黄土原灌区地下水动态规律及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土原灌区位于陕西省关中盆地中部,在关中国民经济中占有相当重要的位置。但该区域存在降雨量时空分布不均、地表水水量不足等问题,严重影响该区域国民经济的发展。因此国家建设了一批灌溉工程,从而缓解当地水资源紧缺的局面,提高经济发展速度。随着社会经济的发展,人们对水资源的需求量也日渐增多,地下水开采成为解决该区水资源严重不足的主要方式,但是导致了地下水水位持续下降等环境问题。因此研究灌区地下水的补排关系、动态规律对于灌区水资源合理开发和利用有着十分重要的作用,关乎整个灌区的国民经济发展速度和生态环境安全。
     本次研究在全面总结国内外地下水动态规律研究的基础上,对灌区地下水水位动态变化机理及动态特征进行了深入而系统的研究。同时对黄土原典型灌区水文地质进行概化,建立了水文地质概念模型,并依赖FEFLOW和GIS软件对灌区地下水动态进行数值模拟,最后对2013年典型灌区的地下水动态趋势进行了预测。本次论文研究的主要结论有:
     (1)本次论文通过对黄土原灌区地下水流场总体趋势、地下水水位年际变化特征、年内变化特征以及时空变化特征的分析,全面总结了1983—2009年末灌区地下水水位的动态特征,为今后深入研究灌区地下水动态及调控提供理论依据。研究表明:灌区潜水水位介于405-558m之间,山前洪积扇前缘的北部水位高于南部台原区水位,除部分洼地以外,地下水流场基本是从西北向东南人后靠近南北边界排除。在不同地址单元内,因含水层黄土的渗透系数以及给水度的不同,地下水位年内动态变化差异也不一样,但总体趋势是冬灌开始以后,地下水有一个小幅回升的过程,然后又下降,在3、4月份出现一个峰值,春灌后水位又有回升,夏季到来后地下水开始下降且幅度较大,到雨季来临之前又出现一个峰值,之后水位又开始回升。自1983年以后,地水位年际动态变化总体趋势是上升—下降。总体来说,灌溉、降雨以及人工开采对黄土原灌区地下水位水位动态变化的影响最大,其次是地质因素。
     (2)根据宝羊灌区水文地质条件,概化并建立水文地质模型,同时借助GIS,利用FEFLOW软件建立相应的数值模型,通过对模型进行多次调参、运行、识别,最终获取了较合理、较准确的水文地质参数(见表6-9),从而实现了该区地下水位动态时空变化的可视化模拟。同时通过实测流场和模拟流场的对比发现:地下水模拟流场和实际流场总趋势基本一样,模拟值与实测值之间的相关系数为0.8060~0.8987,典型代表观地下水位模拟值与实测值之间的平均均方根误差为0.4732,说明模拟值和实测值的误差较小,所建立的数值模型较合理,能够较好的反映地下水动态的实际情况,对于下一步的地下水动态预测是可行的。
     (3)根据研究区社会经济发展状况、气象条件、各部门用水情况以及农业节水措施等,假设两种不同的情景方案,将预先设定的地下水汇源项加入经过验证识别的FEFLOW数值模型,预测2013年黄土原灌区水位变化。两种方案下,2013年地下水较之前2009年仍然是下降的,方案一较方案二总体水位降幅较大,但是两种方案地下水变化幅度都不大,与2009年地下水水位相比不超过1.3m,灌区地下水下降速度得到有效控制。
Loess Mesa Irrigation District is located in the middle of Guanzhong Basin of Shaanxi,And agriculture of Guanzhong plays a very important role. But the existence and uneven distribution of rainfall and groundwater inadequate water, the region will seriously affect the economic development. therefore, countries to build a number of irrigation project, thus easing the shortage of water resources and enhance economic development. as the social and economic development, the demand for water resources are ever-growing number of underground mining be solving the serious shortage of water, but in the underground water level continued to decline for environmental problems.
     In a comprehensive review of the research and study of underground movement regular basis, in addition, the ground and dynamic features refers to the dynamics of intensive study. the system for Loess Mesa Irrigation District termed a typical addition to all, established the conceptual model, and rely on the geological feflow and gis in addition to software groundwater numerical simulation of motion in 2013, finally, a typical addition to the tendency to predict the movements of the ground. this paper studies the main conclusions are:
     (1) The thesis analyses the irrigation water flow trend, interannual and annual variations of groundwater level, spatial and temporal variations, comprehensively summarizes 1983-2009 dynamic characteristics of irrigation groundwater and the problems, and provide theoretical basis for the future In-depth study and regulation. The detailed conclusions are: Phreatic water level of irrigation is between 405-558m, and the groundwater level of the Beishan edge of the alluvial fan in the north is higher than the level of platform area in the south, except for some low-lying land, groundwater flow field is basically from northwest to southeast. In different locations, because of the different of the loess aquifer and the water permeability coefficient, the water table dynamic changes is different during the year. But the overall trend of groundwater level is slight rebound in the process after the start of winter irrigation, and then decline. In March and April, there is a peak. After the spring irrigation, groundwater levels will rebound, and groundwater level begins to decline after the arrival of summer by a wide margin, before the rainy season, a peak will be appeared and then the groundwater level begins to rise. Since 1983, the overall variation trend of groundwater level dynamic is rising– decline. Overall, irrigation, rainfall and artificial groundwater exploitation will mostly affect groundwater level dynamics, and followed by geological factors.
     (2) According to hydrogeological conditions of BaoYang Irrigation, hydro-geological model is generalized and established, and GIS and FEFLOW software is used to establish numerical model. After adjusting parameters, operation, identification of the model, a more reasonable and more accurate hydrogeological parameters(see Table 6-9) is ultimately obtained, and the spatial and temporal variation of groundwater dynamic is visually simulated. And according to the comparison of measured flow field and simulated flow field, we can see that the general trend of measured and simulated flow field is same, the correlation coefficient is 0.8060~0.8987, the average root mean square error of simulated and observed values is 0.4732. This error is small, which shows that the established numerical model is reasonable, has a better reflection of the actual situation of groundwater, and is feasible for groundwater dynamic prediction.
     (3) According to the socio-economic development of the study area, meteorological conditions, water demand in different sector and agricultural water-saving measures, two different scenarios are assumed, pre-set Huiyuan items is added to identified proven FEFLOW numerical model, and loess of the original irrigation water level in 2013 is predicted. Groundwater level in both scenarios falls comparing with 2009, comparatively, the groundwater decline rate of the scenario one is bigger than the rate of the scenario two. But the decline rate of both scenarios are not big, that is to say, compared 2009 groundwater table is no more than 1. 3m,the groundwater decline rate is effectively controlled in irrigation
引文
国土资源部信息中心编译. 2001.21世纪国际水资源研究发展趋势.
    马驰. 1998.潜水三维非稳定流数值计算[硕士学位论文].陕西西安:西安工程学院.
    崔亚莉,邵景力,韩双平.2001.西北地区地下水的地质生态环境调节作用研究.地学前缘, 8(1):191-196.
    郭瑞.2008.兴平市地下水动态特征及数值模拟研究[硕士论文].陕西杨凌:西北农林科技大学
    赵旭. 2009.基于FEFLOW和GIS技术的咸阳市地下水数值模拟研究[硕士论文].陕西杨凌:西北农林科技大学.
    陈梦熊,马凤山.2002中国地下水资源与环境.北京:地震出版社.
    马岚.2009.石羊河下游民勤盆地地下水水位动态模拟与其调控研究[博士论文].陕西杨凌:西北农林科技大学.
    陈葆仁,洪再吉,汪福析.1988.地下水动态及其预测.北京:科学出版社.
    杨旭.2003.基于GIS的地下水资源评价模型研究—以常州、武进地区为例[硕士论文].南京师范大学.
    杨军.2005.地下水流可视化模拟系统研究[硕士论文].河海大学.
    李涛.2005.子牙河流域地表水与地下水联合模拟[硕士论文].吉林大学.
    陈崇希,等.2001.地下水开采——地面沉降数值模拟及防治对策研究.武汉:中国地质大学出版社.
    魏林宏,束龙仓,郝振纯.2000.地下水流数值模拟的研究现状和发展趋势.重庆大学学报(自然科学版),23(增刊):50-52.
    郝治福.2006.石羊河流域邓马营湖区地下水位动态变化特征及数值模拟与预报[硕士论文].中国农业大学.
    周仰效.1995.国外地下水流及传输的模拟.现状与趋势:200-209.
    郝治福,康绍忠.2006.地下水系统数值模拟的研究现状和发展趋势.水利水电科技进展, 26(1):77-81.
    杨春玲,邢世录,韩爱中.2007.地下水系统数值模拟的研究进展.内蒙古科技与经济,(21): 305-307.
    陈家军,王红旗,张征,等.1998.地质统计学方法在地下水水位估值中应用.水文地质工程地质,(6):7-10,46.
    王玮.2003.水文地质数值模拟中节点地面标高的获取方法.长安大学学报(地球科学版), 25(2):41-45.
    卞锦宇,薛禹群,程诚,等.2002上海市浦西地区地下水三维数值模拟.中国岩溶,21(3): 182-187.
    卢文喜.2003.地下水运动数值模拟过程中边界条件问题探讨.水利学报,(3):33-36.
    武强,徐华.2003.地下水模拟的可视化设计环境.计算机工程,29(6):69-70,190.
    张明江,门国发,陈崇希.2004.渭干河流域三维地下水流数值模拟.新疆地质,22(3): 238-243.
    刘俊民.1996.渭北黄土台原灌区地下水及开发利用的可持续性研究[博士学位论文].杨凌.西北农业大学
    张祥伟,竹内邦良.2004.大区域地下水模拟的理论和方法.水利学报,(6):7-13.
    张石峰,李茜,高佩玲,等.2001地下水系统的动态模拟.新疆大学学报(理工版),18(2): 165-168.
    崔亚莉,邵景力,李慈君,等.2003.玛纳斯河流域山前平原地下水系统分析及其模拟.水文地质工程地质,(5):18-22.
    韩宇平,许拯民,蒋任飞.2007银川平原地下水流的数值模拟.西北农林科技大学学报(自然科学版),35(12): 222-226.
    赵国红,宁立波,王现国.2007.新郑市浅层地下水流数值模拟及评价.地下水,29(6):43-46.
    陈锁忠,陶芸,杨旭.2002.随机模型预测潜水位动态变化的方法.南京师范大学学报,2(1):75-80.
    平建华,李升,钦丽娟等.2006.地下水动态预测模型的回顾与展望.水资源保护,22(4):11-15.
    曾瑜.2005.基于空间插值模型的绿洲地下水时空变化研究—以奇台绿洲为例[硕士论文].新疆大学.
    薛禹群,谢春红.1980.水文地质学的数值法.北京:煤炭工业出版社.
    王晓明,代革联,巨天乙等.2004.可视化的地下水数值模拟.西安科技学院学报,24(2):184-186.
    毛军,贾绍凤,张克斌.2007.FEFLOW软件在地下水数值模拟中的应用—以柴达木盆地香日德绿洲为例.中国水土保持科学,5(4):44-48.
    贺国平,周东,赵月芬,等.2006.遥感技术和FEFLOW在北京市平原区地下水合理开发利用中的应用.地球学报,27(3):277-282.
    马驰,石辉,卢玉东.2006.MODFLOW在西北地区地下水资源评价中的应用—以甘肃西华水源地地下水数值模拟计算为例.干旱区资源与环境,20(2):89-93.
    余维,王博,陈真林.2006.MODFLOW在井灌区地下水数值模拟中的应用.中国农村水利水电, (11):17-21.
    薛禹群.2010中国地下水数值模拟的现状与展望.高校地质学报,16(1):1-6.
    李佩成,刘俊民.1995论黄土台原的地质地貌特征.干旱地区农业研究,13(4):90-96.
    李佩成,包纪祥等.1993.黄土台原的治理与开发.西安:陕西人民出版社.
    李丽.2008.渭北黄土台原灌区地下水形成条件及动态研究[硕士论文].陕西杨凌:西北农林科技大学.
    刘东生等.1985.黄土与环境.北京:科学出版社.
    中国科学院中国自然地理编辑委员会.1984.中国自然地理气候.北京:科学出版社.
    西北农林科技大学水利于建筑工程学院.2001.渭北黄土台原灌区地下水开发利用的可持续性研究.
    中科院黄考队.1991.黄土高原的地区地下水资源合理利用.北京:中国科学出版社.
    戚筱俊.1996.工程地质及水文地质.北京:中国水利水电出版社.
    张元禧.1998.地下水水文学.中国水利水电出版社.
    高佩玲.2001.山前洪积扇与冲洪积平原多层结构含水层地下水模型的研究及应用[硕士论文].新疆大学.
    Kontur I.F.1982.Stochastic Groundwater Preceptation Evaporation Models. Session l,International Conference on Mordern Approaches to Groundwater Resouces.Water Resources Research, (1):1258~1263.
    FREEZE R A.1975.A stochastic conceptual analysis of one dimensional groundwater flow in a nanuniform homogeneous media[J].Water Resources, 11(5):725~741.
    VASSOLO R,KINZELBACH W,SCHAFER W.1998.Determination of a well head protection zone by stochastic inverse modeling[J].Journal of Hydrlogy, 206:268~280.
    Anderson M. P,Woessner W.1992.Applied Groundwater Modeling-Simulation of Flow and Advective Transport.New York: Academic Press Inc.
    Jun-Mo Kim, Richard R. Parizek.1997.Numerical Simulation of the Noordbergum Effect Resulting from Groundwater Pumping in a Layered Aquifer System. Journal of Hydrology,202:231-243.
    Timothy Scheibe, Steven Yabusaki.1998.Scaling of Flow and Transport Behavior in Heterogeneous Groundwater Systems. Advances in Water Resources,22(3): 223-238.
    Mazzia A, Puttii M.2002.Mixed-finite Element and Finite Volume Discretization for Heavy Brine Simulations in Groundwater.Journal of Computational and Applied Mathematics,147: 191-213.
    Shu-Guang Li, Dennis McLaughlin, Hua-Sheng Liao.2003.A Computationally Practical Method for Stochastic Groundwater Modeling.Advances in Water Resources, 26: 1137-1148.
    B. Ataie-Ashtiani, R. E. Volker, D. A. Lockington.1999.Numerical and Experimental Study of Seepage in Unconfined Aquifers with a Periodic Boundary Condition. Journal of Hydrology, 222: 165-184.
    Hassan Smaouia, Lahcen Zouhrib, Abdellatif Ouahsine.2008.Flux-limiting Techniques for Simulation of Pollutant Transport in Porous Media: Application to Groundwater Management. Mathematical and Computer Modelling,47: 47-59.
    B. Ataie-Ashtiani.2007.MODSharp: Regional-scale Numerical Model for Quantifying Groundwater Flux and Contaminant Discharge into the Coastal Zone. Environmental Modelling & Software, 22(9): 1307-1315.
    Anon.2000a.SSg Software.Washington: The Scientific Software Group, 4-5.
    Anon.2000b .Visual Groundwater User's Manual.Ontario: Waterloo Hydrogeologic Inc,19-78.
    Michael H. A, A. E. Mulligan and C. F,Harvey.2005.Seasonal oscillations in water exchange between aquifer and the coastal. Nature,436(25):1145-1148.
    Reynolds D. A. and S. Marimuthu.2007.Deuterium composition and flow path analysis as additional calibration targets to calibrate groundwater flow simulation in a ccoastal wetlands system. Hydrogeology Journal,(15):515-535.
    Sarwar A. and E. Helmut.2006.Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeology Journal, (14):1676-1678.
    Grasle W,W. Kessels, H. J. Kumpel, et al.2006.Hydraulic observations from one year fluid production testing the 4000m deep KTB pilot boreholeC Geofluids,(6):8-23.
    Yang J. W. and Monica R.2006.Paleo-fluid flow and heat transport at 1575 Ma over an E-W section in the Northern Lawn Hill platform, Australia: Theoretical results from finite element modeling. Journal of Geochemical Exploration,(89):445-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700