoV转子钢的低周疲劳特性实验研究[D].北京:华北电力大学,1999:45-60.
    [71]张忠明.铜合金疲劳过程中塑性应变幅变化的研究[D].西安:西安理工大学,2003:77-97.
    [72]周承恩,谢季佳,洪友士等.超高周疲劳研究现状及展望[J].机械强度,2004,26(5):526-533.
    [73]王时越,李建云,刘其勇等.高低周复合载荷下的P-S-N曲线研究[J].昆明理工大学学报,2006,31(2):90-92.
    [74]石东艳.316L不锈钢表面纳米化后疲劳性能初步探讨[D].贵阳:贵州大学,2005:55-56.
    [75]上海交通大学《金属断口分析》编写组,金属断口分析[M].北京:国防工业出版社,1979:151-212.
    [76]崔约贤,王长利,金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:76-152.
    [77]才庆魁.金属疲劳断裂理论[M].沈阳:东北工学院出版社,1989:1-156.
    [78]Murakami Y,Endo M.Effects of defects,inclusions,and inhomogeneities on fatigue strength[J].Fatigue,1994(16):163-182.
    [79]Gall K,Horstemeyer M F,Degner B W,et al.On the driving force for fatigue crack formation from inclusions and voids[J].Fracture,2001(108):207-233.
    [80]布鲁克斯著,谢斐娟等译.工程材料的失效分析[M].北京:机械工业出版社,2003:1-112.
    [81]G.Eisenmeier,B.Holzwarth,H.Mughrabi.Cyclic deformation and fatigue behavior of the magnesium alloy AZ91[J].Materials Science and Engineering,2001(319-321):578-582.
    [82]Eisenmeier G,Holzwarth B,Hoppel H W,et al.Cyclic Deformation and Fatigue Behavior of the Magnesium Alloy AZ91[J].Materials Science and Engineering,2001(319-321):578-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700