二自由度解耦球面并联机构运动学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解耦球面并联机构是一类具有工程实际应用价值的并联机构,研究和开发该类机构,并对其性能进行全面的分析是机械系统创新及应用的基础性和关键性工作之一。
     本文以二自由度解耦球面并联机构的分析与开发为目标,运用机构学理论以及计算机仿真技术等,较系统地进行了机构构型研究、运动学分析、机构结构尺寸与机构性能的关系和误差分析等机构设计的关键技术问题,取得了如下创新性成果:
     1.给出了二自由度RR &Π和LRRR&PRR解耦球面并联机构的一般构型,并针对RR&PRR机构,从工作空间出发,结合结构设计及运动设计,提出了该机构的两种改进构型;
     2.针对二自由度RR &Π和LRRR&PRR解耦球面并联机构,完成了运动学分析,分别建立了两种解耦球面并联机构的运动学方程,给出了机构的位置、速度和加速度正、反解的表达式;
     3.针对两种机构构型,完成了机构运动工作空间和奇异位形分析,并给出了两种机构的实际工作空间范围;
     4.应用机构设计的无量纲法,建立了机构的空间模型;给出了机构的速度性能指标、承载能力性能指标和刚度性能指标的描述方法,并提出了应用性能指标的均值及其波动情况描述机构性能的新方法,以等值线的形式分别绘制了机构的性能图谱;研究了机构尺寸参数与机构性能之间的关系,给出了机构尺寸参数与机构性能间的定量关系,确定了在不同性能指标要求下机构杆件无量纲设计尺寸的取值范围;
     5.应用环路增量法,给出了机构的闭环方程,建立了机构各杆件原始参数误差间的约束关系,并通过机构的位姿误差模型、速度误差模型以及加速度误差模型,分析了机构动平台运动误差与机构杆件参数误差的关系。
     论文工作为丰富并联机构构型设计理论体系、促进球面并联机构的工程应用奠定了坚实的基础。
Decoupled spherical parallel mechanisms are a type of useful and applicable parallel mechanisms in engineering. In-depth investigation and comprehensive analysis to this type of mechanisms is the foundational key work for innovation and utilization of mechanical sysytems.
     Aimed at analysing and developing 2-DOF decoupled spherical parallel mechanisms, this dissertation systematically deals with key issues of the mechanisms design, such as mechanism configuration, kinematics analysis, relations between linkage length and mechanism performances, and movement error analysis, etc., by employing mechanism theory and computer simulation techniques. The creative contributions may be summarized as follows.
     1. The general configurations of two types of 2-DOF decoupled spherical parallel mechanisms, termed respectively as RR &ΠLRand , are given. For the mechanism, in order to meet the workspace requirements, two types of improved mechanism are presented by combining structure design and kinematics design.
     2. Aimed at the mechanisms of RR &ΠLRand , kinematics analyses are conducted and the kinematics equations are also established, thus deriving and formulating the direct and reverse solutions of position, velocity and acceleration.
     3. The workspace and singular configuration of those two mechanisms are analyzed, and their practical workspaces are also given.
     4. The spatial models of the mechanisms are established by employing the non-dimensional method to design mechanisms. The methods of describing the performance indexes of velocity, load-carrying capacity and stiffness are given. Also, a novel method to describe the mechanism’s performances by using the mean value of performance indexes and its fluctuation is proposed. And the performance spectrum diagrams are drawn in the form of contour series. In addition, the effect of linkage length on mechanism performance is also studied, and the relations between linkage length parameters and the mechanism performance are therefore quantitatively given. And the effective ranges of the non-dimensionally designed linkage length are determined under different requirements for performance indexes.
     5. The closed-loop equations of the mechanisms are given by employing closed-loop increment method. After establishing the constraints relations among the original linkage parameters errors, the relations between the movement error of the moving platform and the linkage length are analyzed by using the position and pose error models, velocity error models and acceleration error models.
     The work in this dissertation will lay a solid foundation for developing the configuration design theory of parallel mechanism and for boosting application of spherical parallel mechanism in engineering.
引文
[1] Tsai L W. Robot Analysis: The Mechanics of serial and parallel manipulators [J], New York: Wiley- Interscience Publication, 1999
    [2]言川宣.机床结构的重大创新——VARIAX机床问世.世界制造技术与装备市场,1995,26(1):5-17
    [3]中国机床工具工业协会.EM097新技术系列报道之一:六条腿机床取得重大进展.世界制造技术与装备市场,1998,1(2):17-21
    [4]赵新华.并联机器人研究进展[J].天津理工学院学报,1998,14(4):32-35
    [5] Gwinnett J E. Amusement devices [P]. US Patent: No.1789680, 1931
    [6] W.L.V.Pollard. Spray painting machine [P]. US Patent: No. 2213108, 1940
    [7] V.E. Gough, S.G. Whitehall. Universal tyre test machine [C]. Proceedings of FISITA 9th International Techanical Congress, 1962(3): 117-137
    [8] D. Stewart. A platform with six degrees of freedom [C]. Proceedings of the Institution of Mechanical Engineers, London, UK, 1965: 371-386
    [9] K. H. Hunt. Structural kinematic of in-parallel-actuated robot arms [J], ASME Journal of Mechanisms, Transmissions and Automation in Design, 1983, 8 (5): 705-712
    [10] H. MacCallion, D. T. Pham. The analysis of a 6-DOF work station for mechanized assembly [C]. Proceedings of 5th Congress on TMM, Montreal, Canada, 1979: 611-616
    [11] D.C.H Yang, T. W. Lee. Feasibility study of a plat type of robot manipulators form a kinematic viewpoint [J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1984, 106(2): 191-198
    [12] M. G. Mohamed, J. Duffy. A direct determination of the instantaneous kinematics of fully parallel robot manipulators [J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1985, 107(2): 226-229
    [13] E.F. Fichter. A Stewart platform-based manipulator: General theory and practical construction [J]. The International Journal of Robotics Research, 1986, 5(2): 157-182
    [14] J.-P. Merlet. Force-feedback control of parallel manipulators [C]. Proceedings of the IEEE Int. Conf. on Robotics and Automation, 1988: 1484-1489
    [15] Z. Huang. Modeling formulation of 6-DOF multi-loop parallel manipulators. part-I: kinematic influence matrix [C]. Proceedings of 4th IFToMM Conference on Mechanisms and CAD, Romania, 1985
    [16] Z. Huang, H. B. Wang. Dynamic force analysis of 6-DOF parallel multiloop robot manipulators [J]. ASME Paper 86-DET-168, 1986
    [17] C. M. Gosselin, Angeles. The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator [J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1988, 110(1): 35-41
    [18] K. M. Lee, D. K. Shah. Kinematic analysis of a 3-DOF in parallel actuated manipulator [J]. IEEE Journal of Robotics and Automation, 1988, 4(3): 354-360
    [19] H. Inoue. Parallel manipulator [C]. Proceeding of 3rd International Symposium on Robotics Research, 1985: 321-327
    [20]黄真.空间机构学[M].北京:机械工业出版社,1989
    [21] I. Bonev. The true origins of parallel robots [EB/OL]. http://www.parallemic.org, 2008-10-5
    [22] J.-P. Merlet. Parallel robots [M]. Dordrecht: Kluwer Academic Publishers, 2000
    [23]张曙.典型的并联运动机床[EB/OL].http://www.icad.com.cn/wencui/ShowArticle.asp?ArticleID= 5384, 2008-10-20
    [24] Biorobotics Laboratory of UW. Linear Haptic Display (LHD) [EB/OL]. http://brl.ee.washington.edu/ Research_Active/Haptics/Device_04_LHD/LHD.html, November 10, 2008-10-20
    [25] Haptic Interface project. Haptic interface [EB/OL]. http://osl-www.colorado.edu/Research/haptic/ hapticInterface.shtml#Haptic%20Interface%20Hardware, November 10, 2008-10-20
    [26] VR Lab of University of Tsukuba. HapticMaster [EB/OL]. http://intron.kz.tsukuba.ac.jp/vrlab_web /hapticmaster/hapticmaster_e.html, November 10, 2008-10-20
    [27] Mechanical Engineering and Science of Tokyo Institute of Technology. Spatial in-parallel wire-driven mechanism with 6-DOF for haptic interface applications [EB/OL]. http://www.mech.titech.ac.jp/~msd /takeda /WireHaptic(1998).htm, November 10, 2008-10-20
    [28]汪劲松,段广洪,杨向东.虚拟轴机床的研究进展-兼谈在清华大学研制成功的VAMT1Y型原型样机[J].科技导报,1998,8(4):32-34
    [29]王知行,陈辉,石勇.用七轴联动并串联机床加工汽轮机叶片[J].世界制造技术与装备市场,2002,6(13):31-32
    [30]范守文,徐礼矩,甘泉.一种新型虚拟轴机床的结构设计与位置分析[J].电子科技大学学报,2001,30(5):464-467
    [31]蔡光起,胡明,郭成.机器人化三腿磨削机床的研制[J].制造技术与机床,1998,10(2):4-6
    [32]赵铁石,黄田.一种三维移动并联平台机构运动学分析[J].中国机械工程,2001,12(6):613-616
    [33]邱志成,张红,赵明扬.新型五坐标并联机床的机构学及运动学[J].组合机床与自动化加工技术,1999,8(1):1-3
    [34]赵辉.五自由度五轴并联机床关键技术研究[博士学位论文].北京:北京航空航天大学,2004
    [35]江崇民,王振宇,王哲元.XNZD2415型数控龙门并联机床简介[J].机械工程师,2003,2(1):53-54
    [36]赵永生.3维移动2维转动5轴联动并联机床机构[P].中国专利: 02104943.2,2002
    [37] Lionel Birglen, Clément Gosselin, et al. SHaDe, A new 3-DOF haptic device [J]. Preprint of a Paper Published in IEEE Transactions on Robotics and Automation, 2002, 18(2): 166-175
    [38] Y. Tsumaki, H. Naruse, D. N. Nenchev, et al. Design of a compact 6-DOF haptic interface [C]. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, 5(115): 2580-2585
    [39] W Hunter. Manipulation and dynamical mechanical testing of microscopic objects using a tele-micro-robot system [C]. Proceedings of the IEEE ICRA, 1989, 12(40): 1553-1558
    [40] K. Y. Woo, B. D. Jin, D. S. Kwon. A 6-DOF force-reflecting hand controller using the five-bar parallel mechanism [C]. Proc. IEEE Int. Conf. on Robotics and Automation’98, Leuven, Belgium,1998: 1597–1602
    [41] Se-Kyong Song, Dong-Soo Kwon. Efficient formulation approach for the forward kinematics of parallel mechanisms [J]. Advanced Robotics, 2002, 16(2): 191–215
    [42] M. Washizu. Manipulation of biological objects mechanical structures [C]. Proceedings of IEEE Micro Mechanical Systems, Travemunde, Germany, 1992: 196-201
    [43] T. Tanikawa, T. Arai, P. Ojala. Two finger micro hand [C]. Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995: 1674-1679
    [44] T. Dohi. Computer aided surgey and micro machine [C]. Proceedings of 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1993: 21-24
    [45] K. W. Grace, J. E. Colgate. A 6-DOF micromanipulator for ophthalmic surgey [C]. Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1993: 630-635
    [46] J.-P. Merlet. Optimal design for the micro parallel robot MIPS [C]. Proceedings of IEEE International Conference on Robotics and Automation, Washington, 2002: 1149-1154
    [47]安辉.压电陶瓷驱动六自由度并联微动机器人的研究[博士学位论文].哈尔滨:哈尔滨工业大学,1995
    [48]毕树生,王守杰,宗光华.串并联微动机构的运动学分析[J].机器人,1997,19(4):259-264
    [49] D. R. Kerr. Analysis properties and design of a Stewart-platform transducer [J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111: 25-28
    [50]陈滨.机器人手腕测力装置[J].机械工程学报,1988,24(2):83-87
    [51] Farshid Najafi, Nariman Sepehri. A novel hand-controller for remote ultrasound imaging [J]. Mechatronics, 2008(5): 1-13
    [52] Wang Xuanyin, Zhang Yang, Fu Xiaojie, et al. Design and kinematic analysis of a novel humanoid robot eye using pneumatic artificial muscles [J]. Journal of Bionic Engineering, 2008(5): 264–270
    [53] R. Clavel. A fast robot with parallel geometry [C]. Proceedings of the International Symposium on Industrial Robot, Switzerland, 1988: 91-100
    [54] J. M. Hervé, F. Sparacino. Structural synthesis of parallel robots generating spatial translation [C]. Proceedings of 5th IEEE Internationl Conference on Advanced Robotics, 1991: 808-813
    [55] R. E. Stamper, L. W. Tsai, G. C. Walsh. Optimization of a three dof translational platform for well-conditioned workspace [C]. Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, 1997: 3250-3255
    [56] L. W. Tsai, G. C. Walsh, R. E. Stamper. Kinematics of a novel three dof translational platform [C], Proceedings of the 1996 IEEE International Conference on Robotics and Automation, 1996: 3446-3451
    [57] L. W. Tsai. Kinematics of a 3-DOF platform with extensible limbs [J]. Recent Advances in Robot Kinematics, Kluwer Academic Publishers, 1996: 401-410
    [58]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M],北京:机械工业出版社,1997
    [59] R. Di Gregorio. Closed-form solution of the position analysis of the pure translational 3-RUU parallel mechanism [C]. Proceedings of the 8th Symposium on Mechanisms and Mechanical Transmissions, 2000: 119-124
    [60]杨廷力,金琼,刘安心,等.基于单开链单元的三平移并联机器人机构型综合及分类[J].江苏石油化工学院学报,2000,12( 4):35-38
    [61]刘安心,刘斌,姜剑虹,等.3-RCT三维移动并联机器人机构及其位置分析[J].解放军理工大学学报(自然科学版),2001,2(6):1-3
    [62] X. W. Kong, C. M. Gosselin. A class of 3-DOF translational parallel manipulators with linear input-output equations [C], Proceedings of Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Montreal, 2002: 25-32
    [63] Kong Xianwen, C. M. Gosselin. Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational manipulator [J]. International Journal of Robotics Research, 2002, 21(9): 791-798
    [64] M. Carricato, V. Parenti-Castelli. Singularity-free fully-isotropic translational parallel mechanisms [J]. International Journal of Robotics Research, 2002, 21(2): 161-174
    [65]李兴山,孙奕澎,蔡光起.2TPT-PTT并联机床运动学研究[J].东北大学学报(自然科学版),2002,23(10):1000-1003
    [66]李宏,赵铁石,黄真.一种3-P(4U)并联机器人的运动学分析[J].燕山大学学报,2003,27(4):133-138
    [67]黄秀琴,沈惠平.一种新型具有三维移动自由度并联机器人运动学分析[J].常州工学院学报,2004 17(2):7-11
    [68]李仕华,黄真.新型三维移动3-RRUR并联平台机构及其位置分析[J].机械设计,2005, 22(8):39-42
    [69]余顺年,马履中.两平移一转动并联机构位置及工作空间分析[J] .农业机械学报,2005,36(8):103-106
    [70]沈惠平,杨廷力.一种3-P⊥R//R⊥4r型解耦三维平移并联机构及其位置计算[J].机械设计,2006,23(3):22-24
    [71]张彦斌,吴鑫,刘宏昭等.一种新型3-CRP移动并联机构的设计和运动分析[J].中国机械工程,2008,19(4):435-438
    [72] F. Pierrot, O. Company. H4: A new family of 4-DOF parallel robots [C]. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, 1999: 508-513
    [73] L. Rolland. The Manta and the Kanuk: Novel 4-DOF parallel mechanisms for industrial handling [C]. Proceedings of ASME Dynamic Systems and Control Division of IMECE’99 Conference, Nashville, 1999: 831-844
    [74]赵铁石,黄真.欠秩空间并联机器人输入选取的理论和应用[J].机械工程学报,2000,36(10):81-85
    [75] D. Zlatanov, C. M. Gosselin. A new parallel architecture with four degrees of freedom [C]. Proceedings of the 2nd workshop on Computational Kinematics, Seoul, South Korea, 2001: 57-66
    [76]金琼,杨廷力,刘安心,等.基于单开链单元的三平移一转动并联机器人机构型综合[J].解放军理工大学学报(自然科学版),2001,2(3):15-19
    [77]金琼,杨廷力,刘安心,等.基于单开链单元的三平移一转动并联机器人机构型综合及分类[J].中国机械工程,2001,12(9):1038-1043
    [78]房海蓉,方跃法,胡明.3转动1移动并联机器人机构的结构综合[J].北方交通大学学报,2004,28(4):72-75
    [79]李宁宁,赵铁石,边辉.双重驱动四自由度并联机构型综合[J].机械设计与研究,2008,24(1):51-57
    [80] M. K. Lee, K. W. Park.. Kinematics and dynamics analysis of a double parallel manipulator for enlarging workspace and avoiding singularities [J]. IEEE Transaction on Robotics and Automation, 1999, 15(6): 1024-1034
    [81] Q. Jin, T.L. Yang, A.X. Liu, et al. Structure synthesis of a class of 5-DOF (three translation and two rotation)parallel robot mechanism based on single-opened-chain units [C]. Proceedings of ASME Design of Engineering Technical Conferences, Pisttsburgh, 2001, DETC/DAC-21153
    [82] Huang Zhen, Li Qinchuan. Two novel symmetrical 5-DOF parallel mechanism [J]. Journal of Yanshan University, Oct. 2001, 25(4): 283-286
    [83] Gao Feng, Li Weimin, Zhao Xianchao, et al. New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator design [J]. Mechanism and Machine Theory, 2002 (37): 1395–1411
    [84]彭斌彬.新型五自由度五轴数控并联卧式机床运动学设计方法研究[硕士学位论文].秦皇岛:燕山大学,2002年
    [85]覃艳明,张一同,鹿玲,等.5-UPS/PRPU五自由度并联机床精度分析[J].机械设计与研究,2004, 20(4):12-14
    [86]韩亚丽,马履中,尹小琴,等.二平移三转动并联机器人机构型综合研究[J].工程设计学报,2005,12(2):75-79
    [87] Fan Liangzhi, A.Y. Elatta, Li Xiaoping. Kinematic calibration for a hybrid 5-DOF manipulator based on 3-RPS in-actuated parallel manipulator. Int. Adv. Manufacture Technology, 2005(25): 730–734
    [88]高峰,刘辛军.五自由度五轴结构解耦并联微动机器人[EB/OL].http://www.patent-cn.com/B25J/ CN1257770.shtml, 2008-10-20
    [89]高峰,刘辛军.四自由度四轴结构解耦并联微动机器人[EB/OL].http://www.patent-cn.com/B25J /CN1257771.shtml, 2008-10-20
    [90]高峰,刘辛军.三自由度三轴结构解耦并联微动机器人[EB/OL].http://info.china.alibaba.conm /news/detail/v0-d1002659684.html, 2008-10-20
    [91] Luc Baron, Jorge Angeles. The kinematic decoupling of parallel manipulators using joint-sensor data [J]. IEEE Transactions on Robotics and Automation, 2000, 16(6): 644-651
    [92]金琼,杨廷力.一类新型三平移并联机器人机构的位置分析[J].东南大学学报(自然科学版),2001,31(5):33-38
    [93] Jin Qiong, Yang Ting-Li. Synthesis and analysis of a group of 3-DOF partially decoupled parallel manipulators [J]. Journal of Mechanical Design, 2004, 126(4): 301-306
    [94]李惠良,金琼,杨廷力.一类一平移两转动解耦并联机构及其位移分析[J].机械制造与研究,2002, 2(14):9-12
    [95]沈惠平,马正华,金琼,等.一种新型解耦二腿三维平移并联机构及其运动分析[J].江苏工业学院学报,2003, 15(3):44-47
    [96]沈惠平,马履中,沈春根,等.3-R//R//R-4r三平移解耦并联机构位置计算及样机研制[J].机械设计与研究,2004, 20(1):16-18
    [97]陈玉龙,高峰,张建军,等.新型并联解耦结构五维力传感器性能分析[J].仪器仪表学报,2004,25(5):669-671
    [98]杭鲁滨,王彦,杨廷力.一种新型三平移一转动解耦并联机构分析[J].中国机械工程,2004,15(12):1035-1037,1041
    [99] Li Weimin, Gao Feng, Zhang Jianjun. A 3-DOF translational manipulator with decoupled geometry [J]. Robotica, 2005, 23(12): 1-4
    [100] Li Weimin, Gao Feng and Zhang Jianjun. R-CUBE, a decoupled parallel manipulator only with revolute joints [J]. Mechanism and Machine Theory, 2005 (40): 467-473
    [101] Pinglang Yen, Chichung Lai. Dynamic modeling and control of a 3-DOF Cartesian parallel manipulator [J]. Mechatronics, 2008(9): 1-9
    [102] Pinglang Yen. A two-loop robust controller for compensation of the variant friction force in an over-constrained parallel kinematic machine [J]. International Journal of Machine Tools & Manufacture 2008 (48):1354–1365
    [103] D. Cox. The dynamic modeling and command signal formulation for parallel multi-parameter robotic devices[PhD Thesis]. University of Florida, 1981
    [104] H. Asada, C. Granito. Kinematic and static characterization of wrist joints and their optimal design [C]. Proceedings of IEEE International Conference on Robotics and Automation, St. Louis, 1985: 244-250
    [105] C. M. Gosselin, J. Angeles. The optimum kinematics design of a spherical 3-DOF parallel manipulator [J]. ASME Journal of Mechanisms Transmissions and Automation in Design, 1989, 111(2): 202-207
    [106] C. M. Gosselin, J. Sefrioui, M. J. Richard. On the direct kinematics of a class spherical 3-DOF parallel manipulator [C]. ASME 22nd Biennial Mechanisms Conference, Scottsdale, 1992: 13-19
    [107] C. M. Gosselin. On the kinematics design of spherical 3-DOF parallel manipulators [J]. The International Journal of Robotics Research, 1993, 12(4): 394-402
    [108] C. M. Gosselin,L. Perreault, Ch. Vaillancourt. Simulation and computer-aided kinematic design of 3-DOF spherical parallel manipulators [J], Journal of Robotic Systems, 1995, 12(12): 857-869
    [109] C. M. Gosselin, E. St-Pierre. Devolopment and experimentation of a fast 3-DOF camara-orienting device [J]. International Journal of Robotics Research, 1997, 16(5): 619-630
    [110] C. M. Gosselin, J. Sefrioui, M.J. Richard. On the direct kinematics of spherical 3-DOF parallel manipulator with a coplanar platform [J]. ASME Journal of Mechanical Design, 1994, 116(2): 587-593
    [111] M. Karouia, J.M.Hervé. A 3-DOF tripod for generating spherical rotation [J]. J.Lenar?i? and M.M. Stani?i?. Academic Publishers, 2000, 12(20): 395-402
    [112] R. Di Gregorio. Kinematics of a new spherical parallel manipulator with three equal legs: the 3-URC wrist [J]. Journal of Robotic Systems, 2001, 18(5): 213-219
    [113] R. Di Gregorio. The 3-RRS wrist: a new, very simple and not over constrained spherical parallel manipulator [C]. Proceedings of ASME Design Engineering Technical Conferences, Montreal, 2002
    [114] Massimo Callegari. Kinematics of a parallel mechanism for the generation of spherical motions [J]. Lenar?i? and C. Galletti (eds.), On Advances in Robot Kinematics, 2004, 6(14): 449-458
    [115]黄真,孔令富,方跃法著.并联机器人机构学理论及控制[J].北京:机械工业出版社,1997
    [116]孙立宁,刘宇,祝宇虹.一种用于腕关节的球面三自由度并联解耦机构位置分析[J].中国机械工程,2003,14(10):831-833
    [117] Marco Carricato, Vincenzo Parenti-Castelli. A novel fully decoupled two-degrees-of-freedom parallel wrist [J]. International Journal of Robotics Research. Vol. 23, No. 6, June 2004: 661-667
    [118]郭卫东,韩先国,陈五一.3PSS并联机构的运动特性分析[J].北京航空航天大学学报,2004,30(1):23-26
    [119] Clavel R. Delta: A fast robot with parallel geometry [C]. Proceedings of International Symposium on Industrial Robots, 1988: 91-100
    [120] Tsai L W, Walsh G C, Stamper R E. Kinematics of a novel three dof translational platform [C]. Proceedings of IEEE International Conference on Robotics and Automation, 1996: 3446-3451
    [121] Raffle DG, Vincenzo PC. Mobility analysis of the 3-UPU parallel mechanism assembled for a pure translational motion [J]. Journal of Mechanical Design, 2002, 124: 259-264
    [122] Pierrot F, Reynaud C, Fournier A. Delta: A simple and efficient parallel robot [J]. Robotica, 1990, 6(2): 105-109
    [123] Tsai LW, Walsh GC, Stamper RE. Kinematics of a novel 3-DOF translational platform [C]. Proc. of the Int. Conf. on Robotics and Automation, 1996: 3446-3451
    [124] Li W M, He K, Qu Y X, et al. Hemisphere: A fully-decoupled parallel 2-DOF spherical mechanism. Proceedings of the 7th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China.April 15th-17th, 2007:301-307
    [125]李为民,张建军,孙建广,等.二自由度解耦球面并联机构[P].中国专利:No. 200510122178.4, 2005
    [126]李为民,张建军,孙建广,等.二自由度解耦球面并联机构[P].中国专利:No. 200610013060.2, 2006
    [127]陈建涛,郝秀清,胡福生.3RRC并联机构位置和工作空间的图解法[J].山东理工大学学报(自然科学版),2006, 20(2):26-29
    [128]鲁开讲,牛禄峰,刘亚茹.3-RPS并联机构奇异位形及工作空间研究[J].农业机械学报,2007, 38(5):143-146
    [129]张立杰,刘辛军.一种并联机构最大内切工作空间几何求解[J].机械设计与研究,2002, 18(1):20-21
    [130]刘辛军,汪劲松,王启明,等.一种空间3自由度并联机器人的工作空间和转动能力分析[J].自然科学进展,2005, 15(2):212-220
    [131] Gosselin C, Angeles J. Singularity analysis of closed-loop kinematics chains [J]. IEEE Transactions on Robotics and Automation, 1990, 6(3): 281-290
    [132]郭宗和,段建国,郝秀清.4-PTT并联机构位置正反解与工作空间分析[J].农业机械学报,2008, 39(7):144-148
    [133]罗友高,郑相周,宾鸿赞.转动型3-UPU并联机构的奇异构形分析[J].华中科技大学学报(自然科学版),2007, 35(3):74-76
    [134] Karouia M , Herve J M. A 3-DOF of tripod for generating spherical rotation [J]. Advances in Robot Kinematics. Dordrecht: Kluwer Academic Publishers, 2000, 5(8): 395-402
    [135] Si J. Zhu, Zhen Huang, Ming Y. Zhao. Singularity analysis for six practicable 5-DOF fully-symmetrical parallel manipulators [J]. Mechanism and Machine Theory, 2008, 12(5): 1-16
    [136] Q.C. Li, Z. Huang, J.M. Hervé. Type synthesis of 3R2T 5-DOF parallel manipulators using the Lie group of displacements [J]. IEEE Trans. Robot. Automation, 2004, 20(2): 173–180
    [137] Z. Huang, L.H. Chen, Y.W. Li. The singularity principle and property of Stewart parallel manipulator [J]. Robot. Syst. 2003, 20(4): 163–176
    [138] X.W. Kong, C.M. Gosselin. Type synthesis of 5-DOF parallel manipulators based on screw theory [J]. Robot. Syst. 2005, 22(10): 535–547
    [139]周冰,方浩,冯祖仁.基于一种新的姿态描述的并行结构机器人工作空间解析解[J].机器人,2001,23(3):238-246
    [140]郭瑞琴.Stewart并联机构奇异性与工作空间分析[J].机械传动,2007, 31(3):6-9
    [141]黄田,汪劲松.Stewart并联机器人位置空间解析[J].中国科学(E辑),1998,28(2):136-145
    [142]杨基厚,高峰.四杆机构的空间模型和性能图谱[M].机械工业出版社,1989
    [143] Feng Gao. Distribution of some properties in a physical model of the solution space of 2-DOF parallel planar manipulators [J]. Mechanism and Machine Theory, 1995, 30(6): 811-817
    [144] Feng Gao. (Chapter) Physical model technique for design of robotic manipulators in manufacturing systems [M]. For the book, "Computer aided and integrated manufacturing systems techniques and applications," The Gordon and Breach Science Publishers, USA, 1999
    [145]黄真.空间机构学[M].机械工业出版社,1991
    [146]刘辛军.并联机器人机构尺寸与性能关系分析及其设计理论研究[博士学位论文],秦皇岛:燕山大学,1999年
    [147] C. Gosselin,J. Angeles. The optimum kinematic design of a planar 3-DOF parallel manipulator [J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1988, 110(1): 35-41
    [148] C. Gosselin, J.Angeles. The optimum kinematic design of a spherical 3-DOF parallel manipulator [J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(2): 202-207
    [149]戚开诚.仿人形机器人机构设计[硕士学位论文].天津:河北工业大学,2004
    [150]张彦斌,吴鑫,刘宏昭,等.一种新型并联机器人机构的运动分析及完全各向同性设计[J].中国机械工程, 2008, 19(2):213-216
    [151]金振林,高峰.6-SPS球平台并联机器人及其局部力和运动传递性能分析[J].光学精密工程,2001, 9(1):63-66
    [152] C. Gosselin, J. Angeles. A global performance index for the kinematic optimization of robotic manipulators [J]. Transactions of the ASME, Journal of Mechanical Design, 1991, 113(24): 220-226
    [153]李永刚,宋轶民,黄田,等.少自由度并联机器人机构的静力分析[J].机械工程学报, 2007, 43(9):80-83
    [154]李剑锋,吴光中,费仁元,等.3-RUU微动并联机构的尺寸型模型及性能图谱[J].机械工程学报, 2005, 41(5):142-146
    [155]于靖军.全柔性机器人机构分析与设计方法研究[博士学位论文].北京:北京航空航天大学,2002
    [156] C. Gosselin. Stiffness map for parallel manipulators [J]. IEEE Transactions on Robotics and Automation, 1990, 6(3): 377-382
    [157]石则昌,刘深厚.机构精确度[M].北京:高等教育出版社,1995
    [158]洪林,赵新华,张策,等.并联双三角机构精度分析[J].机械科学与技术,2004,23(8):1005-1008
    [159]洪林,赵新华,张策,等.并联6-SPS机构位姿误差分析[J].天津理工学院学报,2004,20(2):34-36
    [160]赵永杰,赵新华,洪林,等.6-SPS并联机器人单支链精度综合算法[J].天津理工学院学报,2002,18(4):28-3
    [161]罗建国,陆震.冗余驱动直角坐标串并联机器人位姿误差分析[J].机械设计,2007, 24(1):66-69
    [162] Tian Huang, David J Whitehouse. A simple yet effective approach for error compensation of a tripod-based parallel kinematic machine [J]. Annals of the CIRP, 2000, 49(1): 285-288
    [163] Kim H S, Choi Y J. The kinematic error bound analysis of the Stewart platform [J]. Journal of Robotic Systems, 2000, 17(1): 63-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700