DG方法求解对流扩散方程的超收敛和一致收敛性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1973年Reed和Hill[72]在求解中子输运方程(一阶双曲型方程)时提出了间断有限元方法(the discontinuous Galerkin finite element method,简记为DG)。自此之后,用间断有限元求解双曲问题和椭圆问题的研究几乎同时得到了快速的发展。1997年,Bassi和Rebay[11]设计了一种间断有限元方法求解Navier-Stokes方程,并且获得了稳定的高阶收敛格式。受Bassi和Rebay数值实验结果的启发,Cockburn和Shu[36]提出了局部间断有限元法(简记为LDG),同时Baumann和Oden[8]也发展了一种新的DG方法。现在DG方法已经被广泛应用于求解双曲守恒律组、椭圆方程、对流扩散方程、Hamilton-Jacobia方程,以及KdV方程等。关于DG方法的全面综述及其应用参看[31]。
     用间断有限元方法求解对流扩散问题是近年来的热门研究课题。受DG方法求解双曲型方程巨大成功的启发,本文用DG方法求解对流扩散方程。证明了一大类间断有限元方法求解定常对流扩散问题的存在唯一性,并且得到了u和q=u'的离散误差的一个渐进展开表达式。对md-LDG方法,间断有限元解U和其导数Q的离散误差的主项分别与每个单元的p+1阶右Radau和左Radau多项式成比例。事实上,单元内部的p+1阶右Radau点和左Radau点分别是U和Q的p+2阶超收敛点。对其它满足相容性和守恒性的DG方法,在一定的假设条件下,其间断有限元解U和其导数Q的离散误差的主项都与p阶Legendre多项式成比例。因此间断有限元解的导数Q在Gauss点有p+1阶超收敛。基于这些超收敛性质,我们得到了一个后验误差估计。数值例子证实了理论证明的可靠性。
     当扩散系数ε趋向于零时,一般的数值方法在均匀网格下求解奇异摄动对流扩散问题,不能得到一致收敛的格式。本文在两种局部加密网格(即Shishkin网格和改进的等级网格)下,用LDG方法求解一维和二维奇异摄动对流扩散问题。数值结果表明,对任意小的ε,即使在均匀网格下,对一维和二维情形,LDG方法都不会产生任何非物理震荡。在Shishkin网格和改进的等级网格下,数值通量有2p+1阶一致超收敛。改进的等级网格不但保持了Shishkin网格原有的优点,而且更有效更稳定。值得指出的是,一致收敛性的理论证明非常困难,有待进一步研究。
     最后本文设计了一种新的DG方法求解对流扩散方程,随后对解的存在唯一性给出了证明。在节点处数值流通量有2p+1阶超收敛,在改进的等级网格下,DG解还具有一致的收敛性。
The discontinuous Galerkin method(DGM) was first introduced for the neutron transport equation(The first-order hyperbolic equation) in 1973 by Reed and Hill[72].Since then there has been an active development of DG methods for hyperbolic and elliptic equations in parallel.In 1997,Bassi and Rebay[11]provided a discontinuous Galerkin method for solving compressible Navier-Stokes equations,and obtained a stable and high-order convergent scheme.Motivated by the successful numerical experiments of Bassi and Rebay, Cockburn and Shu[36]developed the local discontinuous Galerkin method (LDG).At the same time,a discontinuous Galerkin method was introduced by Baumann and Oden[8].Now the DG methods have been used widely for hyperbolic conservation laws systems,elliptic equations,convection-diffusion equations,Hamilton-Jacobi equations and KdV equations,etc.For a fairly thorough compilation of the history of these methods and their applications see[31].
     In recent years,the DG methods for convection-diffusion problems have been one of the highlights in the study of numerical methods.Inspired by the great success of the DG method in solving hyperbolic equations,in this paper the discontinuous Galerkin method for convection-diffusion equation would be studied.The existence and uniqueness of the approximate solutions for a class of DG methods are proved.Then we will present the asymptotic expansions of the discretization errors for both the potential u and its derivative q = u' for a class of DG methods.For md-LDG method,the leading terms for the discretization errors for u and q are proportional to the right Radau and left Radau polynomials of degree p + 1 on each element,respectively.This fact implies that the p + 1 degree right Radau points and left Radau points are the p + 2 degree superconvergence points for U and Q,separately.Nevertheless, for other DG methods which are consistent and conservative and satisfy some assumptions,the leading terms for the errors of U and Q are proportional to Legendre polynomial of degree p,respectively.As a result,only the p+1-degree Gauss points are the p + 1-order superconvergence points for Q.A Posteriori Error estimates based on superconvergence property will be developed.Our numerical experiment verify our theoretical results.
     On the other hand,whenεis small,under the uniform mesh,the classical numerical methods cannot produce a scheme of uniform convergence.In this paper we will compare two-type layer-adapted meshes,i.e.,Shishkin mesh and improved grade meshes,when they are used in the h-version of the LDG method for one and two dimensional problems.The numerical results exhibit that the LDG method does not produce any oscillation even under uniform meshes for arbitraryεfor both 1-D and 2-D cases.On the other hand,the 2p + 1-order uniform superconvergence of numerical fluxes are observed numerically for the LDG method under both the Shishkin and improved grade meshes.The numerical results indicate that the improved grade meshes not only keep the advantages of the Shishkin meshes,but is also more efficient and stable than the Shishkin meshes.It is worthwhile to point out that theoretical analysis of the uniform convergence is extremely difficult and remains an open problem for the LDG method
     A robust DG scheme will be designed to solve the singularly perturbed convection-diffusion equations in one-dimensional setting with Dirichlet boundary conditions.The existence and uniqueness of approximate solutions are proved.The 2p + 1-order superconvergence of numerical traces at each node is observed.We also note that this DG method is robust with respect to the diffusion coefficientεunder the improved grade mesh.
引文
[1]Adam,D.and H.Roos,A Nonconforming Exponentially Fitted Finite element method I:the interpolation error[R],Report Math-NM-06-93,TUDressden,1993.
    [2]Adjerid,S.and A.Klanser,Superconvergence of discontinuous finite element solutoions of transient convection-diffusion problems[J],J.Sci.Comp.,22(2005),5-24.
    [3]Adjerid,S.,K.D.Devine,J.E.Flaherty and L.Krivodonova,A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems[J],Comp.Meth.Appl.Mech.Eng.191(2002),1097-1112.
    [4]Adjerid,S.and T.C.Massey,A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems[J],Comp.Meth.Appl.Mech.Eng.,191(2002),5877-5897.
    [5]Adjerid,S.and T.C.Massey,Superconvergence of discontinuous finite element solutions for nonlinear hyperbolic problems[J],Comp.Meth.Appl.Mech.Eng.195(2006),3331-3346.
    [6]Adjerid,S.and M.Baccouch,The discontinuous Galerkin method for two-dimensional hyperbolic problems.Part I:Superconvergence Error Analysis[J],J.Sci.Comp.,33(2007),75-113.
    [7]Arnold,D.N.,An interior penalty finite element method with discontinuous elements[J],SIAM J.Numer.Anal.,19(1982),742-760.
    [8]Baumann,C.E.and J.T.Oden,A discontinuous hp finite element method for the Euler and Navier-Stokes equations[J],Int.J.Numer.Meth.Flu.,31 (1999),79-95.
    [9]Biswas,R.,K.D.Devine and J.Flasherty,Parallel,adaptive finite element methods for conservation laws[J],Appl.Numer.Math.,14(1994),255-283.
    [10]Bar-Yoseph,P.,Space-time discontinuous finite element approximations for multidimensional nonlinear hyperbolic systems[J],Comp.Mech.,5(1989),145-160.
    [11]Bassi,F.and S.Rebay,A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J],J.Comp.Phys.,131(1997),267-279.
    [12]Baker,G.A.,Finite element methods for elliptic equations using nonconforming elements[J],Math.Comp.,31(1977),45-59.
    [13]Bassi,F.,S.Rebay,G.Mariotti,S.Pedinotti and M.Savini,A high-order accurate discontinuous finite element method for inviscid and viscous turboma-chinery flows[J],2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics(Antwerpen,Belgium)(R.Decuypere and G.Dibelius,eds),Technologisch Instituut,March 5-7(1997),99-108.
    [14]Brezzi,F.,G.Manzini,L.D.Marini,P.Pietra and A.Russo,Discontinuous finite elements for diffusion problems[J],in Francesco Brioschi (1824-1897)Convegno di Studi Matematici,October 22-23,1997 1st.Lomb.Ace.Sc.Lett.,Incontro di studio N.16(1999),197-217.
    [15]Bakhvalov,N.S.,Towards optimization of methods for solving boundary value problems in the presence of boundary layers[J],Zh.Vychisl.Mater.Mater.Fiz.,(In Russian),9(1969),841-859.
    [16]Castillo,P.,A superconvergence result for discontinulus Galerkin methods applied to elliptic problems[J],Comp.Meth.Appl.Mech.Eng.,192(2003),4675-4685.
    [17]Castillo,P.,B.Cockburn,I.Perugia and D.Schotzau,An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[J],SIAM J.Numer.Anal.38(2000),1676-1706.
    [18]Castillo,P.,B.Cockburn,D.Schotzau and C.Schwab,Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems[J],Math.Comp.71(2002),455-478.
    [19]陈传淼,有限元用三角形单元逼近的应力佳点[J],湘潭大学学报,1(1978),77-91.
    [20]陈传淼,黄云清,有限元高精度理论[M],湖南科学技术出版社,1995.
    [21]陈传淼,有限元的超收敛构造理论[M].湖南科学技术出版社,2001.
    [22]陈传淼,科学计算概论[M],科学出版社,2007.
    [23]Chen,Z.and G.Ji,Sharp L_1 a posteriori error analysis for nonlinear convection-diffusion problems[J],Math.Comp.,75(2006),43-71.
    [24]Chen,Z.,B.Cockburn,C.Gardner and J.Jerome,Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode[J],J.Comp.Phys.,117(1995),247-280.
    [25]Chen,Z.,B.Cockburn,J.Jerome and C.-W.Shu,Mixed-RKDG Finite element methods for the 2-D hydrodynamic model for semiconductor device sim-ulation[J],VLSI Design,3(1995),274-280.
    [26]Cockburn,B.and C.-W.Shu,The Runge-Kutta local projection p~1-discontinuous Galerkin method for conservation laws[J],M~2AN,25(1991),337-361.
    [27]Cockburn,B.and C.-W.Shu,TVB Runge-Kutta local projection discontinuous Galerkin methods for scalar conservation laws Ⅱ:General framework[J],Math.Comp.,52(1989),411-435.
    [28]Cockburn,B.,S.Y.Lin,and C.-W.Shu,TVB Runge-Kutta local projection discontinuous Galerkin methods for scalar conservation laws Ⅲ:One dimensional systems[J],J.Comp.Phys.,84(1989),90-113.
    [29]Cockburn,B.,S.Hou,and C.-W.Shu,TVB Runge-Kutta local projection discontinuous Galerkin methods for scalar conservation laws Ⅳ:The multidimensional case[J],Math.Comp.,54(1990),545-581.
    [30]Cockburn,B.and C.-W.Shu,TVB Runge-Kutta discontinuous Galerkin method for conservation laws V:Multidimensional systems[J],J.Comp.Phys.,141(1998),199-224.
    [31]Cockborn,B.,G.E.Karniadakis,and C.-W.Shu,Discontinuous Galerkin Methods:Theory,Computation and Applications[C],Lecture Notes in Corn-put.Sci.Engrg.,Vol 11,Springer-Verlag,Feb (2000).
    [32]Cockborn,B.,G.E.Karniadakis,and C.-W.Shu,it The development of discontinuous Galerkin methods,Discontinuous Galerkin Methods:Theory, Computation and Applications[C],(Berlin) (B.Cockborn,G.E.karniadakis and C.-W.Shu,eds.),Lecture Notes in Comput.Sci.Eng.,Vol 11,Springer-Verlag,Feb (2000),3-50.
    [33]Cockborn,B.,M.Luskin,C.-W.Shu and E.Süli,Enhanced accuracy by postprocessing for finite element methods for hyperbolic equations[J],Math.Comp.,72(2002),577-606.
    [34]Cockborn,B.,G.Kanschat,I.Perugia and D.Schotzau,Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids[J],SIAM J.Numer.Anal.,39(2001),264-285.
    [35]Cockburn,B.and C.-W.Shu,Runge-Kutta Discontinuous Galerkin method for convection-dominated problems[J],J.Sci,Comp,16(2001),173-261.
    [36]Cockburn,B.and C.-W.Shu,The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J],SIAM J.Numer.Anal.,35(1998),2440-2463.
    [37]Cockburn,B.and C.-W.Shu,The local discontinuous Galerkin finite element method for scalar conservation laws[J],RAIRO Model.Math.Anal.Numer.,25(1991),337-361.
    [38]Celiker,F.and B.Cockburn,Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension [J],Math.Comp.,76(2007),67-96.
    [39]Chavent,G.and G.Salzano,A finite element method for the ID water flooding problem with gravity [J],J.Comp.Phys.,45(1982),307-344.
    [40]Chavent,G.and B.Cockburn,The local projection P~0,P~1-disconuous Galerkin finite element method for scalar conservation laws[J],RAIRO Model.Math.Anal.Nume'r.,23(1989),565-592.
    [41]Duran,R.G.and L.Lomhardi,Finite element approximation of convection diffusion problems using grade meshes[J],Appl.Numer.Math.,56(2006),1314-1325.
    [42]Douglas,J.and T.Russell,Numerical methods for convection-dominated diffusion Problems based on combing the method of characteristics with finite element or finite difference procedures[J],SIAM.J.Numer.Anal.,19(1982),871-855.
    [43]Dawson,C,Godunov-mixed methods for advection flow problems equations in one space dimension[J],SIAM,J.Numer.Anal.,28(1991),1282-1309.
    [44]Dawson,C,Godunov-mixed methods for advection-diffusion equations in multidimensions[J],SIAM J.Numer.Anal.,30(1993),1315-1332.
    [45]Dawson,C,Analysis of an upwind-mixed finite element methods for nonlinear contaminant transport equations[J],SIAM J.Numer.Anal.,35(1998),1709-1724.
    [46]Guo,W.and M.Stynes,Finite element analysis of exponentially fitted lumped schemes for time-dependent convection-diffusion problems[J],Numer.Math.,66(1993),347-371.
    [47]Guo,W.and M.Stynes,Finite element analysis of exponentially fitted non-lumped schemes for time-dependent convection-diffusion problems[J],Appl. Numer.Math.,15(1994),375-393.
    [48]Gartland,E.C.,Graded-mesh difference schemes for singularly perturbed two-point boundary value problems[J],Math.Comp.,51(1988),631-657.
    [49]Hughes,T.J.and A.Brooks,A Multidimensional Upwind Scheme with no Crosswind Diffusion,Finite element methods for convection dominated flows[C],ed.by T.J.Hughes,ASME,New York,34(1979),19-35.
    [50]贺光,谢资清,基于等级网格的DG方法求解奇异摄动问题[D],湖南师范大学,2007.
    [51]黄灿,陈传淼,一阶线性双曲组的时空全间断有限元法[J],湖南师范大学学报(自然科学版),29(2006),9-12.
    [52]Johnson,C.and J.Pitk(a|¨)ranta,An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[J],Math.Comp.,46(1986),1-26.
    [53]Jiang,G.and C.-W.Shu,On cell entropy inequality for discontinuous Galerkin methods[J],Math.Comp.,62(1994),531-538.
    [54]LeSaint,P.and P.Raviart,On a finite element method for solving the neutron transport equation.In Mathematical aspects of finite elements in partial differential equations[M],C.de Boor,editor,Academic Press,1974,89-145.
    [55]刘儒勋,舒其望,计算流体力学的若干新方法[M],科学出版社,2003.
    [56]Lowrie,R.B.,Compact higher-order numerical methods fo r hyperbolic conservation laws[D],PhD thesis,University of Michigan,1996.
    [57]Lin,Q.and A.Zhou,A rectangle test for the first order hyperbolic equation[J],Proc.Sys.Sci.Sys.,Great Wall Culture Publ.Co.,Hong Kong,1991,234-235.
    [58]Lin,Q.,N.Yan and A.Zhou,An optimal error estimate of the discontinuous Galerkin method[J],J.Eng.Math.,13(1996),101-105.
    [59]Liu,W.B.and T.Tang,Error andlysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems[J],Appl.Numer.Math.,38(2001),315-345.
    [60]Lomtev,I.,C.W.Quillen and G.E.Karniadakis,Spectral/hp methods for viscous compressible flows on unstructured 2D meshes[J],J.Comp.Phys.,144(1998),325-357.
    [61]Liseikin,V.D.,The use of special transformations in the numerical solution of boundary layer problems[J],Comp.Math.Math.Phys.,30(1990),43-53.
    [62]Liseikin,V.D.and N.N.Yanenko.On the numerical solution of equations with interior and exterior boundary layers on a nonuniform mesh[C],In BAIL Ⅲ,Proc.3rd Int.Conf.Boundary and interior layers,68-80,Dublin/Ireland,1984
    [63]Li,J.,Uniform Convergence of Discontinuous Finite Element Methods for Singularly Perturbed Reaction-Diffusion Problems[J],Comp.Math.Appl.,44(2002),231-240.
    [64]Li,J.and M.F.Wheeler,Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids[J],SIAM J.Numer.Anal.,38(2000),770-798.
    [65]Li,J.and I.M.Navon,A Global Uniformly Convergent Finite Element Method for a Quasilinear Singularly Perturbed Elliptic Problem[J],Comp.Math.Appl.,38(1999),197-206.
    [66]Li,J.and I.M.Navon,Global Uniformly Convergent Finite Element Methods for Singularly Perturbed Elliptic Boundary Value Problems:Higher-order Elements[J],Comp.Meth.Appl.Mech.Eng.,171(1999),1-23.
    [67]Morton,K.W.,Numerical Solution of Convection-Diffusion Problems[M],Chapman and Hall,London,1996.
    [68]Miller,J.J.,E.O'Riodan and G.I.Shishkin,Fitted nunerical methods for singularly perturbed problems[M],World Scientific,Singapore,1996.
    [69]Naga,A.and Z.Zhang,A posteriori error estimates based on polynomial preserving recovery[J],SIAM J.Numer.Anal.,9(2004),1780-1800.
    [70]Naga,A.and Z.Zhang,The polynomial preserving recovery for higher order finite element methods in 2D and 3D[J],Disc.Cont.Dyna.Sys.Ser.B,5(2005),769-798.
    [71]Peterson,T.,A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation[J],SIAM J.Numer.Anal.,28(1991),133-140.
    [72]Reed,W.H.and T.R.Hill,Triangular mesh methods for the neutron transport equation[R].Technical Report LA-UR-73-479,Los Alamos Scientific Laboratory,Los Alamos,1973.
    [73]Richter,G.R.,An optimal-order error estimate for the discontinuous Galerkin method[J],Math.Comp.,50(1988),75-88.
    [74]Roos,H.G.,Layer-adapted grids for singular perturbation problems[J],ZA-MMZ.Angew.Math.Mech.,78(1998),291-309.
    [75]Roos,H.G.,M.Stynes and L.Tobiska,Numerical Methods for Singularly perturbed differential equations(M],Springer,Berlin,1996.
    [76]Roos,H.G.and T.Linss.Suffcient conditions for uniform convergence on layer-adapted grids[J],Computing,63(1999),27-45.
    [77]Richter,G.R.,The discontinuous Galerkin method with diffusion[J],Math.Comp.,58(1992),631-643.
    [78]Shu,C.-W.and S.Osher,Efficient implementation of essentially nonoscillatory shock-capturing schemes[J],J.Comp.Phys.,77(1988),439-471.
    [79]Shu,C.-W.and S.Osher,Efficient implementation of essentially nonoscillatory shock-capturing schemes Ⅱ[J],J.Comp.Phys.,83(1089),32-78.
    [80]Shu,C.-W.,Different formulations of the discontinuous Galerkin method for the viscous terms [C].In Advances in Scientific Computing,Z.C.Shi,M.Mu,W.Xue and J.Zou,editors.Science Press,Beijing,2001,144-155.
    [81]Shishkin,G.I.,Disctete approximation of singularly perturbed elliptic and parabolic problems (in Russian) [M],Russian Acadamy of Science,Ural Section,Ekaterinburg,1992.
    [82]Shishkin,G.I.,Grid approximation of singularly perturbed boundary value problems with convective terms[J],Sov.J.Numer.Anal.Math.Mode.,5(1990),173-187.
    [83]Shishkin,G.I.,Grid approximation of singularly perturbed elliptic equations in domaina with characteristics faces[J],Sov.J.Numer.Anal.Math.Modelling 5(1990),327-343.
    [84]Stynes,M.,Steady-state convection-diffusion problems[M],in Acta Numerica 2005(A.Iserles,ed.),Cambridge University Press.
    [85]Sangalli,G.,Robust a-posteriori estimator for advection-diffusion-reaction problems[J],Math.Comp.,77(2008),41-71.
    [86]Schwab,C.and J.M.Melenk,hp FEM for reaction-diffusion equations I:robust exponential convergence[J],SIAM J.Num.Anal.,35(1998),1520-1557.
    [87]Schwab,C.and M.Suri,The p and hp versions of the finite element method for problems with boundary layers[J],Math.Comp.,65(1996),1403-1429.
    [88]Schwab,C.,M.Suri and C.Xenophontos,The hp finite element method for problems in mechanics with boundary layers[J],Comp.Mech.Appl.Mech.Eng.,157(1996),311-333.
    [89]Sun,C.and S.Hui,FDSD method for time-dependent convection-diffusion equations[J],Numer.Math.,Journal of Chinese University,English Series,7(1998),72-85.
    [90]Sun,C.and S.J.Qin,The fully discrete discontinuous finite element analysis for first-order linear hyperbolic Equation[J],J.Comp.Math.,17(1999),97-112.
    [91]Vulanoviffc.R.,On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh[J],Zb.Rad.,Prir.-Mat.Fak.,Univ.Novom Sadu,Ser.Mat.,13(1983),187-201.
    [92]Vulanoviffc.R.,Non-equidistant generalizations of the Gushchin-Shchennikov scheme[J].Z.Angew.Math.Mech.,67(1987),625-632.
    [93]Wihler,T.P.and C.Schwab,Robust exponential convergence of the hp discontinuous Galerkin FEM for convection-diffusion problems[J],East-West J.Numer.Math.,8(2000),57-70.
    [94]Xie,Z.Q.and Z.Zhang,Superconvergence of DG method for one-dimensional singularly perturbed problems[J],J.Comp.Math.,25(2007),185-200.
    [95]Xie,Z.Q.and Z.Zhang,Uniform superconvergence analysis of the discontinuous Gaierkin method for a singularly perturbed problem in the one dimension [J],submitted.
    [96]Xenophontos,C.,The hp finite element method for singularly perturbed problems [D],Ph.D.Dissertation,University of Maryland,Baltimore,County,1996.
    [97]Xenophontos,C.,The hp finite element method for singularly perturbed problems in smooth domains[J],Math Mode.Meth.Appl.Sci.,2(1998),299-326.
    [98]Xenophontos,C.,The hp finite element method for singularly perturbed problems in non-smooth domains[J],Nume.Meth.PDEs,15(199S),63-90.
    [99]Xu,Y.and C.-W.Shu,Local discontinuous Galerkin methods for nonlinear SchrSdinger equations[J],J.Comp.Phys.,205(2005),72-97.
    [100]Xu,Y.and C.-W.Shu,Local discontinuous Galerkin methods for three Classes of Nonlinear Wave Equations[J],J.Comp.Math.,22(2004),250-274.
    [101]徐岩,非线性波动方程的间断有限元方法[D],中国科学技术大学,2005.
    [102]Zhou,A.and Q.Lin,Optimal and superconvergence estimates of the finite element method for a scalar hyperbolic equation[J],Acta Math.Sci.,14(1994),90-94.
    [103]Zhang,M.and C.-W.Shu,An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations [J],Math.Mod.Meth.Appli.Sci.,13(2003),395-413.
    [104]Zhang,Q.and C.Sun,FDSD method for nonlinear convection-diffusion equation[J],Mathematica Numerics Sinica,20(1998),211-224.
    [105]Zienkiewicz,O.C.and J.Z.Zhu,The superconvergence patch recovery and a posteriori error estimates part 1:the recovery technique [J],Inter.J.Numer.Meth.Eng.,33(1992),1331-1364.
    [106]Zienkiewicz,O.C.and J.Z.Zhu,The superconvergence patch recovery and a posteriori error estimates part 2:error estimates and adaptivity[J],Inter.J.Numer.Meth.Eng.,33(1992),1365-1382.
    [107]Zhang,Z.,polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals [J],Inte.J.Numer.Anal.Mode.,1(2004),1-24.
    [108]Zhang,Z.,polynomial preserving recovery for anisotropic and irregular grids[J],J.Comp.Math.,22(2004),331-340.
    [109]Zhang,Z.,Finite element superconvergent approximation for one-dimensional singularly perturbed problems[J],Numer.Meth.PDEs,18(2002),374-395.
    [110]Zhang,Z.,Finite element superconvergence on Shishkin mesh for 2-D convection diffusion problems[J],Math.Comp.,72(2003),1147-1177.
    [111]Zhang,Z.,Superconvergent approximaton of singularly perturbed problems[R],Report No.97ZZ2,Texas Tech University,October 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700