用户名: 密码: 验证码:
无级变速器电液控制系统开发及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依托某企业的无级变速器‘产学研’研发平台,围绕其在国家科技部国际合作专项资金资助下的国际联合研发项目‘新一代大功率密度无级变速器’,选题来源于CVT产品工程化应用所需,致力于解决从产品的概念设计到批产化实现过程所遇到的电液控制系统关键技术难题,理论分析中融合作者多年从事CVT产业化研究的实践经验,提出了新颖、实用、量化且行之有效的解决方案,并得到了充分的试验验证。本文主要工作如下:
     1、从客户需求入手,确定了电液系统设计目标和功能实现方案,选择双独立回路作为系统的基本结构。通过对CVT使用工况的分析计算,根据夹紧力安全和速比变化率的需求,确定了系统压力、夹紧力及速比控制回路的最高压力及各回路的动态响应特性的需求;
     2创造性地将具有双压油口的双作用叶片泵等效为双联泵作为CVT电液控制系统动力源,并利用仿真计算方法,根据CVT运行的特殊工况对流量和压力的需求,确定了油泵的排量;
     3、为降低系统能耗,创新地在液压回路中采用了节能型设计方案。其一,自适应流量控制回路。既回避了主动流量控制的结构复杂性,又消除了流量计算的难点,根据系统实际所需,精确调整进入系统的流量,可以大大降低油泵能量损耗;其二,使离合器压力作为其上级辅助压力回路的先导控制,使得辅助压力可以按需实时调节,消除了辅助压力背压对系统压力的遏制作用,使得系统压力有了进一步优化的空间;
     4、对文中设计的电液系统,分析了各元器件的物理特性之后,采用模块化方法搭建了其物理模型,包括油缸的压力响应及变速机构的速比响应模型。利用试验数据对模型进行了验证,结果表明两者的时域和频域响应一致性较好,该模型可以用于开环系统分析和闭环非实时仿真分析;
     5、参数的多样性、不确定性和时变性导致了DNR湿式离合器开环控制存在一致性难题,在分析其结合过程之后,针对半离合点和滑摩过程的控制提出了一种自学习方法。该方法将涡轮加速度作为目标,构建了李亚普诺夫判据的二次型性能方程,制定了学习规则,从理论上确保了自学习过程的渐进收敛性,工程化应用效果良好;
     6、为降低夹紧力、提高传动效率,利用利用速比对夹紧力谐波输入的跟踪相位特征,制定了夹紧力控制方案,试验表明其可以有效降低夹紧力
     7、综合考虑系统对迅速改变速比的需求(较高的速比变化率)、油泵的泵油能力、系统的流量需求等因素,提出了一种对传统PID速比控制器的改进方案,试验表明,该方案在快速、稳定跟踪目标速比的前提下,确保了系统的流量安全和夹紧力安全。
     8、开展了电液控制模块测试和整车级别的测试。电液控制模块的测试内容包括静态压力测试,稳态调压测试以及阶跃响应测试等,结果表明压力水平、稳态调压重复精度及阶跃响应的快速性均能满足系统的设计目标。整车级别的测试主要针对紧急制动、急加速以及综合使用工况,目的是为了测试电液控制系统在整车的控制效果能否满足动力总成的使用需求,从试验曲线来看,速比、压力跟踪的准确性和快速性、以及整机的热平衡流量均能满足设计要求和使用要求。
Relying on the platform of combination of ‘production, studying andresearching’, based on International Cooperation Project’New-GenerationEnergy-saving CVT’, the subject is selected out from the need of CVT engineering,which focuses on the difficulties of the electric-hydraulic encountered during the CVTmass production realizing process. In this paper, the theory analysis is combined withthe author’s experience in the CVT mass production; some innovative, applicable andquantitative methods are raised up, which are fully evaluated by test. The maincontent is listed as follows.
     1Start from the customer request, design destination and scheme to realize it aredetermined and the independent circuit is chosen. By analysis and calculation of theCVT working conditions, based on the request of belt clamping force and ratiochanging, the max value of the line pressure, secondary pressure and the primarypressure are determined,also the time requirements on their dynamic response.
     2The dual-acting blade vane pump is chosen, then its displacement is calculatedby simulation method based pressure and flow needed on the emergent stop.
     3To reduce the power consuming, two new energy-saving proposals areimplemented into the system. One is the self-adaptive flow regulating, comparing tothe active flow regulating,it gets rid of the complicated structure and the difficulty tocalculated the flow needed. Also, it can reduce the pump energy consuming byregulating the flow precisely fitting the system need. Second is to take the clutchpressure as the pilot pressure of the auxiliary value, which is of higher level of clutch,this proposal makes the auxiliary pressure varying according to realistic need, then thelower pressure limitation applied on the line pressure by auxiliary pressure isremoved.
     4Regarding the designed hydraulic circuit, the characteristic of the componentsare analyzed, then the simulation model of this circuit is built up, also the cylindermodels and the ratio response model. Comparing between the simulation results andthe test results is carried out, result shows well alignment between model responseand test (both time domain and frequency domain). This model is proved can be usedfor open loop system analyzing and the non-real-time close-loop simulation.
     5The diversity,uncertainty and time-varying bring the consistency problem intothe DNR control. Regarding the filling time and the slipping process, oneself-learning method is introduced into, which takes the smooth turbine accelerationas the target. The learning rule is derived from on the Lyapunov argument. Then bytest, this method is proved to be applicable and asymptotic stable.
     6Taken the benefit of the Phase transition point of ratio tracing the clampingforce variation, one new clamping control concept is introduced, which can beobviously decrease the pressure level and the increase the efficiency.
     7Comprehensively considered the rapidly ratio changing request, the pumpability and the flow needed, one updated proposal is raised up. Comparing with thetraditional PID, this method is testing proved not can only follow the target ratio fastand stable, but also more safe for the flow and clamping force.
     6. The test rig specific for the hydraulic valve body is built for testing theperformance of the hydraulic body, including the static characteristic, repeatabilityand the step response. Also on the vehicle level, kick down, emergency stop andcomprehensive working conditions are tested. By these test items, it is obviously thatthe rapidity, stability of ratio, pressure tracing and heat balance ability can fulfill thedesign purpose and customer request.
引文
[1]产销快讯,中国汽车工业协会,2012.2012-2016年中国无级变速器市场预测与投资前景价值战略研究报告,北京中研纵横经济信息中心,2011.
    [2]周云山,于秀敏.汽车电控系统理论与设计[M].北京:北京理工大学出版社,1999.
    [3]程乃士.汽车金属带式无级变速器-CVT原理和设计[M]机械工业出版社,2007
    [4]杜晶,张心怀.浅谈国内乘用车自动变速器发展.《科技与企业》2012年08期.
    [5]野口幸弘.面向发展的中国自动变速器市场的对应.2012TM SymposiumChina.
    [6] Van der Sluis,F., van Dongen, T., van Spijkm G.-J., Van der Velde, A., andvan Heeswijk, A. Fuel Consumption Potential of the Pushbelt CVT. InProceedings of the FISITA2006World Automotive Congress, F2006P218.Yokohama, Japan,2006.
    [7] Lechner,G. and Naunheimer,H. Automotive Transmissions: Fundamentals,selection, design and Application. Spring-Verlag, Berlin,1999. IsBN3-540-65930-X.
    [8] Ide,T.Effect of Power Losses of Metal V-Belt CVT Components on the FuelEcomomy. In F. E Veldpaus and A.G. de Jager, editors, Proceedings of the1999International Congress on Continuously Variable Power Transmission,Pages93-98. Eindhoven, The Netherlands,1999.
    [9] Akehurst, S., Vaughan, N.D., Parker, D. A., and Simner, D. Modelling of lossmechanisms in a pushing metal V-belt continuously variable transmission.Part1: torque losses due to band friction. Proceedings of Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,218(11):1269-1281,2004a.
    [10] Akehurst, S., Vaughan, N.D., Parker, D. A., and Simner, D. Modelling of lossmechanisms in a pushing metal V-belt continuously variable transmission.Part2: Pulley deflection losses and total torque loss validation. Proceedings ofInstitution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,218(11):1283-1293,2004b.
    [11] Sakai, Y. The ‘ECVT’ Continuously Variable Transmission. VDI-Berichte803,pages235-261,1990.
    [12] Hirano,S., Miller,A., and Schneider,K. F. SCVT-A State of the ArtElectronically Controlled Continuously Variable Transmission. SAETechnical Paper Series(910410),1991.
    [13] Bonse, B., Klaassen, T.W.G.L., van de Meerakker, K.G.O., Steinbuch,M., andVeenhuizen, P.A. Analysis of Slio in a Continuously Variable Transmission.In Proceedings of the2003ASME Intrernational Mechanical EngineeringCongress, volume2. Washington, DC,2003. CD-ROM.
    [14] Bonse, B., Klaassen, T.W.G.L., Pulles,R.J., Simons, S.W.H., Steinbuch, M.,and Veenhuizen,P.A. Performance optimization of the push-beld CVT byvariator slip control. Inernational Journal of Vechicle Design,39(3):232-256,2005.
    [15] Simons, S. W. H., Klaassen, T. W. G. L., Veenhuizen, P. A., and Carbone, G.Shift dynamics modelling for optimisation of variator slip control in apushbelt CVT. International Journal of Vehicle Design,48(1/2):45-64,2008.
    [16] Klaassen, T. W. G. L.The Empact CVT: Dynamics and Control of anElectromechan-ically Actuated CVT. Ph.D. Thesis, Eindhoven University ofTechnology, Eindhoven, The Netherlands,2007.
    [17]王中华,智百年,翟青泉.自动变速器油泵的选型分析,2009中国汽车工程学会年会论文集, SAE-C2009C101.
    [18] Francis van der Sluis,,A New Pump for CVT Applications, SAE TechnicalPaper2003-01-3207,2003, doi:10.4271/2003-01-3207.
    [19] Van der Sluis, Francis, Van Dongen, Tom, Van Spijk, Gert-Jan, Van derVelde, Arie, Van Heeswijk, Ad, Fuel Consumption Potential of the PushbeltCVT, FISITA2006, No. F2006P218.
    [20] Lebrun, M., Vasiliu, D., and Vasiliu, N.,2009,“Numerical Simulation of theFluid Control Systems by AMESim,” Studies in Informatics and Control,18(2),pp.111–118.
    [21] Jelali, M. and Kroll, A.Hydraulic Servo-systems: Modelling, Identication andControl. Advances in Industrial Control. Springer-Verlag, London,2003.ISBN1-85233-692-7.
    [22] Pesgens, M., Vroemen, B., Stouten, B., Veldpaus, F., and Steinbuch, M.Control of a hydraulically actuated continuously variable transmission.VehicleSystem Dynamics,44(5):387-406,2006.
    [23]吴光登,杨阳,秦大同,胡建军,杨亚联. CVT液压系统功率的匹配分析与仿真[J],汽车工程,2004(Vol.26) No.6
    [24] Tiller, M. M.,2005,“Development of a Simplified Transmission HydraulicsLibrary Based on Modelica.Fluid,” Proceedings of the Fourth InternationalModelica Conference, G. Schmitz, ed., pp.237–243.
    [25]胡燕平,彭佑多等.液阻网络系统学[M].北京:机械工业出版社,2003.
    [26] McCloy, D. and Martin, H. R.Control of Fluid Power: Analysis and Design.Ellis Horwood Series in Engineering Science. Ellis Horwood, Chichester,West Sussex, second (revised) edition,1980. ISBN0-85312-135-4.
    [27] van der Sluis, F. Hydraulic models VDT and VDT+system. Internal Report70093/8, Van Doorne's Transmissie, Tilburg, The Netherlands,2001
    [28] Jelali, M. and Kroll, A.Hydraulic Servo-systems: Modelling, Identificationand Control.Advances in Industrial Control. Springer-Verlag, London,2003.ISBN1-85233-692-7
    [29] Karnopp, D. Computer Simulation of Stick-Slip Friction in MechanicalDynamic Systems. Journal of Dynamic Systems, Measurement, and Control,107(1):100-103,1985.
    [30] McCloy, D. and Martin, H. R.Control of Fluid Power: Analysis and Design.Ellis Horwood Series in Engineering Science. Ellis Horwood, Chichester,West Sussex, second (revised) edition,1980. ISBN0-85312-135-4.
    [31] van der Sluis, F. Hydraulic models VDT and VDT+system. Internal Report70093/8, Van Doorne's Transmissie, Tilburg, The Netherlands,2001.
    [32] Vaughan, N. D., and Gamble, J. B.,1996,“The Modeling and Simulation of aProportional Solenoid Valve,” ASME J. Dyn. Syst., Meas., Control,118(1).
    [33]杨阳,秦大同,杨亚联,胡建军,吴光登.车辆CVT液压系统功率匹配控制与仿真[J].中国机械工程,2006,17(4):426-430.
    [34]王红岩,张伯英.无级变速汽车性能要求的液压控制实现[J].传动技术(上海),2000(4):24-25.
    [35] Rothenbuhler, Y. New Slip Synthesis and Theoretical Approach of CVT SlipControl. Ph.D. Thesis,Ecole Polytechnique Federale de Lausanne, Lausanne,Switzerland,2009.
    [36] Erik van der Noll, Francis van der Sluis, Tom van Dongen and Arie van derVelde. Innovative Self-optimising Clamping Force Strategy for the PushbeltCVT. SAE Technical Paper2009-01-1537.
    [37] Van der Sluis, Francis et al.Fuel economy potential of the pushbelt CVT.Fisita2006congress, Yokohama2006.
    [38] Van der Sluis, Francis, Van Dongen. Tom,Van Spijk, Gert-Jan FuelConsumption Potention of The Pushbelt CVT. FISITA2006,P218.
    [39] Ohashi et al.,“Development of high-efficiency CVT for luxury compactvehicle”, SAE paper2005-01-1019, SAE2005.
    [40] Francis van der Sluis. A New Pump for CVT Applications. SAE TechnicalPaper2003-01-3207.
    [41] Ing,G. Van Spijk, Dr.ir.B.Veenhuizen. An upshift in CVT-efficiency-Thedesign of the next generation of continuous vatiable transimission with a pushbelt. VDI BERCHTENR.1393,1998.
    [42]余群明,周健,黄伟,喻伟雄,王耀南.基于CVT的混联式电动汽车动力切换平稳性研究[J].汽车工程.2007(03).
    [43] Tohru Ide. Effect of belt loss and oil pump loss on the fuel economy of avehicle with a metal V-belt CVT.2000-05-0130.
    [44] Gerbert B G. Some notes on V-belt drives. ASME Journal of MechanicalDesign,1981,103(1):8-18.
    [45]白中浩,曹立波,王耀南.基于CVT的混合动力汽车建模与仿真[J].计算机仿真.2007(06).
    [46] Gerbert B G. Skew V-belt pulleys. In: Proceedings of InternationalConference on Continuously Variable Power Transmission.Yolahama,Janpan,1996:1-8.
    [47] Gerbert B G. Pressure distribution and belt deformation in V-belt drive.ASME Journal of Engineering for Industry,1975,97(3):976-982.
    [48] Heera Lee and Hyunsoo Kim. Analysis of Primary and Secondary Thrusts forA Metal Belt CVT Part1: New Formula for Speed Ratio-Torque-ThrustRelationship Considering Band Tension and Block Compression. SAETECHNICAL PAPER SERIES2000-01-0841.
    [49] Kobayashi, D., Mabuchi, Y., and Katoh, Y.,"A Study on the Torque Capacityof a Metal Pushing V-Belt for CVTs," SAE Technical Paper980822,1998,doi:10.4271/980822.
    [50] Kato, Y., Yamashita, H., and Kono, Y.,"A Study on the Torque Capacity ofBelt CVTs for2.0-Liter and3.5-Liter Front-Drive Cars," SAE TechnicalPaper2004-01-0478,2004, doi:10.4271/2004-01-0478.
    [51] Kitagawa T, Fujii T,Kanehara S. A Study of a Metal Pushing V-Belt TypeCVT-Part4: Forces act on metal blocks when the speed tatio is changing).SAE Transactions, paper No.950671,1995:1344-1353.
    [52] Lee, H. and Kim, H.,"Analysis of Primary and Secondary Thrusts for A MetalBelt CVT Part1: New Formula for Speed Ratio-Torque-Thrust RelationshipConsidering Band Tension and Block Compression," SAE Technical Paper2000-01-0841,2000, doi:10.4271/2000-01-0841.
    [53] Shimizu, H., Kobayashi, D., Kawashima, J., and Kato, Y.,"Development of3-D Simulation for Analyzing the Dynamic Behavior of a Metal PushingV-Belt for Cvts," SAE Technical Paper2000-01-0828,2000,doi:10.4271/2000-01-0828.
    [54] Hyunsoo K,Jaeshin L. Analysis of belt behavior and slip characteristic for ametal V-belt CVT. In:MPT91JSME International Conference on Motion andPower Transmission.Hiroshima, Japan,1991:98-103.
    [55] Minoru K, Junji K, Atsushi T, et al, Mechanism of metal pushing belt. JSAEReview,1995,16:137-143.
    [56] Fujii, T., Kurokawa, T., and Kanehara, S.,"A Study of a Metal PushingV-Belt Type CVT-Part1: Relation Between Transmitted Torque and PulleyThrust," SAE Technical Paper930666,1993, doi:10.4271/930666.
    [57] Ishikawa, T., Murakami, Y., Yauchibara, R., and Sano, A.,"The Effect ofBelt-Drive CVT Fluid on the Friction Coefficient Between MetalComponents," SAE Technical Paper972921,1997, doi:10.4271/972921.
    [58] S.Akehurst,N.D.Vaughan,D.A.Parker,D.Simner.金属推型V带无级变速箱损耗机理仿真部分2:带轮变形损失和总扭矩损失的论证[J].传动技术.2006(01).
    [59] S.Akehurst,N.D.Vaughan,D.A.Parker,D.Simner,介眉.金属推型V带无级变速箱损耗机理仿真部分3:带的滑动损失[J].传动技术.2006(02).
    [60] Brandsma, A., van Lith, J,. Hendriks, E. Push belt CVT developments for highpower applications. Proc. of CVT99, Eindhoven University of Technology1999, pp.142-147.
    [61] S.Akehurst,D.A.Perrer,S.Schaaf,谷雨.Milner无级变速器的动力学模型——基础运动学[J].传动技术.2010(01).
    [62]杨亚联,秦大同,王红岩,孙冬野. CVT无级变速传动钢带的轴向偏移分析[J].重庆大学学报(自然科学版).1999(06).
    [63]王红岩.金属带式无级变速器装置带轮工作面形状与带轴向偏离的分析[J].吉林工业大学学报,1997,27(4):16~21.
    [64]皮秋生. CVT硬件在环仿真试验平台研究[D].湖南大学2008.
    [65] Vahabzadeh, H. and Linzell, S.,"Modeling, Simulation, and ControlImplementation for a Split-Torque, Geared Neutral, Infinitely VariableTransmission," SAE Technical Paper910409,1991, doi:10.4271/910409.
    [66]范睿,吴光强,罗君赟.自动变速器半实物仿真试验台CAN总线接口设计[J].山东理工大学学报(自然科学版).2006(03).
    [67]车晓镭.汽车动力总成电控单元硬件在环测试系统研究[D].吉林大学2011.
    [68]刘金刚.金属带式无级变速器电液控制系统关键技术的研究[D].湖南大学2008.
    [69]张伯英.金属带式无级变速器传动机理与控制的研究[D].吉林大学2002.
    [70]胡建军,秦大同,刘振军.金属带式无级变速传动速比变化特性研究[J].汽车工程.2003(01).
    [71]周云山,刘金刚,邹乃威,蔡源春.无级变速传动装置夹紧力控制系统建模、辨识及实验验证[J].中国机械工程.2007(19).
    [72] Michael Henry Smith. Vehicle power train Modeling and Ratio Optimizationfor a Continuously Variable Transmission, Georgia Institute Technology,1998.
    [73] T.Ide,H.Ucheiyama, and R.Kataoka, Experimental investigation on shiftspeed characteristic of a metal V-belt CVT, in Proceeding of the InternationalConference on Continuously Variable Power Transimissions, September1996,pp.59-64.
    [74] Xuexun, G., Qi, S., and Chang, F.,"Intelligent Control of Metal-belt CVTBased on Fuzzy Logic," SAE Technical Paper2009-01-1535,2009,doi:10.4271/2009-01-1535.
    [75] K.Engelsdorf, K.-H.Senger, and M.-P.Bolz, Electronic CVT control for powertrain optimization, in Proceeding of the International Conference onContinuously Variable Power Transimissions, September1996,pp71-76.
    [76] Yasuoka, M., Uchida, M., Katakura, S., and Yoshino, T.,"An IntegratedControl Algorithm for an SI Engine and a CVT," SAE Technical Paper1999-01-0752,1999, doi:10.4271/1999-01-0752.
    [77] Dipak Patel, Jeff Ely, Mike Overson, CVT drive research study[C]. SAE2005-01-1459.
    [78] Lee, H., Kim, C., Kim, T., and Kim, H.,"CVT Ratio Control Algorithm byConsidering Powertrain Response Lag," SAE Technical Paper2004-01-1636,2004, doi:10.4271/2004-01-1636.
    [79] Jantos, J.,"Control of the Transmission Ratio Derivative in Passenger CarPowertrain with CVT," SAE Technical Paper2001-01-1159,2001,doi:10.4271/2001-01-1159.
    [80]罗勇.金属带式无级变速传动系统匹配控制研究[D].重庆大学2011.
    [81] Togai, K. and Tamaki, H.,"Human Driving Behavior Analysis and ModelRepresentation with Expertise Acquiring Process for Controller RapidPrototyping," SAE Technical Paper2011-01-0051,2011,doi:10.4271/2011-01-0051.
    [82] Dipak Patel. CVT cyber bulletin board study[C]. SAE2006-01-1311.
    [83] Osamura, K., Itoyama, H., and Iwano, H.,"Study of an Integrated DieselEngine-CVT Control Algorithm for Improving Drivability and ExhaustEmission Performance," SAE Technical Paper2001-01-3452,2001,doi:10.4271/2001-01-3452.
    [84] Abuasaker, S. and Sorniotti, A.,"Drivability Analysis of Heavy GoodsVehicles," SAE Int. J. Commer. Veh.3(1):195-215,2010,doi:10.4271/2010-01-1981.
    [85] Zhang, J., LU, X., Wang, L., Chen, S. et al.,"A Study on the Drivability ofHybrid Electric Vehicle," SAE Technical Paper2008-01-1572,2008,doi:10.4271/2008-01-1572.
    [86] Abe, T., Minami, H., Atago, T., Fujiwara, Y. et al.,"Nissan's New“High-Drivability” Vibration Control System," SAE Technical Paper891157,1989, doi:10.4271/891157.
    [87] de Assis, E., Kurauchi, R., Carloti, M., Ribeiro, J. et al.,"DrivabilityImprovements on Electronic Diesel Engines," SAE Technical Paper2003-01-3656,2003, doi:10.4271/2003-01-3656.
    [88]余志生.汽车理论[M].机械工业出版社,1981.
    [89] Dipak Patel, Jeff Ely, Mike Overson, CVT drive research study[C]. SAE2005-01-1459.
    [90] Liu S, Paden B. A Survey of Today’s CVT controls. In: Proceedings of the36th IEEE Conference on Decision and Control. San Diego, Canada,1997:4738-4743.
    [91] Vaughan N D, Gubell M, Burrows C R. The effect of hydraulic circuit designand control on efficiency of continuously variable transmission. SAETransactions, paper No.961797:1652-1659.
    [92] Liu S, Paden B. A Survey of Today’s CVT controls. In: Proceedings of the36th IEEE Conference on Decision and Control. San Diego, Canada,1997:4738-4743.
    [93] Vroemen B G, Veldpaus E E. Hydraulic circuit design for CVT control. IN:Inernational Congress on Continuously Variable Power Transmission.Eindhoven, Netherlands,1999:111-116.
    [94] Sakaguchi, S., Kimura, E., and Yamamoto, K.,"Development of anEngine-CVT Integrated Control System," SAE Technical Paper1999-01-0754,1999, doi:10.4271/1999-01-0754.
    [95] Nishiyama, H., Murota, K., Hirotsu, S., Amano, K. et al.,"Vane Pump forNew Generation CVT," SAE Technical Paper2007-01-1456,2007,doi:10.4271/2007-01-1456.
    [96]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究.汽车工程,2003,34(4):71-75.
    [97]宋锦春,姚利松,程乃士等.汽车金属带式无级变速器液压控制原理及数学模型.东北大学学报(自然科学版),1999,20(3):297-282.
    [98]张飞铁.无级变速器器湿式离合器起步系统研究[D].湖南大学2008.
    [99]杨新桦.金属带式无级变速器控制系统和控制策略研究[D].华中科技大学2010.
    [100] Hartmut Faust,Manfred Homm,Franz Bitzer. CVT夹紧系统优化[J].传动技术.2004(04).
    [101]付铁军,王建华,周云山,李飞强.金属带式无级变速器夹紧力控制的研究[J].汽车技术.2006(02).
    [102] van der Sluis, F., van Dongen, T., van Spijk, G., van der velde, A. et al.,"Efficiency Optimization of the Pushbelt CVT," SAE Technical Paper2007-01-1457,2007, doi:10.4271/2007-01-1457.
    [103] Guebeli M, MIcklem J D, Burrows C R. Maximum transmission efficiency ofa steel belt continuously variable transmission. Transaction of the ASME,1993,115(4):1044-1048.
    [104] Guebeli M, MIcklem J D, Burrows C R. Maximum transmission efficiency ofa steel belt continuously variable transmission. Transaction of the ASME,1993,115(4):1044-1048.
    [105] van der Noll, E., van der Sluis, F., van Dongen, T., and van der Velde, A.,"Innovative Self-optimising Clamping Force Strategy for the Pushbelt CVT,"SAE Int. J. Engines2(1):1489-1498,2009, doi:10.4271/2009-01-1537.
    [106] R.J. Pulles, B. Bonsen, M. Steinbuch and P. A. Veenhuizen,“Slip controllerdesign and implementation in a Continuously Variable Transmission”,American Control Conference, Portland, Oregon,2005.
    [107] Nishizawa, H., Yamaguchi, H., Suzuki, H., Osawa, M. et al.,"FrictionCharacteristics Analysis for Clamping Force Setup in Metal V-Belt TypeCVT," SAE Technical Paper2005-01-1462,2005, doi:10.4271/2005-01-1462.
    [108] R.J. Pulles, B. Bonsen, M. Steinbuch and P. A. Veenhuizen,“Slip controllerdesign and implementation in a Continuously Variable Transmission”,American Control Conference, Portland, Oregon,2005.
    [109] B.Bonsen, T.W.G.L.Klaassen, K.G.O.van de Meerakker, P.A.Veenhuizen andM.Steinbuch,“Measurement and control of slip in a continuously variabletransmission”, in Mechatronics2004,Sydney,Australia,2004.
    [110] Thomas, J., Constans, B., Gresser, E., Maillard, M. et al.,"Testing the TorqueCapacity of CVT Fluids," SAE Technical Paper2004-01-2007,2004,doi:10.4271/2004-01-2007.
    [111] Saito, T. and Miyamoto, K.,"Prediction of CVT Transmission Efficiency byMetal V-Belt and Pulley Behavior with Feedback Control," SAE TechnicalPaper2010-01-0855,2010, doi:10.4271/2010-01-0855.
    [112]张艳玲,王耀南,薛殿伦.模糊自适应PID控制器在CVT速比控制中的应用[J].自动化技术与应用.2005(02).
    [113]张树培,张友坤,王庆年,张雷.坡道行驶工况下CVT传动比控制[J].江苏大学学报(自然科学版).2010(03).
    [114]薛殿伦,张友坤,郑联珠,张伯英.金属带式无级变速器的速比控制[J].农业机械学报.2003(03).
    [115] EGGERT, U., Dipl-Ing,., and SCHNEIDER, H.,"Control strategies for achain drive CVT," SAE Technical Paper841302,1984, doi:10.4271/841302.
    [116] o, J., Ishizu, T., Sudou, H., and Hino, A.,"Adaptive Cruise Control SystemUsing CVT Gear Ratio Control," SAE Technical Paper2001-01-3244,2001,doi:10.4271/2001-01-3244.
    [117] Kim, T., Kim, H., Yi, J., and Cho, H.,"Ratio Control of Metal Belt CVT,"SAE Technical Paper2000-01-0842,2000, doi:10.4271/2000-01-0842.
    [118]薛殿伦,陈伟生,冯显武.金属带式无级变速器速比匹配与控制研究[J].中国公路学报.2009(02).
    [119]邹乃威.无级变速混合动力汽车动力耦合及速比控制研究[D].吉林大学2009.
    [120]周萍,聂晋,孙跃东.基于模糊PID控制的CVT速比仿真研究[J].机械传动.2011(08).
    [121]王立公,王红岩,秦大同,张伯英,裘熙定.金属带式无级变速器速比控制的试验研究[J].汽车工程.2003(06).
    [122]付铁军.金属带式无级变速器智能控制技术研究[D].吉林大学2004.
    [123]申水文等.车辆起步离合器的专家模糊控制.自动化理论技术与应用,1997,04.
    [124]申水文,张建武,葛安林等.AMT离合器的综合模糊控制.汽车工程,1997,19(6):347-35。
    [125] Jef daniels. Semi-automatic transmission. Automotive Engineering,1997(2):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700