用户名: 密码: 验证码:
薄板件切削回弹变形机理及装夹优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型复杂结构的薄板、薄壁结构件在加工过程中,由于受到装夹力、切削力、切削热以及力热耦合作用,发生变形;且加工过程中产生的残余应力会引起残余应力变形。这两种变形都会导致加工精度降低。本文针对薄板件加工过程产生的残余应力和变形控制问题,综合考虑切削过程、装夹布局及夹紧力等影响因素,以铝合金6061为实例,利用切削实验与模拟仿真方法研究薄板件切削回弹变形机理及变形控制方法,从而为薄板件的加工变形控制提供理论依据。
     实验研究了铝合金6061表面切削应力的状态,得出了表面切削应力属于二维平面应力;应用响应面原理建立了铣削参数与表面切削应力之间的关系模型;综合考虑表面切削应力与表面粗糙度,对铣削参数进行了优化,并分别对面支撑和点支撑装夹方式下的薄板件进行了表层铣削实验。测试和分析结果表明,面支撑装夹方式的薄板件表层铣削完成后,去除装夹时的回弹量是影响加工精度的主要因素;点支撑装夹方式的薄板件表层铣削完成后,夹紧力施加位置沿薄板件板长方向相对支撑点位置变化时,对变形及残余应力都有重要影响。
     应用ABAQUS有限元软件,建立了薄板件表层切削过程及去除装夹后回弹过程的二维仿真模型。分析了不同装夹方式的薄板件去除装夹前后,薄板件变形、回弹变形和内部应力分布情况。结果表明,面支撑装夹方式的薄板件表层切削完成后,去除装夹时存在较大的回弹变形量;此时薄板件的主要变形为回弹变形;内部应力主要是切削力、切削热耦合作用产生的切削应力,沿薄板件板厚方向的进给方向的应力分布值远大于垂直进给方向的应力值和剪应力值,因此后续研究仅考虑进给方向的切削应力。针对点支撑与夹紧点正对装夹的薄板件进来了仿真计算结果表明,支撑点位置对薄板件切削后的变形、回弹变形、内部应力分布及大小都有重要影响。而薄板件的变形和残余应力分布及大小之间没有直接的关系。
     研究了薄板件沿板厚方向的切削回弹变形分析方法。应用微观位错原理对点支撑装夹方式的薄板件在表层切削过程中的变形区进行了划分。构建了基于微观位错的回弹变形分析方法。对面支撑装夹方式的薄板件,应用宏观弹塑性变形原理进行推导。分析表明内部应力重新分布是薄板件回弹变形的主要原因。
     建立了切削参数与轴向切深方向的切削应力之间的关系模型。研究结果表明,切削应力在表面主要表现为拉应力,沿板厚方向接近表面处迅速转化为最大压应力,之后慢慢减小到零。应力主要集中于表层0-0.3mm内。采用逐层铣削方法,测量了薄板件沿板厚方向的切削应力值,结果与预测结果一致。应用该模型建立了切削应力与切削应力引起的薄板件变形挠度之间的关系。
     针对支撑点位置与夹紧力施加位置正对装夹的薄板件,采用BP神经网络建立了预测模型,映射薄板件板长方向的内部残余应力均值、板厚方向的变形量均值与板长、板厚、夹紧力、支撑点位置和板长比之间的关系。针对薄板件的支撑点位置,设计了基于遗传算法的变形均值最小和残余应力均值最小的多目标优化方法。通过BP神经网络预测模型计算适应度值,采用适应度惩罚措施,在非支配前沿等级划分和小生境计算的基础上应用二元联赛选择机制,对种群进行优劣排序,得出优化结果集合。
     针对支撑点位置与夹紧力施加位置正对装夹的薄板件表层切削过程中产生的“欠切”问题,应用应变叠加原理设计了基于装夹的预变形、预应力补偿方法,通过夹紧力值变化及夹紧力施加位置沿薄板件板长方向相对支撑点位置变化产生预变形与预应力,补偿薄板件变形及残余应力。
Thin parts tend to be deformed under the clamping force, cutting force, cutting heat and thermo-mechanical effect in machining. The internal re-sidual stress and the as-machined residual deformation deteriorate the final machining precision. In this study, aluminum alloy6061is used to examine the cutting deformation mechanism of thin parts. Specifically, the residual stress and deformation generated during the machining process are studied based on fixture layout and clamping force. The study is meaningful for the control of cutting deformation of thin parts.
     The surface residual stresses in milling aluminum alloy6061were measured with Doelle-Hauk method. The measurement shows that the prin-cipal plane is approximately parallel with the machined surface of the workpiece, and stresses are under two-dimensional plane stress state. The model was established between milling parameters and surface residual stress by the range analysis and orthogonal experiment method, establish the relationship model by the means of Response surface principle. The parameters were optimized based on overall consideration of surface re-sidual stress and surface roughness. Then the experiment of milling surface of thin parts was conducted under different fixing schemes. Based on the result and analysis of experiment, the thin part with fixing under surface support features a large springback after removing fixture, which heavily affects the precision of thin parts. For fixing of point support, the defor-mation varies as the support points change.
     To simulate the cutting surface and springback of the parts, a two di- mensional model of was built with Package Abaqus. Deformation and in-ternal stress distribution is studied for different fixing. For surface support, the thin part has a large deformation caused by springback, and the spring back is the main factor of deformation of thin parts. For surface support, the internal stress of thin part along the thickness mainly concentrates on the surface. Meanwhile the stress along feed direction is far greater than the stress along the thickness and shear stress. Therefore, subsequent studies focus on the stress along the feed direction. For point support, under the condition of the position of clamping force and point support on the oppo-site, the springback, deformation and the distribution were severely affected by the position of point support and surface support. Meanwhile the de-formation and internal stress had no direct relation.
     The deformation mechanism was studied for the springback of thin parts along the thickness. The deformation zone was divided based on the dislo-cation theory. And the springback is analyzed with force between each other for surface support. At last the main reason for springback is the re-distribution of internal stress.
     The model of relation between cutting stress along the thickness and cutting parameters was established using Response surface principle and Polynomial fitting principle. By comparison of predicted stress and ex-periment stress, the model is robust for predicting cutting stress along the thickness. Basically, the cutting stress is tensile stress on the surface, then quickly decreased to the maximum compressive stress, then slowly in-creased to zero.
     For the point support, a prediction model was established using BP Neural Network between the deformation, internal stress and the thickness, length, clamping force, the ratio of the position of point support and the length of thin part. The position of point support is important for the de- formation and distribution of internal stress through analysis using the prediction model. Thus, the position is optimized using genetic algorithm, in which the sorting method was designed for guaranteeing the diversity of population and the elitist strategy was used for preserving the lost of ex-cellent individuals in the process of evolution, for the thin part with fixed size based on the minimization of deformation and internal stress.
     For undercut, the strain superposition principle is used, using which the predeformation and prestress is added to the thin part through optimization of position of clamping force.
引文
[1]王少红.航空薄壁零件的铣削加工变形控制研究[D].大连交通大学,2008.
    [2]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[D].浙江大学,2003.
    [3]唐志涛.航空铝合金残余应力及切削加工变形研究[D].山东大学,2008.
    [4]J. Tlusty, S. Smith, J. Badrawy. Design of a high speed machine for aluminum aircraft parts [J]. Manufacturing Science and Technology.1997,2:253-259.
    [5]J. Tlusty, S. Smith, W. R. Winfough. Techniques for the use of long slender end mills in high speed milling [J]. Annals of the CIRP.1996,45(1):393-396.
    [6]Hiroyasu IWABE. High accurate machining of thin wall shape workpiece by end mill [C]日本机械学会论文集.1997,63:605-610.
    [7]Nervi Sebastian. A mathematical model for the estimation of effects of residual stresses in aluminum parts [D]. Washington University, USA,2005.
    [8]S. Ratchev, S. Liu, W. Huang, et al. A flexible force model for the end milling of low-rigidity parts[J]. Journal of Materials Processing Technology.2004, 154:134-138.
    [9]S. Ratchev, S. Liu, A. A. Becker. Error compensation strategy in milling flexible thin-wall parts [J]. Journal of Materials Processing Technology.2005, 162-163:673-681.
    [10]S. Ratchev, S. Liu, W. Huang, et al. Milling error prediction and compensation in machining of low-rigidity parts [J]. International Journal of Machine Tool & Manufacture.2004,44:1629-1641.
    [11]Keith A. Young. Machining-induced residual stress and distortion of thin parts [D]. Washington University,2005.
    [12]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[D].浙江 大学,2003.
    [13]黄志刚.航空整体结构件铣削加工变形的有限元模拟理论及方法研究[D].浙江大学,2003.
    [14]杨勇.钛合金航空整体结构件铣削加工变形的预测理论及方法研究[D].浙江大学,2007.
    [15]毕运波.铣削加工过程物理仿真及其在航空整体结构件加工变形预测中的应用研究[D].浙江大学,2007.
    [16]董辉跃.航空整体结构件加工过程的数值仿真[D].浙江大学,2004.
    [17]董辉跃.基于残余应力分布的框类零件装夹方案优选的有限元模拟.航空学报.2003,24(4):382-384.
    [18]成群林.航空整体结构件切削加工过程的数值模拟与实验研究[D].浙江大学,2006.
    [19]成群林,柯映林,董辉跃,等.航空整体结构件铣削加工变形预测研究[J].浙江大学学报(工学版).2007(5):799-803.
    [20]董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析[J].浙江大学学报(工学版).2006(5):759-762.
    [21]成群林,柯映林,董辉跃.航空铝合金铣削加工中切削力的数值模拟研究[J].航空学报.2006(4):724-727.
    [22]白万金.航空薄壁件精密铣削加工变形的预测理论及方法研究[D].浙江大学,2008.
    [23]武凯.飞机薄壁零件加工变形有限元分析与工艺控制技术.南京航空航天大学博士后研究工作报告,2004.
    [24]武凯,何宁,廖文和.薄壁腹板加工变形规律及其变形控制方案的研究[J].中国机械工程.2004,15(8):670-674.
    [25]武凯,何宁,姜澄宇等APDL在立铣受力变形分析中的应用[J].机械科学与技术.2002,21(6):885-887.
    [26]武凯,何宁,姜澄宇.有限元技术在航空薄壁件立铣变形分析中的应用.应用科 学学报.2003,21(1):68-71.
    [27]万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究[J].航空学报.2005,26(5):598-603.
    [28]M. Wan, W. H. Zhang, K. P. Qiu, et al. Numerical prediction of static form errors in peripheral milling of thin-walled workpieces with irregular meshes [J]. Journal of Manufacturing Science and Engineering.2005,127:13-22.
    [29]万敏.薄壁件周铣加工过程中表面静态误差预测关键技术研究[D].西北工业大学,2005.
    [30]路冬.航空整体结构件加工变形预测及装夹布局优化[D].山东大学,2007.
    [31]丁子昀,左敦稳,郭魂.多点装夹方案对多框体铣削变形影响的有限元分析[J].南京航空航天大学学报.2009(5):639-643.
    [32]郭魂,左敦稳,王焱.铣削加工顺序对航空多框结构件加工变形影响的模拟分析[J].机械设计与制造.2008(7):70-72.
    [33]唐国兴,郭魂,左敦稳.航空结构件残余应力释放引起加工变形的数值模拟[J].装备制造技术.2007(10):1-2.
    [34]郭魂,左敦稳,王树宏.给定装夹下走刀路径对铣削精度的影响(英文)[J].Transactions of Nanjing University of Aeronautics & Astronau.2005(3):234-239.
    [35]梅中义,高红,王运巧.飞机铝合金结构件数控加工变形分析与控制[J].北京航空航天大学学报.2009(2):146-150.
    [36]梅中义,高红,王运巧.飞机铝合金结构件数控加工变形分析与控制[J].北京航空航天大学学报.2009(2):146-150.
    [37]王运巧,梅中义,范玉青.航空薄壁结构件数控加工变形控制研究[J].现代制造工程.2005(1):31-33.
    [38]梅中义,王运巧,范玉青.飞机结构件数控加工变形控制研究与仿真[J].航空学报.2005(2):234-239.
    [39]王运巧,梅中义,范玉青.航空薄壁弧形件加工变形的非线性有限元分析[J].航空制造技术.2004(6):84-86.
    [40]Z. J. Wang, W. Y. Chen, Y. D. Zhang, et al. Study on the machining distortion of thin-walled part caused by redistribution of residual stress [J]. Chinese Journal of Aeronautics.2005.18(2):175-179.
    [41]米谷茂.残余应力的产生和对策[M].机械工业出版社,1983.
    [42]P. V. Marcal, I. P. King. Elastic-plastic analysis of two-dimensional systems by the finite element method [J]. International Journal of Mechanical Sciences.1967, 9:143-145.
    [43]H. Sasahara, T. Obikawa, T. Shirakashi. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer [J]. Journal of Materials Pro-cessing Technology.1996,51:1-24.
    [44]Z. C. Lin, Y. Y. Lin, C. R. Liu. Effects of thermal load and mechanical load on the residual stress of a machined workpiece [J]. International Journal of Mechanical Sciences.1991.33(4):263-278.
    [45]Z. C. Lin. B. Y. Lee. An investigation of the residual stress of a machined work-piece considering tool flank wear [J]. Journal of Materials Processing Technology. 1995,51:1-24.
    [46]Z. C. Lin, W. L. Lai, H. Y. Lin, et al. Residual stresses with different tool flank wear lengths in the ultra-precision machining of Ni-P alloys [J]. Journal of Mate-rials Processing Technology.1997,65:116-126.
    [47]Z. C. Lin, W. L. Lai, H. Y. Lin. The study of ultra-precision machining and re-sidual stress for Ni-P alloy with different cutting speeds and depth and cut [J]. Journal of Materials Processing Technology.2000,97:200-210.
    [48]Z. C. Lin, Y. Y. Lin. Fundamental modeling for oblique cutting by ther-mo-elastic-plastic FEM [J]. International Journal of Mechanical Sciences.1999, 41:941-965.
    [49]Z. C. Lin, Y. Y. Lin. Three-dimensional elastic-plastic finite element analysis for orthogonal cutting with discontinuous chip of 6-4 brass [J]. Theoretical and Ap- plied Fracture Mechanics.2001,35:137-153.
    [50]Z. C. Lin, Y. Y. Lin. A study of oblique cutting for different low cutting speeds [J]. Journal of Materials Processing Technology.2001,115:313-325.
    [51]L. Chen, T. I. E1-Wardany, W. C. Harris. Modeling the effects of flank wear land and chip formation on residual stress [J]. Annals of the CIRP.2004,53(1):95-98.
    [52]E. K. Henriksen. Residual stresses in machined surfaces [M]. Transitions of the ASME.1951,71:69-76.
    [53]K. Tsuchida, Y. Kawada, S. Kodama. A study of the residual stress distributions by turning [J]. Bulletin of the Japan Society of Metals.1975,18(116):123-130.
    [54]J. C. Outeiro, A. M. Dias, J. L. Lebrun, et al. Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters [J]. Machining Sci-ence and Technology.2002,6(2):251-270.
    [55]J. D. Thiele, S. N. Melkote, R. A. Peascoe, et al. Effect of cutting-edge geometry and workpiece hardness on surface residual stress in finish hard turning of AISI 52100 steel. ASME Journal of Manufacturing Science and Engineering.2000, 122:642-649.
    [56]E. Brinksmeier, J. T. Gammett, W. Koenig, et al. Residual stresses-measurement and causes in machining process [J]. Annals of the CIRP.1982,31 (2):491-510.
    [57]K. H. Fuh, C. F. WU. A residual-stress model for the milling of aluminum alloy (2014-T6) [J]. Journal of Materials Processing Technology.1995,51:87-105.
    [58]M. H. E1-Axir. A method of modeling residual stress distribution in turning for different materials [J]. International Journal of Machine Tools & Manufacture. 2002,42:1055-1063.
    [59]B. R. Sridhar, G. Devananda, K. Ramachandra, et. al. Effect of machining param-eters and heat treatment on the residual stress distribution in titanium alloy IMI-834 [J]. Journal of Materials Processing Technology.2003,139:628-634.
    [60]S. Torbaty, A. Moisan, J. L. Lebrun, et al. Evolution of residual stress during turning and cylindrical grinding of carbon steel [J]. Annals of the CIRP.1982, 31(1):441-445.
    [61]K. Jacobus, S. G. Kapoor and R. E. Devor. Experimentation on the residual stresses generated by endmilling [J]. Journal of Manufacturing Science and En-gineering.2001,123:748-752.
    [62]C.Cogun. The importance of the application sequence of clamping forces on workpiece accuracy [J]. Journal of Engineering for Industry.1992,114:539-543.
    [63]Bo Li. Analysis of synthesis of machining fixture-workpiece systems with multi-ple friction contacts [D]. Atlanta:Georgia Institute of technology,1999.
    [64]Y.F. Wang, Y.S. Wong J.Y.H. Fuh. Off-line modelling and planning of optimal clamping forces for an intelligent fixturing system [J]. International Journal of Machine Tools & Manufacture.1999,39(2):253-271.
    [65]Y.Huang, T.Hoshi. Optimization on fixture design for plate shaped workpiece in terms of flatness error due to cutting heat in finish face milling [J]. Journal of Japan Society for Precision Engineering.1999.65(2):229-233.
    [66]Y.Huang, T.Hoshi. Optimization of fixture design with consideration of thermal deformation in face milling [J]. Journal of Manufacture System.2000,19(5): 332-340.
    [67]Ying Huang. Computer-aided design of workpiece holding fixture including ma-chining accuracy optimization [D]. Toyohashi:Toyohashi University of Technolo-gy.1999.
    [68]Deng, Haiyan, Melkote, Shreyes N. Determination of minimum clamping forces for dynamically stable fixturing [J]. International Journal of Machine Tools and Manufacture.2006,46(7-8):847-857.
    [69]Krishnakumar, K.Melkote, S.N. Machining fixture layout optimization using the genetic algorithm [J]. International Journal of Machine Tools & Manufacture. 2000,40(4):579-598.
    [70]Necmettin. Kaya. Machining fixture locating and clamping position optimization using genetic algorithms [J]. Computers in Industry.2006,57(2):112-120.
    [71]Krishnakumar Kulankara, Srinath Satyanarayana, Shreyes N. Melkote. Interactive fixture layout and clamping force optimization using the genetic algorithm [J]. American Society of Engineers, Manufacturing Engineering Division.2000,11: 23-30.
    [72]周孝伦,张卫红,秦国华.基于遗传算法的夹具布局和夹紧力同步优化[J].机械科学与技术.2005(3):339-342.
    [73]吴铁军,楼佩煌,秦国华.基于遗传算法的定位布局优化新方法(英文)[J].Transactions of Nanjing University of Aeronautics & Astronautics [J].2011(2): 176-182.
    [74]秦国华,徐九南,邱志敏.夹具自动化设计中定位方案的生成式设计方法[J].计算机集成制造系统.2011(4):695-700.
    [75]秦国华,张卫红.基于最小范数原理的夹紧力优化设计算法[J].中北大学学报(自然科学版).2011(4):442-447.
    [76]刘钦辉,李蓓智,杨建国,等.基于拓扑优化的薄壁零件装夹布局确定方法[J].组合机床与自动化加工技术.2012(7):99-102.
    [77]程丹青,李蓓智,杨建国,等.复杂薄壁零件多工序安装关键技术研究与应用[J].现代制造工程.2011(2):85-90.
    [78]K. Iwata, A. Osakada, Y. Terasaka. Process modeling of orthogonal cutting by rigid-plastic finite element method [J]. Journal of Engineering Materials and Technology.1984,106(1):132-138.
    [79]Strebjiwsjum H S, Carroll J T. A finite element model of orthogonal metal cutting. Proceedings of the North American Manufacturing Research Conference [J]. Bethlehem. Pennsylvania.1987:506-509.
    [80]Usui E, Maekawa K, Shirakashi T. Simulation analysis of the built-up edge for-mation in machining of low carbon steel [J]. Bull Jan Soc Process Eng.1981, 15(4):237-242.
    [81]G R Johnson, W H Cook. Fracture Characteristics of three metals subjected to various strain, strain rates, temperature and pressures [J]. Engineering Fracture Mechanics.1985,21(1):31-48.
    [82]Y B Guo, Q Wen, K A Woodbury. Dynamic material behavior modeling using in-ternal state variable plasticity and its application in hard machining simulations [J]. Journal of Manufacturing Science and Engineering.2006,128:749-759.
    [83]B E. Klamecki. Incipient chip for mation in metal cutting-a three dimension finite analysis [D]. University of Illinois at Urbana-Chanpaign.1973.
    [84]Hashemi, P. C. Finite element simulation of segmented chip formation in high speed machining [J]. Journal for Mater Perform.1994,3(5):712-721.
    [85]Lin, Z. C, Lin, S.Y. A Couple finite element model of thermo-elastic large defor-mation for orthogonal cutting [J]. Journal of Engineering Material and Technology. 1992.114(2):218-226.
    [86]Maruich, T. D, Ortiz, M. Modeling and simulation of high speed machining. In-ternational Journal of Numerical Methods In Engineering [J].1995,38(21):3. 675-694.
    [87]Zhang Liangchi. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method [J]. Journal of Materials Processing Technology.1999.88-89:273-278.
    [88]Huang J M, Black J T. An evaluation of chip separation criteria for the FEM sim-ulation of machining [J]. ASME Journal of Manufacturing Science and Engineer-ing.1996.118(4):545-554.
    [89]方刚,曾攀.切削加工过程数值模拟的研究进展[J].力学进展.2001,31(3):394-404.
    [90]G. Fang, P. Zeng. Three-dimensional thermo-elastic-plastic coupled FEM simula-tions for metal oblique cutting processes [J]. Journal of Materials Processing Technology.2005,168:42-48.
    [91]黄志刚,柯映林,王立涛.金属切削加工的热-力耦合模型及有限元模拟研究[J].航空学报.2004,25(3):317-320.
    [92]黄志刚,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究[J].中国机械工程.2003,14(10):846-849.
    [93]董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析.浙江大学学报(工学版).2006,40(5):759-762.
    [94]邓文君,夏伟,周照耀.有限元法在切削加工过程分析中的应用[J].工具技术.2004,38(11):20-25.
    [95]谢峰,刘正士,杨海东.金属切削刀具前后刀面摩擦状况的数值模拟[J].应用科学学报.2004,22(2):223-227.
    [96]Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components[J]. Materials & amp; Design.2012,35(0):572-588.
    [97]Lee H T, Liu C. Optimizing the EDM hole-drilling strain gage method for the measurement of residual stress[J]. Journal of Materials Processing Technology. 2009,209(15-16):5626-5635.
    [98]Somekawa T. Fujita K, Matsuzaki Y. Residual stress change with time of a seg-mented-in-series solid oxide fuel cell using an in situ X-ray stress measuring method[J]. Journal of Power Sources.2013,221(0):64-69.
    [99]杨伟仁.超高压反应管残余应力测试研究[J].压力容器.2011,28(6):5-10.
    [100]王中秋.航空整体结构件加工变形滚压校正理论及方法研究[D].山东大学,2009.
    [101]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东大学,2009
    [102]张定铨,何家文.材料中残余应力的X射线衍射分析和作用[M].西安交通大学出版社,1999.
    [103]Choi Y. A study on the effects of machining-induced residual stress on rolling contact fatigue[J]. International Journal of Fatigue.2009,31(10):1517-1523.
    [104]Garcia Navas V. Ferreres I, Maranon J A, et al. Electro-discharge machining (EDM) versus hard turning and grinding-Comparison of residual stresses and surface integrity generated in AISI Ol tool steel[J]. Journal of Materials Pro-cessing Technology.2008,195(1-3):186-194.
    [105]Ulutan D, Erdem Alaca B, Lazoglu I. Analytical modelling of residual stresses in machining[J]. Journal of Materials Processing Technology.2007,183(1):77-87.
    [106]Ekmekci B. Residual stresses and white layer in electric discharge machining (EDM)[J]. Applied Surface Science.2007,253(23):9234-9240.
    [107]Ding T, Zhang S, Wang Y, et al. Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel[J]. The International Journal of Advanced Manufacturing Technology.2010,51(1):45.
    [108]姚笛,马萍,王颖.响应面法优化玉米芯中木聚糖的提取工艺[J].食品科学.2011(08):111-115.
    [109]潘锋,朱平.面向约束优化的改进响应面法在车身轻量化设计中的应用[J].机械工程学报.2011(10):82-87.
    [110]谭立娟.结构可靠性分析及基于响应面法的工程应用研究[D].山东大学.2010.
    [111]解艳彩.基于响应面法的机械结构可靠性灵敏度分析[D].吉林大学,2008.
    [112]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版).2005(03):236-240.
    [113]Fuh K, Wu C. A residual-stress model for the milling of aluminum alloy (2014-T6)[J]. Journal of Materials Processing Technology.1995,51(1-4):87-105.
    [114]Wang B F, Nee A Y C. Robust fixture layout with the multi-objective non-dominated ACO/GA approach [J]. CIRP Annals-Manufacturing Technology. 2011,60(1):183-186.
    [115]Kaya N. Machining fixture locating and clamping position optimization using genetic algorithms[J]. Computers in Industry.2006,57(2):112-120.
    [116]Aoyama T, Kakinuma Y, Inasaki I. Optimization of fixture layout by means of the genetic algorithm[J].2006:448-453.
    [117]Liu Y, Jiang Z, Li Z. Impact of cutting parameters on surface roughness in milling aluminum alloy 6061 using ANN models[C]. Trans Tech Publications,2011: 412-415.
    [118]Mahnama M, Movahhedy M R. Application of FEM simulation of chip formation to stability analysis in orthogonal cutting process[J]. Journal of Manufacturing Processes.2012,14(3):188-194.
    [119]Schulze V, Boev N, Zanger F. Simulation of Metal Cutting Process with Variable Cutting Thickness During Broaching[J]. Procedia CIRP.2012,1(0):437-442.
    [120]Budak E, Ozlu E. Development of a thermomechanical cutting process model for machining process simulations[J]. CIRP Annals-Manufacturing Technology. 2008,57(1):97-100.
    [121]Movahhedy M, Gadala M S. Altintas Y. Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method[J]. Journal of Materials Processing Technology.2000,103(2):267-275.
    [122]Johnson, K.L. Contact Mechanics. U.K:Cambridge University Press,1985.
    [123]Ding H, Shen N, Shin Y C. Modeling of grain refinement in aluminum and copper subjected to cutting[J]. Computational Materials Science.2011,50(10): 3016-3025.
    [124]Jalili Saffar R. Razfar M R, Zarei O, et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method [J]. Simulation Modelling Practice and Theory.2008,16(10):1677-1688.
    [125]Milfelner M, Cus F. Simulation of cutting forces in ball-end milling [J]. Robotics and Computer-Integrated Manufacturing.2003,19(1-2):99-106.
    [126]范继美,万光眠.位错理论及其在金属切削加工中的应用[M].上海交通大学出版社.1991.5.
    [127]杨德庄.位错与金属强化机制[M].哈尔滨工业大学出版社.1991.
    [128]王祖堂,关延栋.金属塑性成形理论[M].冶金工业出版社,1989.
    [129]赵志业,王国栋.现代塑性加工力学[M].沈阳:东北工学院出版社.1986.
    [130]付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究[D].山东大学,2007.
    [131]奚绍中,郑世瀛.应用弹性力学[M].中国铁道出版社,1981.
    [132]束德林.工程材料力学性能[M].机械工业出版社,2007.
    [133]张少实,材料力学.新编材料力学[M].机械工业出版社,2002.
    [134]孙训方,方孝淑,关来泰.材料力学(上册)[M].1994.
    [135]刘鸿文.材料力学(上册)[M].人民教育出版杜.1992.
    [136]琼斯,材料力学,Jones R M. et al.复合材料力学[M].上海科学技术出版社,1981.
    [137]Wu J, Han R D. A New Approach to Predicting the Maximum Temperature in Dry Drilling Based On a Finite Element Model [J]. Journal of Manufacturing Processes. 2009,11(1):19-30.
    [138]姜峰.不同冷却润滑条件Ti6A14V高速加工机理研究[D].山东大学,2009.
    [139]上海师范大学数学系概率统计教研组编.回归分析及其试验设计[M].上海教育出版社.1978.
    [140]茆诗松,丁元,周纪芗编著.回归分析及其试验设计(第2版)[M].华东师范大学出版社.1981.
    [141]J. Paulo Davim, V.n. Gaitonde, S.R. Karnik. Investigations into the effect of cut-ting conditions on surface roughness in turning of free machining steel by ANN models [J]. Journal of materials processing technology.2008,205:16-23.
    [142]Benardos, P. G, Vosnaikos. Predicting surface roughness in machining:a review [J]. International Journal of Machine Tools and Manufacture [J].2003:43, 833-844.
    [143]Azlan Mohd Zain, Habibbollah. Safian Sharif.Prediction of surface roughness in the end milling machining using Artificial Neural Network[J]. Expert Systems with Applications.2010,37:1755-1768.
    [144]B. Sarkar, A. Sengupta, S. De, S. DasGupta. Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration-a neural network approach[J]. Sep. Purif. Technol.2009,65 (3):260-268.
    [145]M.T. Hagan, H.B. Demuth, M. Beale. Neural Network Design [M]. PWS Publish-ing Co., Boston,1996.
    [146]H. Demuth, M. Beale. Neural Network Toolbox:For Use with MATLAB (Version 4.0) [M]. The MathWorks.2004.
    [147]I.N. da Silva, R.A. Flauzino. An approach based on neural networks for estimation and generalization of crossflow filtration processes [J]. Soft Comput.2008, 8:590-598.
    [148]T. Erzurumlu, H. Oktem, Comparison of response surface model with neural net-work in determining the surface quality of moulded parts [J]. Design.2007.28: 459-465.
    [149]Defeng Zhang. Application Design of MATLAB Neural Network[M]. Machinery Industry Press.2009.
    [150]马振华.现代应用数学手册(运筹学与最优化理论卷)[M].清华大学出版社.1998.
    [151]N E Antoine, I M Kroo. Framework for Aircraft Conceptual Design and Environ-mental Performance Studies[J]. AIAA Journal.2005,43(10):2100-2109.
    [152]C M N A Pereira. Evolutionary Multicriteria Optimization in Core Designs:Basic Investigations and Case Study[J]. Annals of Nuclear Energy.2004,31(11): 1251-1264.
    [153]S Dedieu, L Pibouleau, C Azzaro-Pantel, et al. Design and Retrofit of Multi-objective Batch Plants Via a Multicriteria Genetic Algorithm [J]. Computers & Chemical Engineering.2003,27(12):1723-1740.
    [154]G Fruchter, A Fligler, R Winer. Optimal Product Line Design:Genetic Algorithm Approach to Mitigate Cannibalization [J]. Journal of Optimization Theory and Applications.2006,131(2):227-244.
    [155]轩辕思思.基于本体知识的产品配置求解技术研究[D].山东大学,2009.
    [156]Sudarsana Rao H. Ghorpade V G, Mukherjee A. A Genetic Algorithm Based Back Propagation Network for Simulation of Stress-Strain Response of Ceram-ic-Matrix-Composites[J]. Computers & amp Structures.2006,84(5-6):330-339.
    [157]唐国兴,郭魂.拉伸装夹铣削对铝合金表层残余应力的影响[J].常州工学院学报.2007,20(6):10-13.
    [158]布光斌.预拉伸夹紧铣削铝合金残余应力的基础研究[D].南京航空航天大学,2005.
    [159]郭魂.左敦稳,王树宏.拉伸装夹对航空框类零件加工变形影响的有限元分析[J].南京航空航天大学学报.2005,37(z1):72-76.
    [160]程足发.预应力高速铣削钛合金抗疲劳加工基础研究[D].南京航空航天大学,2006.
    [161]许鸿昊.拉伸装夹高速铣削钛合金的疲劳特性研究[D].南京航空航天大学,2008.
    [162]Morrow, D., Stress-strain response of a two-bar structure subject to cyclic thermal and steady net section loads[D]. University of Illinois,1982.
    [163]Kurt Jacobus, R.E. Devor, S.G. Kapoor. Machining-Induced Residual Stress:Ex-perimentation and Modeling[J]. Journal of Manufacturing Science and Engineer-ing.2000.122(1):20-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700