渭—库绿洲盐渍化土壤与地下水特征时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地球上的不同地区在气候、母岩、地形、动物和植物等方面的不同,导致土壤的物理特性、化学特性、生物特性等方面存在明显的差异,形成了各种各样的土壤类型。在特定的时间和空间尺度上,某一区域的土地退化(如盐渍化等)及演变必然会导致该区域范围内土壤特性的空间变异性。因此很有必要在时间和空间序列上对土壤特性的时空变异性进行研究,以便更准确地了解土壤特性时空变异和区域生态环境之间的关系。
     本文运用RS/GIS技术,采用相关分析、传统统计学和地统计学相结合的方法,首先,研究渭-库绿洲盐渍化土壤为主的各景观类型的时空分布与景观格局的变化趋势;然后,分析渭-库绿洲土壤含盐量、矿化度、电导率、含水率、PH值、八大离子等土壤特性的时空变异情况,及其揭示其绿洲土壤特性的时空变异规律及相互之间的关系;最后,研究地下水埋深及地下水矿化度的变化规律及原因。这对研究区土地的合理利用、了解土壤的结构和功能、合理的水资源灌溉利用、土壤盐碱化防治、改良和有效利用提供科学依据,从而对保护渭-库绿洲生态环境的稳定性做出贡献。
     本研究得出以下主要结论:
     1)采用遥感与地理信息系统技术,对研究区1989、2001、2006和2011年4期TM/ETM+影像进行分类与统计,获得各景观类型的面积及比例。在此基础上,采用转移矩阵、LUCC分析方法,对渭干河—库车河三角洲绿洲的以盐渍化土壤为主的景观类型的数量特征、时空分布及变化趋势进行分析。结果表明,各研究时间区段,研究区景观类型发生了明显变化。在1989~2011年这22a期间,研究区各景观类型中所占面积最大的为非盐渍地,非盐渍地面积呈一直增长的趋势,面积增加了1497.126km~2;重度盐渍地面积呈明显减少的趋势,累计减少了1401.7km~2,是减少面积最大、减少速度最快的土地类型;中轻度盐渍化地面积的变化不大,22a来减少了39.653km~2,但空间上的变化较大;水体和其它地类所占面积有增长趋势,而2001~2011年期间,均有减少趋势。研究区景观格局分析结果表明,1989~2011年期间,研究区整体斑块团聚程度有所增加,斑块类型形成了良好的连接性,景观的异质性程度、景观的复杂性程度在减少,景观破碎度逐渐下降。
     2)研究区7次野外考察数据的土壤盐渍化及酸碱度的分级划分分析结果表明,不同采样时间土壤样品各层的平均土壤酸碱度均属于微碱性土。研究区土壤含盐量按其含量大小在土壤剖面中均呈自上而下的垂直分异规律,表明盐分具有强烈表聚性。土壤含盐量的空间变化分析结果表明,绿洲内部土壤含盐量小于绿洲外围。表层土壤含盐量的空间、时间尺度上的研究结果表明,研究区盐渍化土壤主要集中于研究区的东部和东南部,研究区西部和西北部含盐量较低。大体上具有从研究区的西北、西边区域向研究区东南和东部区域的方向增加的趋势。从时间尺度上,研究区春季土壤含盐量大于秋季含盐量,土壤含盐量往加重方向发展。
     根据土壤中CL~-/(2SO_4~(2-))当量比值来进行盐渍化土壤分类结果表明,不同采样时间,绝大多数情况下,各层土壤盐渍化类型主要以硫酸盐渍土和氯化物-硫酸盐型盐渍土为主;研究区土壤中的硫化物在土壤剖面中均呈自上而下增多的趋势,而氯化物呈自上而下减少的趋势。
     3)土壤特性间的相关性分析结果表明,不同采样时间土壤含盐量、电导率与矿化度相互间具有较高的正相关性;绝大多数采样时间,含盐量、电导率、矿化度分别与PH值、含水量之间没有显著相关性;PH值与含水量之间也基本上没有显著相关性。研究区表层土壤含盐量与Na~+、Cl~-、SO_4~(2-)离子之间具有比较好的正相关性。含盐量与Ca~(2+)离子之间也有一定的正相关性。不同采样时间,含盐量与HCO_3~-之间均没有相关性,这因为HCO_3~-是土壤碱化特征的表现,碱化与盐化表现为相逆关系,碱化与脱盐过程密切相关,说明研究区土壤总体上没有脱盐现象。
     4)灌区38眼监测井的11年的地下水埋深和矿化度数据分析结果表明:每年春季地下水埋深空间变异性比其它季节大,这反映研究区地下水埋深一定程度上受春灌的影响,并通过地下水位多年月平均值变化和地下水位季节变化分析中可以得出,研究区春季地下水位最高,秋季地下水位最低。从灌区地下水位时空变化分析结果表明,研究区的平均地下水位总体上有下降趋势,地下水位从灌区上部往下部或边缘有上升特征。灌区大部分观测井地下水矿化度属于微咸水或咸水,地下水矿化度的季节性变化不太明显。但灌区地下水矿化度时空变化分析结果表明,1997-2007年期间,渭干河灌区地下水矿化度总体上有下降趋势。地下水矿化度也有从灌区上部往下部或边缘上升特征。
The diversity of climate, parent rock, topography, animals and plants in variousregions on earth, leading to distinct difference on soil physio-chemical and biologicalproperties in the formation process of a variety of soil types. Land degradation (e.g.,salinization) and its evolution in a given region will inevitably cause the variability ofsoil characteristics in specific temporal and spatial scales. Therefore, it is necessary tostudy spatio-temporal variability of soil properties in time and space sequence to moreaccurately understand the relationship between the spatio-temporal variability of soilcharacteristics and its regional ecological environment.
     In this paper, we used RS/GIS technology with the combination of correlationanalysis, traditional statistics and geostatistics methods. Firstly, we conducted aresearch on spatio-temporal distributions of saline soil-based landscape types and itsvariation tendency. Then, we analyzed the temporal and spatial variation of soilproperties, such as soil salinity, conductivity, moisture content, pH value and the eightions. Finally, we studied the causes and variations of groundwater level andgroundwater salinity. This can be a scientific basis for the rational use of landresources, better understanding of the soil structure and function, reasonable use ofwater resources in irrigation, soil salinity control and improvement, and thus cancontribute to the eco-environmental stability protection in Weigan-Kuqa Oasis.
     This research paper draws the following main conclusions:
     1) The area and proportion of each landscape types acquired throughclassification and statistics on four different period of TM/ETM+images (1989,2001,2006and2011, respectively), using remote sensing and geographical informationsystem technology. On this basis, quantitative characteristics, spatio-temporaldistributions and variations of landscape types were analyzed by transfer matrix andLUCC analysis method. The results show that the study area landscape type haschanged significantly during each period. From1989to2011, area of non-saline land is maximum in landscape types in the study area, and has shown an increasing trend,has increased1497.126km~2; Severe salinized land has a constant decrease with acumulative reduction area of1401.7km~2, is the fastest and largest reduction land type;There was little change with decreased area of39.653km~2in the moderate and slightsaline land in the past22years, but with a big spatial variation; Area water and otherland type had a rising trend from1989to2001, and had a decreasing tendency in theperiod from2001to2011. The results of landscape pattern analysis show that, plaquereunion has increased in the study area, plaque type formed a good connection, thedegree of heterogeneity and complexity of landscapes has reduced, fragmentationdegree was gradually declined.
     2) The results from soil salinization and PH value grading and analysis show thatall soil samples from different time and soil layers are belong to the slightly alkalinesoil. According to salt content size, Soil salt content in study area showed a top-downvertical differentiation characteristic in the soil profile, indicating that the salt has astrong property of surface gathering. The analysis on spatial variation of soil saltcontent showed that the oasis soil salt content is less than the oasis periphery. Theresults from spatial and temporal variation analysis of soil surface salt content showedthat saline soils are mainly concentrated in the east and southeast of the study area,soils in the west and northwest are with low salt content. In general, from west andnorthwest side to east and southeast corner of study area, soil salt content increasesgradually. From the time scale, soil salt content in spring was greater than in fall, soilsalt content kept increasing.
     Saline soil classification results by the equivalent ratio of CL~-/(2SO_4~(2-)) in thesoil showed that during different sampling time, chloride-sulfate and sulfate soilswere in the first place in different soil layers in the depth of10-30cm and30-50cm;Sulfides in the soil profile showed a growing trend from top to bottom, while thechloride reduced from top to bottom.
     3) The results of correlation analysis on soil characteristics indicates that there ishigh positive correlation between soil salinity, conductivity and mineralization degree;there is no significant correlation between pH value and water content, and betweensoil characteristics above (salinity, conductivity and mineralization degree),respectively; there is good positive correlation between topsoil salt content and Na~+,Cl~-, SO_4~(2-)ions; There is also certain positive correlation between salt content andCa2+ion; In different sampling period, there is no correlation between salt content andHCO_3~-, because HCO_3~-is the performance of alkalization. There is an inverserelationship between alkalization and salinization process, and alkalization is closelyrelated to desalination. This illustrates that there is no desalination phenomenon in thestudy area.
     4) Analyzing results of groundwater depth and salinity data obtained from38monitoring well in the irrigation area during11-year period show that the spatialvariability of groundwater level in each spring larger than other seasons, reflecting thespring irrigation influence on groundwater level to a certain extent; It could beconcluded by analyzing Monthly average groundwater level changes and seasonalvariation of groundwater level, groundwater level in the study area reaches the top inspring, falls to minimum level in fall; The analysis on spatial and temporal changes ofgroundwater level showed that the overall average groundwater level of study areahas declining trend, while groundwater level is rising from upper part of irrigationarea to lower part or to fringe; groundwater of most of the monitoring wells werebrackish or salt water, and seasonal groundwater salinity were not changingsignificantly. The results from spatio-temporal variation analysis on groundwatersalinity in Irrigation area showed that groundwater salinity was decreasing during theperiod from1997to2007. Groundwater salinity was rising from upper part ofirrigation area to lower part or to periphery.
引文
[1]刘兴土.松嫩平原退化土地整治与农业发展[M].北京:科学出版社,2001.
    [2]李凤全,吴樟荣.半干旱地区土地盐碱化预警研究以吉林省西部土地盐碱化预警为例[J].水土保持通报,2002,22(1):57-59.
    [3] Szabolcs I. Salination of soil and water and its relation to desertification. Desertification ControlBulletin,1992,21:32-37.
    [4]水利部计划司,农水司.全国灌溉面积发展―九五‖计划及2010年规划.中国水利水电科学研究院,1997,1-3.
    [5]许志坤.新疆盐渍土的形成、分类、特点和利用改良[M].国际盐渍土改良学术讨论会论文集,1985,5:109-112.
    [6]王雪梅.干旱区典型绿洲土壤盐渍化及其生态效应研究[D].新疆大学博士学位论文,2010年7月.
    [7]朱鹤健,何宜庚.土壤地理学[M].北京:高等教育出版社.2003:189-199.
    [8]赵可夫,李法曾.中国盐生殖物[M].科学出版社.1999:1-10.
    [9] N.C.布雷迪.土壤的本质与性状[M].科学出版社.1982:184-216.
    [10]张士功,邱建军,张华.我国盐渍土资源及其综合治理[J].中国农业资源与区划,2000,21(1):52-56.
    [11] Grant R. Cramer. Differential effects of salinity on leaf elongation kinetics of three grassspecies[J]. Plant and Soil253:233–244,2003.
    [12] LAMBERT K. SMEDEMA&KARIM SHIATI. Irrigation and salinity: a perspective reviewof the salinity hazards of irrigation development in the arid zone[J]. Irrigation and DrainageSystems16:161–174,2002.
    [13] CHRISTOPHER J. CLARKE,RICHARD W. BELL. Incorporating Geological Effects inModeling of Revegetation Strategies for Salt-Affected Landscapes[J]. EnvironmentalManagement Vol.24, No.1, pp.99–109.
    [14]关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测和治理研究[D].中国科学院地理科学与资源研究所博士学位论文2001:178-181.
    [15]霍东民,张景雄,张家柄.利用CBERS-1卫星数据进行盐碱地专题信息提取研究[J].国土资源遥感,2001(2):48-52.
    [16] Sharma R C,Byhargava G P.Landsat imagery for mapping saline soils and wetlands innorthwest india[J].International Journal of Remote Sensing,1988,9(1):39~44.
    [17] Sommerfeldt T G, Thompson M D, Pront N A. Delineation and Mapping of Soil Salinity inSouthern Alberta from Landsat Data[J]. Canadian Journal of Remote Sensing,1985,10:104-118.
    [18] Singh A N,Dwivedi R S.Delineation of salt affected soils through digital analysis of landsatMSS data[J].International Journal of Remote Sensing,1989,10(1):83~92.
    [19] Mullen I C,Wilkinson K E,Cresswell R G.Three-dimensional mapping of salt stores in themurray-darling basin,Australia[J].International Journal of Applied Earth Observation andGeoinformation,2007,9(2):103~115.
    [20] Farifteh J,Farshad A,George R J.Assessing salt-affected soils using remote sensing,solutemodeling,and geophysics[J].Geoderma,2006,130:191~198.
    [21] Madhurama Sethi,Dasog G S,Lieshout A V,Salinity S B.Appraisal using IRS images inShorapur Taluka, Upper Krishna Irrigation Project, Phase I, Gulbarga District, Karnataka,India[J].International Journal of Remote Sensing,2006,27(14):2917~2926.
    [22] Dehaan R,Taylor G R.Image-derived spectral endmembers as indicators of salinisation[J],International Journal of Remote Sensing,2003,24(4):755~794.
    [23] Carmen Casta eda,Juan Herrero.Assessing the degradation of saline wetlands in an aridagricultural region in Spain[J].ATENA,2008,72(2):205~213.
    [24] Singh A N,Kristof S J,Baumgardner M R.Delineating salt affected soils in the gangetic plainindia by digital analysisof landsat data[R].Purdue University Laboratory for Aplications ofRemote Sensing,2006,111~477.
    [25] Bao B R C,Sankar T R,Dwivedi R S.Spectral behavior of salt-affected soils[J]. InternationalJournal of Remote Sensing,1995,16(12):2125~2136.
    [26] Taylor G R, Mah A H, et al. Characterization of saline soils using Airborne Radar Imagery [J].Remote Sensing of Environment,1996,57(3):127-142.
    [27] Metternichit G,Zinck J A.Spatial discrimination of salt-and sodium-affected soil surfaces[J].International Journal of RemoteSensing,1997,18(12):2571~2586.
    [28] R.L. Dehaan, G.R. Taylor. Field-derived spectra of salinized soils and vegetation as indicatorsof irrigation-induced soil-salinization[J]. Remote Sensing of Environment,2002,80:406-417.
    [29] Abd EI Kadar Douaoui,Herve Nibolas,Christian Walter.Detecting salinity hazards within asemiarid context by means of combining soil and remote-sensing data[J].Geoderma,2006,134:217~230.
    [30] Dwivedi R S, Rao B R M. The selection of the best possible Landsat TM band combinationfor delineating salt-affected soils[J]. Int. Journal of Remote Sensing,1992,13(11):2051-2058.
    [31] Bui E N, Henderson B L.Vegetation indicators of salinity in northern Queensland [J]. AustralEcology,2003,(28):539-552.
    [32] Ladenburger C G,Hild A L,Kazmer D J.Soil salinity patterns in tamarix invasions in theBighorn Basin,Wyoming,USA[J].Journal of Arid Environments,2006,65(1):111~128.
    [33] Fouad Al-Khaier Soil Salinity Detection using satellite remote sensing[M]. Master' s thesisInternational institute for Geo-information science and earth observation, enschede, theNether lands,2003.33.
    [34] G.I. Metternicht. Remote sensing of soil salinity-potentials and constraints[J].Remote Sensingof Environment,2003,85:1-20.
    [35] Hongqing Wang, Hsieh Y P,Mark A H.Modeling soil salinity distribution along topographicgradients in tidal salt marshes in Atlantic and Gulf coastal regions[J].Ecological Modelling,2007,201(3-4):429~439
    [36] Metternicht G I.Fuzzy classification of JERS-1SAR data an evaluation of its performance forsoil salinity mapping[J].Ecological Modelling,1998,111:61~74.
    [37] Ali Kerem Saysel. A dynamic model of salinization on irrigated lands[J]. Ecological Modeling,2001,139:177-199.
    [38] S.Chiba,T.Hirawake. An overview of the biological/oceanographic survey by the RTVUmitakaMaruIII Adelie Land[J]. Antarctica in January-February1996, Deep-Sea ResearchII,2000,47:2589-2613.
    [39]曾志远.卫星图像土壤类型自动识别与制图研究:计算机分类及其结果的光谱学分析[J].土壤学报,1984,21(2):183~193.
    [40]骆玉霞,陈焕伟.GIS支持下TM图像土壤盐渍化分级[J].遥感信息理论研究,2001,16(4):12~15.
    [41]关元秀,刘高焕,刘庆生等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,1(5):46~53.
    [42]亢庆,于嵘,张增祥等.土壤盐碱化遥感应用研究进展[J].遥感技术与应用,2005,20(4):447~454.
    [43]牛宝茹.塔里木河上游表土积盐量遥感信息提取研究[J].土壤学报,2005,42(4):674~677.
    [44]塔西甫拉提·特依拜,张飞,丁建丽等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理,2007,30(4):544~551.
    [45]冯君,王宇,赵兰坡等.应用遥感技术对大安市草原土壤盐渍化现状的调查与对策研究[J].吉林农业大学学报,2007,29(2):181~185,190.
    [46]徐金鸿,徐瑞松,夏斌等.土壤遥感监测研究进展[J].水土保持研究,2006,13(2):17~20.
    [47]李海涛,P.Brunner,李文鹏,等. ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,2006(5):75-79.
    [48]张恒云,尚淑招.NOAA/AVNRR资料在监测土壤盐渍化程度中的应用[J].遥感信息,1992,(1):24~26.
    [49]史晓霞,李京,陈云浩等.基于CA模型的土壤盐渍化时空演变模拟与预测[J].农业工程学报,2007,23(1):6~12
    [50]史晓霞.基于CA模型的长岭县土壤盐渍化时空演变可视化模拟[D].东北师范大学硕士学位论文,2005,5.
    [51]张飞,塔西甫拉提.特依拜,孔祥德等.干旱区绿洲土地利用景观空间格局动态变化研究-以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28,(6):167-174.
    [52]刘强,何岩,章光新.松嫩平原西部荒漠化景观动态及驱动力研究-以吉林省大安市为研究区域[J].干旱区资源与环境.2006,20(1):93-98.
    [53]刘庆生,骆剑承,刘高焕.资源一号卫星数据在黄河三角洲地区的应用潜力初探[J].地球信息科学,2000,2(2):56-57.
    [54]江红南.基于3S技术的干旱区土壤盐渍化时空演变研究[D].新疆大学硕士学位论文,2007年7月:13-15.
    [55]庞治国,吕宪国,李取生.3S技术支持下的盐碱化土地现状评价与发展对策研究—以吉林省西部大安市为例[J].国土与自然资源研究,2000,(4):25-27.
    [56]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究—以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134-140.
    [57]牛博,倪萍,塔西甫拉提·特依拜.遥感技术在干旱区盐渍化动态变化分析中的应用以新疆于田县为例[J].地质灾害与环境保护,2004,15(4):78-82.
    [58]关元秀,刘高焕.区域土壤盐渍化遥感监测研究综述[J].遥感技术与应用,2001,1(16):40-44.
    [59]许迪,王少丽.利用NDVI指数识别作物及土壤盐碱分布的应用研究[J].灌溉排水学报,2003,22(6):5-8.
    [60]李晓燕,张树文.吉林省大庆市近50年土地盐碱化时空动态及成因分析[J].资源科学,2005,27(3):92-97.
    [61]何祺胜.星载雷达图像在干旱区盐渍地信息提取中的应用研究[D].新疆大学硕士学位论文,2007年7月:17-19.
    [62]王兮之,Helge Bruelheide,Michael Runge,等.基于遥感数据的塔南策勒荒漠-绿洲景观格局定量分析[J].生态学报.2002,22(9):1492-1500.
    [63]韩茜,熊黑钢.新疆奇台县绿洲土壤特性空间变异及盐渍化逆向演替研究[D].新疆大学博士学位论文,2008:6-17.
    [64] Burgess T M,Webster R. Optimal interpolation and isarithmic mapping of soil properties:1.The semi—variogram and punctual Kriging[J]. J Soil Sci,1980,31:315~341.
    [65]李毅,刘建军.土壤空间变异性研究方法.石河子大学学报(自然科学版),2000,4(4):33l-338.
    [66] Jiyun Jin,Cheng Jiang. Spatial variability of soil nutrients and site[J] specific nutrientmanagement in the P.R. China. Computers and Electronics in Agriculture,2002,36(3):165-172.
    [67] Yang Qiu,Bojie Fu,Jun Wang et a1. Spatial variability of soil moisture content and its relationto environmental indices in a semi—arid gully catchment of the Loess Plateau,China. Journalof Arid Environments,2001,49:723-750.
    [68] Yang Qiu,Bojie Fu,Jun Wang. Soil moisture variation in relation to topography and land Use ina hillslope catchment of the Loess Plateau, China. Journal of Hydrology,2001,24:243-263.
    [69] Dirk Mall ants’Binayakp. Spatial variability of Hydraulic properties in amulti-1ayered soilprofi1e[J]Soil Science,1996,161(3):167-181
    [70] McBratney A B and whelan B M. The potential for site-specific management of cotton farmingsystems[C]. Discussion paper No.1co. operative Research center for sustainable cottonProduction,Australia1995.
    [71] Schlesinge w H, Raikes J A,Hartley A E,et a1. On the spatial pattern of soil nutrients in desertecosystems[J]. Ecology,1996,77(2)[J]:364-374.
    [72] Tsegaye T, Hill R L Intensive tillage effects on spatial Variability of soil physical properties[J].soil Science,1998,163(2):143-154.
    [73] Gerd Dercon, Jozef Deckers, Gerard Govers et a1. Spatial variability in soil properties onslow-forming terraces in the Andes region of Ecuador. Soil and TillageResearch,2003,72(1):31-41.
    [74] Herbst M, Diekkruger B. Modelling the spatial variability of soil moisture in micro-scalecatchments and comparison with field data using geostatistics[J]. Physics and Chemistry of theEarth,2003,8:239~245.
    [75] Rhoades,D.A,Manson.S.M,Noonan.C. characteristics associated with reservationtravel among urban natibe American outpatiengs[J], American Midland Naturalist154(1):1-10.
    [76] Jordan M M, Navarro P J. Spatial dynamics of soil salinity under arid and semi-arid conditionsgeological and environmental implications [J]. Environmental Geology,2004,45:448~456.
    [77] G.Buttafuoco,A. castrignano,E. Busoni.studying me spatial structure evolution of soil watercontent using multivariate geostatistics[J].Journal of Hydrology,2005,311:202-218
    [78] White J G, Welch R M, Norvell W A.Soil Zinc map of the USA using geo-statiscs andgeographic information systems[J]. Soil Sci Soc Am J,1997,61:185~194.
    [79] Webster R.Spatial variation in soil and the role of Kriging[J]. Agricultural WaterManagement,1983,(6):111~121.
    [80]胡克林,李保国,林启美,等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,9(3):33~38.
    [81]李菊梅,李生秀.几种营养元素在土壤中的空间变异[J].干旱地区农业研究,1998,16(2):58~64.
    [82]孙波,赵其国,闾国年.低丘红壤肥力的时空变异[J].土壤学报,2002,3(2):190~198.
    [83]雷志栋,杨诗秀.土壤特性空间变异性初步研究[J].水利学报,1985(9):10-20.
    [84]周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):232-240.
    [85]李晓燕,张树文等.吉林省德惠市土壤特性空间变异特征与格局[J]地理学报,2004,59(6):989-997.
    [86]姚荣江,杨劲松,刘广明.黄河三角洲地区典型地块土壤盐分空间变异特性研究[J].农业工程学报,2006,22(6):61-66.
    [87]杨玉玲,文启凯,田长彦等.土壤空间变异性现状及展望.中国土壤学会土壤肥力与生态专业委员会学术研讨会论文,2000,2:51-55.
    [88]杨贵羽,陈亚新.土壤水分盐分空间变异性与合理采样数研究[J].干旱区农业研究,2002,20(4):64~66.
    [89]张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报,2003,(2):293-302.
    [90]盛建东,杨玉玲,陈冰等.土壤总盐、pH值与总碱度的空间变异性研究[J].土壤,2005,37(1):69~73.
    [91]赵军伟,蒋平安,盛建东.灌区土壤化学特性空间变异规律研究——以阿瓦提县丰收灌区为例[D].新疆农业大学硕士学位论文,2005.
    [92]石元春,李保国等.区域水盐运动监测预报[M].石家庄:河北人民出版社,1991.100—136.
    [93]王红,刘高焕,富鹏等.利用CoKriging提高估算士壤盐离子浓度分布的精度[J].地理学报,2005,60(3):511-518.
    [94]俞志新,李艳,黄明祥.地统计克拉格插值法在工程土方计算中的应用[J].浙江水利科技.2003,4:37-47.
    [95]陈彦,吕新.基于GIS和地统计学得土壤养分空间变异特征研究-以新疆农七师125团为例[J].中国农学通报.2005,21(7):389-405.
    [96]李亮亮,依艳丽,凌国鑫,等.地统计学在土壤空间变异研究中的应用[J].土壤通报.2005,36(2):266-268.
    [97]刘宁.不同土地利用方式下黄河三角洲土壤特性空间变异研究—以垦利县为例[D].山东农业大学硕士学位论文,2007:37-42.
    [98]孟宝.土壤特性的空间变异性与绿洲生态空间稳定性研究[D].西北师范大学硕士学位论文,2006,5.
    [99]罗格平,许文强,陈曦.天山北坡绿洲不同土地利用对土壤特性的影响[J].地理学报.2005,60(5):699-790.
    [100]张飞,塔西甫拉提·特依拜,丁建丽.渭干河—库车河三角洲绿洲盐渍化土壤特征研究[J].干旱地区农业研究,2007,25(2):146-161.
    [101]满苏尔·沙比提,阿布拉江,安尼瓦尔.新疆库车县耕地人口承载能力研究[J].干旱区资源与环境,2002,16(3):28-32.
    [102]陈小兵,杨劲松等.渭干河灌区灌排管理与水盐平衡研究[J].农业工程学报,2008,24(4):59-65.
    [103]库车县志编纂委员会编.库车县志[Z].乌鲁木齐:新疆大学出版社,1991:1-81.
    [104]沙雅县史志编纂委员会.沙雅县志[Z].乌鲁木齐:新疆人民出版社,1995:1-7.
    [105]新和县地方志编纂委员会,新和县志[Z].乌鲁木齐:新疆人民出版社,1997:1-5.
    [106]库车县水利志编纂委员会编.库车县水利志[z].乌鲁木齐:新疆科技卫生出版社1993,22-23.
    [107]钱云,郝毓灵主编.新疆绿洲[M].新疆人民出版社,2000,5.358-359.
    [108]阿布都瓦斯提·吾拉木,秦其明.地下水遥感监测研究进展[J].农业工程学报,2004,20(1):184-188.
    [109]刘立诚.塔里木盆地北部土壤盐渍化特征的初步研究[J].土壤通报,1994,6(12):196~200.
    [110]王春得,赵忠贤.新疆渭干河灌区水文地质条件变化及排水措施探讨[J].地下水,2006,28(6):87-89.
    [111]满苏尔·沙比提,陈冬花.渭干河—库车河三角洲绿洲形成演变和可持续发展研究[J].资源科学,2005,27(6):118-124.
    [112]吐尔逊·艾山,塔西甫拉提·特依拜,丁建丽.基于TM图像的塔里木盆地北缘盐渍地亮度值分析[J].土壤,2008,40(4):667-671.
    [113]谢霞.艾比湖区域生态脆弱性评价遥感研究[D].新疆大学博士学位论文,2010:36-37.
    [114]邬建国.景观生态学-概念与理论[J].生态学杂志,2000.19(1)42-52.
    [115]吴亚妮.车尔臣河中下游流域生态环境敏感性评价及其空间分布研究[D].新疆大学硕士学位论文,2008:9-30.
    [116]王桥,杨一鹏,黄家柱等.环境遥感[M].科学出版社,北京,2005,70-71.
    [117]张飞.干旱区绿洲盐渍化地光谱、空间特征与成分研究——以渭干河─库车河三角洲绿洲为例[D].新疆大学硕士学位论文,2007:32-34.
    [118]梅安新,彭望琭,秦其明,刘惠平.遥感导论[M].高等教育出版社,北京,2004,193-199.
    [119]王晓慧,李增元,高志海,等.沙化土地信息提取研究[J].林业科学,2005,41(3):82-87.
    [120]王思远,刘纪远,张增祥,等.近10年中国土地利用格局及其演变[J].地理学报,2002,57(5):523-530.
    [121]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
    [122]塔西甫拉提·特依拜,任福文.利用分形理论对土地覆盖变化趋势的遥感定量研究[J].新疆大学学报(自然科学版),2004,21(3):225-231.
    [123]罗格平,周成虎,陈曦.干旱区绿洲土地利用与覆被变化过程[J].地理学报,2003,58(1):63-72.
    [124]马勇刚.于田绿洲LUCC及其生态效应的影响[D].新疆大学硕士学位论文,2006.
    [125]邬建国.景观生态学——格局、过程、尺度与等级[M].高等教育出版社,2000.
    [126]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978.
    [127]张超,杨秉赓.计量地理学基础[M].北京:高等教育出版社,1991:13-18.
    [128]张文彤,闫洁. SPSS统计分析基础教程[M].北京:科学出版社,2001.325~328.
    [129]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    [130] Pucci A A, Murashige J A E. Application of universal kriging to an aquifer study in NewJersey [J]. Ground Water,1987,25:672~678.
    [131] Theodossiou N, Latinopoulos P. Evaluation and optimisation of groundwater observationnetworks using the Kriging methodology [J]. Environmental Modelling and Software,2006,21(7):991~1000.
    [132] Triantafilis J, Odeh I O A, Warr B, et al. Mapping of salinity risk in the lower Namoi valleyusing non-linear kriging methods [J]. Agricultural Water Management,2004,69:203~231.
    [133]李述刚,王周琼.荒漠土壤碱化分级的初步研究[A].中国土壤学会盐渍土专业委员会编.中国盐渍土分类分级文集[C].南京:江苏科学技术出版社,1989.135-139.
    [134]刘淑瑶,谢遗民.近代黄河三角洲盐渍土分类分级主要依据的探讨[A].中国土壤学会盐渍土专业委员会编.中国盐渍土分类分级文集[C].南京:江苏科学技术出版社,1989.40-47.
    [135]顾峰雪,张远东,等.阜康绿洲土壤盐渍化与植物群落多样性的相关性分析[J].资源科学,2002,24(3):42-48.
    [136]李会志.基于RS/GIS的开都河流域下游绿洲土壤盐渍化动态变化研究[D].新疆师范大学硕士学位论文,2010:22~23.
    [137]李海东.苏南丘陵区小流域土壤特性空间变异及其植被影响的研究[D].南京林业大学硕士学位论文,2008:34-35.
    [138]任云霞.基于RS/GIS的绿洲土壤盐渍化特征分析—以开都河流域下游绿洲为例[D].新疆师范大学硕士学位论文,2011:27~28.
    [139]关元秀,刘高焕,王劲峰.基于GIS的黄河三角洲盐碱地改良分区[J].地理学报,2001,56(2):198~205.
    [140]季方.塔里木盆地绿洲土壤水盐动态变化与调控[M].北京:海洋出版社,2001,79-118.
    [141]张芳.新疆奇台绿洲土壤碱化特征及遥感监测研究[D].新疆大学博士学位论文,2011:34-37.
    [142]瓦哈甫·哈力克,海米提·依米提,塔西甫拉提·特依拜,等.绿洲耕地变化趋势及其驱动力—塔里木盆地南部策勒绿洲为例[J].地理学报,2004,59(4):608~614.
    [143]麦麦提吐尔逊·艾则孜.伊犁河谷灌区土壤盐渍化与地下水调控研究[D].新疆大学博士学位论文,2010:98-99.
    [144]翁永玲,宫鹏.黄河三角洲盐渍土盐分特征研究[J].南京大学学报(自然科学),2006,42(6):602~610.
    [145]刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的实验研究[J].土壤通报,2001,32(6):85~87.
    [146]李贻学,东野光亮,李新举.黄河三角洲盐渍土可持续利用对策[J].水土保持学报,2003,17(2):55~61.
    [147]周颖,张侠,周峰.江苏省耕地地力等级划分[J].南京大学学报(自然科学版),2003,39(4):580~586.
    [148]汤国安,杨西.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006,363-422.
    [149]胡玉福,邓良基,张世熔,等.四川盆地西缘浅层地下水铁、锰含量的空间变异特征[J].生态学报,2009,29(2):797~803.
    [150] Zhang S R,Sun B,Zhao Q G,et al. Temporal-spatial variability of soil organic carbon stocksin rehabilitating ecosystem [J], Pedosphere,2004,14(4):501-508.
    [151] Calow R C, Robins N S. Groundwater management in drought-prone areas of Africa[J].Water Resources Development,1997,13(2):241-261.
    [152]王根绪,杨玲媛,陈玲等.黑河流域土地利用变化对地下水资源的影响[J].地理学报,2005,60(3):456-466.
    [153]闫金凤,陈曦等.绿洲浅层地下水位与水质变化对人为驱动LUCC的响应—以三工河流域为例[J].自然资源学报,2005,20(2):172-180.
    [154]胡晓利,卢玲.黑河中游张掖绿洲地下水时空变异性分析[J].中国沙漠,2009,29(4):777-784.
    [155]张元禧,施鑫源.地下水水文学[M].中国水利水电出版社,1998.
    [156]曲焕林.中国干旱半干旱地区地下水资源评价[M].科学出版社,北京,1991.3-6.
    [157]宋郁东,樊自立,雷志栋等.中国塔里木河水资源与生态问题研究[M].乌鲁木齐:新疆人民出版社,2000.101-103.
    [158]徐海量,宋郁东,王强等.塔里木河中下游地区不同地下水位对植被的影响[J].植物生态学报2004,28(3):400-405.
    [159]苏里坦,宋郁东,张展羽.新疆渭干河流域地下水含盐量的时空变异特征[J].地理学报,2003,58(6):854-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700