奇异摄动系统的稳定反馈控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奇异摄动理论几十年来在数学领域得以迅速发展,同样在控制领域中也取得了突破性进展,并一直伴随着控制理论的发展而不断完善。同时,线性矩阵不等式方法在控制领域中几年来应用越来越广泛,但在奇异摄动系统中的应用还比较少见。本论文主要针对奇异摄动系统,尝试结合线性矩阵不等式方法做了相关的研究。具体工作主要集中在如下几个方面:
     (1) 将正常连续系统的二次稳定性概念推广到奇异摄动系统,并证明了奇异摄动系统与其快慢子系统关于二次稳定的等价性。同时,利用矩阵不等式方法,推导了奇异摄动系统二次稳定性的充分条件,并给出了二次可镇定并可解的充分条件,以及二次可镇定的状态反馈控制器的一种迭代求法。另外,给出了离散奇异摄动系统二次稳定和二次可镇定的条件。
     (2) 应用线性矩阵不等式方法设计了非标准离散奇异摄动系统的二次型次优调节器。根据一般线性离散系统得到了二次型次优的Riccati不等式条件,通过引入一个特殊分块带有摄动参数的解矩阵形式,进而将条件化为可解的矩阵不等式,从而求取其解,设计次优控制器。与繁琐的最优控制方法进行仿真分析比较,结果表明这种方法的有效性和运算的方便快捷性。
     (3) 讨论了带有干扰抑制的奇异摄动系统的二次型次优调节器问题,沿着逆最优调节器问题处理思路,将干扰转化到二次性能指标中,通过适当放大指标,将干扰控制在一定的范围之内。而后将问题转化为一组不含有摄动参数的矩阵不等式问题处理。
     (4) 用矩阵不等式方法讨论了连续和离散奇异摄动系统的H_∞控制,通过广义系统途径,结合广义系统的有界实引理,将含有小参数的Riccati不等式等价转化为与小参数无关的不等式问题,分别得到了连续和离散奇异摄动系统H_∞控制的充分条件。同时,讨论了奇异摄动系统的正实性问题,给出了正实反馈控制的充要条件。
     (5) 讨论了Delta算子域上的奇异摄动系统的状态反馈。用直接法分别设计了快慢子系统的状态反馈控制,使其达到预期的极点配置结果。所得结论将连续与离
    
    散系统的相关结果统一于Delta算子框架。仿真结果证明了方法的有效性,弥补了
    连续系统在高速采样下离散化的不足。
     此外,本论文还进一步讨论了离散奇异摄动系统的摄动稳定条件问题,得到了
    两种摄动形式稳定的充要条件,并将结果推广到了2一D情形。
     关键词:奇异摄动系统,慢变子系统,快变子系统,线性矩阵不等式(LMI),
    次优控制,正实控制,Del七a算子,2一D系统。
Singular perturbation techniques for time scale systems have found wide applications in the area of analysis and synthesis of control processes, which has been studied recently in different set-ups by many researchers. On the other hand, the linear matrix inequality (LMI) approach has been attracting more attention due to its extensive applications in solving various control problems. However, up to the present, the problem of robust control for singularly perturbed systems through LMI approach has not been solved. Considering this, in this dissertation, attention is focused on the development of an LMI approach to solving robust control problems for singularly perturbed systems.The main results obtained in this dissertation are as follows:i) Quadratic stability is extended to singularly perturbed continuous and discrete systems, respectively. It is shown that quadratic stability of a singularly perturbed system is equivalent to that of the slow and fast system. Using the LMI approach, we obtain sufficient conditions of quadratic stability and quadratic stabilizability for singularly perturbed systems. An iterative algorithm is proposed for the design of desired quadratic stabilizing feedback controllers.ii) A sub-optimal regulator is designed for nonstandard discrete-time singularly perturbed systems through the LMI method; it is different from the general fast-slow decomposition method. By introducing a solution matrix with perturbed parameters, sub-optimal controllers are designed. A simulation result is presented to demonstrate the effectiveness of the proposed design method.iii) By a similar method to the inverse optical quadratic control, the problem of sub-optical disturbance attenuation subject to a quadratic performance index is discussed by the LMI approach.iv) The ε-independent H∞ control problem for singularly perturbed continuous and discrete systems is investigated, respectively. Sufficient conditions are obtained and sub-optimal controllers are designed, respectively. By the positive real lemmas for singular systems and regular systems, we present a sufficient and necessary condition for the solvability of positive real control problem for singularly perturbed systems.v) State feedback design for singularly perturbed systems is discussed in the Delta
    
    (d) domain. State feedback controllers of slow and fast singularly perturbed subsystems are designed, respectively, such that the closed-loop system has desired poles. The derived result can be viewed as a unified one for continuous and discrete time systems in the unified Delta framework. An example is presented to demonstrate the validity and effectiveness of our design method.Furthermore, the problem of stability analysis for singularly perturbed discrete systems is considered. A necessary and sufficient condition is obtained for singularly perturbed discrete systems with two kinds perturbations. This is also extended to the case of two-dimensional singularly perturbed Roesser model.
引文
[1] 苏煜城,吴启光.奇异摄动问题数值方法引论.重庆:重庆出版社,1992.
    [2] 许可康.控制系统中的奇异摄动.北京:科学出版社,1986.
    [3] 刘华平,孙富春,何克忠,孙增圻.奇异摄动控制系统:理论与应用.控制理论与应用,2003,20(1):1-7.
    [4] Chen B, Lin C. On the stability bounds of singularly perturbed systems. IEEE Transaction on Automatic Control, 1990, 35(11): 1265-1270.
    [5] Sandell N R. Robust stability of systems with application to singular perturbations. Automatica, 1979, 15(4): 467-470.
    [6] Feng W. Characterization and computation for the bound εin linear time-invariant singularly perturbed systems. System & Control Letters, 1988, 11(2): 195-202.
    [7] Sen S, Detta K B. Stability bounds of singularity perturbed systems. IEEE Transaction on Automatic Control, 1993, 38(2): 302-304.
    [8] Chen S J, Lin J L. Maximal stability bounds of singularly perturbed systems. Journal of Franklin Institute, 1999, 336(8): 1209-1218.
    [9] Chiou J C, Kung F C, Li T H S. An infinite ε-bound stabilization design for a class of singularly perturbed systems. IEEE Transaction on Circuit and Systems-Ⅰ: Fundamental Theory and Applications, 1999, 46(12): 1507-1510.
    [10] Lin C L, Chen B S. On the design of stabilizing controllers for singularly perturbed systems. IEEE Transaction on Automatic Control, 1992, 37(11): 1828-1834.
    [11] Li T H S, Chiou J S, Kung F C. Stability bounds of singularly perturbed discrete systems. IEEE Transaction on Automatic Control, 1999, 44(10): 1934-1938.
    [12] Hsiao F H, Pan S T, Teng C C. D-stability bound analysis for discrete multiparameter singularly perturbed systems. IEEE Transaction on Circuit and Systems-Ⅰ: Fundamental Theory and Applications, 1997, 44(4): 347-351.
    [13] Shao Z, Rowland J R. Stability of time-delay singularly perturbed systems. IEE Proc-Control Theory and Applications, 1995, 142(2): 111-113.
    
    [14] Pan S T, Hsiao F H, Teng C C. Stability bound of multiple time delay singularly perturbed systems. IEE Electronics Letters, 1996,32(14): 1327-1328.
    [15] Oloomi H M, Sawan M E. Suboptimal model-matching problem for two frequency scale transfer functions. Proceedings of American Control Conference, New York: IEEE Press, 1989: 2190-2191.
    [16] Luse D W, Ball J A. Frequency-scale decomposition of H∞ disk problems. SIAM Journal of Control Optimal, 1989,27(4): 814-835.
    [17] Oloomi H M. Nevanlinna-Pick interpolation for two frequency scale systems. IEEE Transaction on Automatic Control, 1995, 40(10): 169-173.
    [18] Shahruz S M. Design of H∞ optimal compensators for singularly perturbed systems. Proceedings of IEEE Conference on Decision and Control, New York: IEEE Press, 1989: 2397-2398.
    [19] Fridman E. Near- optimal H∞control of linear singularly perturbed systems. IEEE Transaction on Automatic Control, 1996, 41(2): 236-240.
    [20] Mukaidani H, Xu H, Mizukami K. Recursive approach of H∞ control problems for singularly perturbed systems under perfect and imperfect state measurements. International Journal of System Sciences, 1999, 30(5): 467-477.
    [21] Tan W, Leung T, Tu Q. H∞control for singularly perturbed systems. Automatica, 1998, 34(2): 255-260.
    [22] Tong V V, Mahmoud E S. H∞ control for singularly perturbed systems via game theory. Proceedings of Asilomar Conference on Signals, systems and Computers,1992: 415-419.
    [23] Pan Z, Basar T. H∞ optimal control for singularly perturbed systems - Part I: perfect state measurements. Automatica, 1993, 29(2): 401-423.
    [24] Pan Z, Basar T. H∞ optimal control for singularly perturbed systems - Part II: Imperfect state measurements. IEEE Transaction on Automatic Control, 1994, 39(2): 280-299.
    [25] Dragan V. H∞ norms and disturbance attenuation for systems with fast transient. IEEE Transaction on Automatic Control, 1996, 41 (5): 747-750.
    [26] Chow J H, Kokotovic P V. A decomposition of near optimum regulators for systems with slow and fast modes. IEEE Transaction on Automatic Control, 1976, 21 (6): 701-705.
    
    [27] Kokotovic P V, Yacel R A. Singular perturbation of linear regulators: basic theorems. IEEE Transaction on Automatic Control, 1972, 17(1): 29-37.
    [28] Chang K. Singular perturbations of a general boundary value problem. SIAM J on Mathematics Analysis, 1972, 3(4): 520-526.
    [29] Derbel N. Suboptimal control of linear singularly perturbed systems. Proceedings of the 4th IEEE Conference on Control Applications. New York: IEEE Press, 1995, 1035-1040.
    [30] Su W C, Gajic Z, Shen X M. The exact slow-fast decomposition of the algebraic Riccati equation of singularly perturbed systems. IEEE Transaction on Automatic Control, 1992,37(9): 1456 - 1459.
    [31] Kecman V, Gajic Z. Optimal control and filtering for nonstandard singularly perturbed linear systems. Journal of Guidance, Control, and Dynamics, 1999, 22(2): 362-365.
    [32] Kecman V, Bingulac S , Gajic Z. Eigenvector approach for order reduction of singularly perturbed linear- quadratic optimal control problems. Automatica, 1999, 35 (1): 151-158.
    [33] Garcia G, Daafouz J, Bernussou J. A LMI solution in the H2 optimal problem for singularly perturbed systems. Proceedings of American Control Conference, New York :IEEE Press, 1998, 550-554.
    [34] Li Y, Wang J L, Yang G H. Sub- optimal linear quadratic control for singularly perturbed systems. Proceedings of IEEE Conference on Decision and Control, New York: IEEE Press, 2001, 3698-3703.
    [35] Tuan H D, Hosoe S. A new method for regulator problems for singularly perturbed systems with constrained control. IEEE Transaction on Automatic Control, 1997, 42 (2): 260-264.
    [36] Wang Y Y, Shi S J, Zhang Z J. A descriptor system approach singular perturbation of linear regulators. IEEE Transaction on Automatic Control, 1988,33(4): 370-373.
    [37] Xu H, Mukaidani H, Mizukami K. New method for composite optimal control of singularly perturbed systems. International Journal of System Sciences, 1997,28(2): 161-172.
    
    [38] Wang Y Y, Frank P M, Wune. Near-optimal control of nonstandard singularly perturbed systems. Automatica, 1994, 30(2): 277-292.
    [39] Litkouhi B, Khalil H. Infinite- time regulators for singularly perturbed difference equations. International Journal of Control, 1984, 39(2): 587-598.
    [40] Lim M T, Kim B S. Optimal control of linear nonstandard singularly perturbed discrete systems. Proceedings of IEEE Conference on Decision and Control, New York: IEEE Press, 2000, 2329-2334.
    [41] Grujic L T. Uniform asymptotic stability of nonlinear singularly perturbed and large scale systems. International Journal of Control, 1981, 33 (3): 481-504.
    [42] Saberi A, Khalil H. Quadratic- type Lyapunov functions for singularly perturbed systems. IEEE Transaction on Automatic Control, 1984, 29 (6): 542-550.
    [43] Khalil H K. Stability analysis of nonlinear multiparameter singularly perturbed systems. IEEE Transaction on Automatic Control, 1987, 32(3): 260-263.
    [44] Tuan H D, Hosoe S. Multivariable circle criteria for multiparameter singularly perturbed systems. IEEE Transaction on Automatic Control, 2000, 45(4): 720-725.
    [45] Lee J I, Ha I J. Autopilot design for highly maneuvering STT missiles via singular perturbation-like technique. IEEE Transaction on Control Systems Technology, 1999, 7 (5): 527-541.
    [46] Qiu X, Gao J, Zhang L. Design of flight trajectory command integrated tracker. Acta Aeronautica et Astronautica Sinaca, 1997, 18(4): 407-411 (in Chinese).
    [47] Singh H, Naidu D S, Nagurka M L. Unified H∞ approach for a singularly perturbed aircraft model. Proceedings of American Control Conference. New York :IEEE Press, 2000, 1847-1851.
    [48] Langari R, Li W. Analysis and efficient implementation of fuzzy logic control algorithms. Proceedings of 1996 NAFIPS Biennial Conference of the North American, 1996, 1-4.
    [49] Meyer A. Singular perturbation analysis of competitive neural networks with different time scales. Neural Computation, 1996, 8(8): 1731-1742.
    [5
    
    [50] Hwang J H. Drum boiler reduced model: a singular perturbation method. Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, 1994, 3: 1960-1964.
    [51] Tap R F, Willigenburg L G, Straten G, et al. Optimal control of greenhouse climate: computation of the influence of fast and slow dynamics. Proceedings of 12th Triennial World Congress of the IFAC, 1994, 4: 1147-1150.
    [52] Soner H M. Singular perturbations in manufacturing. SIAM J Control and Optimization, 1993, 31(1): 132-146.
    [53] Yang J M, Wu J, Wu L. Nonlinear characteristics of the phase locked loop AC motor speed regulation system. Journal of South China University of Technology, 2000, 8(9): 32-39 (in Chinese)
    [54] De C L Marco, Bergen A R. Application of singular perturbation techniques to power system transient stability analysis. IEEE International Symposium on Circuits and Systems. 1984: 597-601.
    [55] Barmish B R. Necessary and sufficient conditions for quadratic stability of an uncertain system. Journal Optimal Theory Application, 1985, 46 (4): 399-408.
    [56] Petersen I R, Hollot C V. A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 1986, 22:397-411.
    [57] Khargonerkar P P, Petersen I R, Zhou, K. Robust stabilization of uncertain linear systems: quadratic stabilizability and H_∞control theory. IEEE Transactions on Automatic Control, 1990, 35: 356-361.
    [58] Xu S, Yang C. Stabilization of discrete-time singular systems: A matrix inequalities approach. A utomatica, 1999, 35 (9): 1613-1617.
    [59] 徐胜元.广义不确定系统的鲁棒控制.南京:南京理工大学博士学位论文,1999.
    [60] Shao Z, Sawan M. Robust stability of singularly perturbed systems. International Journal of Control, 1993, 58:1469-1476.
    [61] Loescharataramdee C, Sawan M. Robust stability in discrete singularly perturbed systems. Proceedings of 13~(th) IFAC world congress, 1996, San Francisco, 275-278.
    
    [62] Mahmoud M S. Bounds of robustness for singularly perturbed feedback systems. IMA J. Math. Control Inf, 1998, 15: 63-72.
    [63] Singh H, Brown R H, Naidu D S, Heinen J A. Robust stability of singularly perturbed state feedback systems using unified approach. IEE Proceedings-Control Theory Application. 2001, 148(5): 391-396
    [64] Kokotovic P, Khalil H, O'Reilly J. Singular perturbation methods in control analysis and design. Academic Press, London, 1986.
    [65] Naidu D S. Singular perturbation methodology in control systems. Peter Peregrinus, Stevenage, 1988.
    [66] Shigeyuki H. 系统与控制.北京:科学出版社,2001.
    [67] Dorato P, Levis A H. Optimal Linear Regulators: The Discrete-Time Case. IEEE Transaction on Automatic Control, AC-16 (6): 613-620, 1971.
    [68] Litkouhi B. and Khalil H. K. Infinite-time regulators for singularly perturbed difference equation. International Journal of Control, 39, 587-598, 1984.
    [69] Litkouhi B., 1983, Sampled-data control of systems with slow and fast models. PhD thesis, University of Michigan, East Lansing, MI 48824-1229, USA.
    [70] Bidani M, Radhy N E, Bensassi B. Optimal control of discrete-time singularly perturbed systems. International Journal of Control, 75,955-966, 2002.
    [71] Shengyuan Xu and Chengwu Yang. An algebraic approach to the robust stability analysis and robust stabilization of uncertain singular systems. International Journal of Systems Science, 2000, 31 (1): 55-61.
    [72] Safonov M G, Laub A J, Hantnann G L. feedback properties of multivariable systems: the rule and use of the return differnce matrix, IEEE Transaction on Automatic Control, 1981, AC-26 (1): 47-65.
    [73] Grimble M J. Robust LQG design of discrete system using a dual criterion. Proceedings IEEE Conference Decision Control, San Antonio, Texas, 1983, 1196-1198.
    [74] Grimble M J. LQG design of discrete system using a dual criterion. IEE Proceedings Pt. D., 1985,132(1): 61-68.
    [75] Doyle J, Packard A, Zhou K. Review of LFT's, LMI's and μ . Proceedings IEEE Conference Decision Control, Brighton, England, 1991, 1227-1232.
    [7
    
    [76] De Nicolao G, Lorito F, Strada S. Dual LQG-based methods for rejection of narrow band disturbances. 2~(nd) IFAC Workshop on Systems Structure and Control, Prague, 1992, 64-67.
    [77] Connolly A J, Green M, Chicharo J F et al. the design of LQG & H_∞ controllers for use in active vibration control & narrow band disturbance. Proceedings IEEE Conference Decision Control, New Orleans, LA, 1995, 2982-2987.
    [78] Chen S. Robust optimal control for uncertain system. Ph,D. Dissertation in Harbin Institute of technology, 1990. (in Chinese)
    [79] Fujimori A. Optimization of static output feedback using substitutive LMI formulation. IEEE Transactions on Automatic Control, 2004, 49: 995-999.
    [80] 胡寿松,王执铨,胡维礼.最优控制理论与系统.南京:东南大学出版社,1994.
    [81] Zames G. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverse. IEEE Transaction on Automatic Control, AC-26 (2): 301-320, 1981.
    [82] Zames G, Francis B A. Feedback, Minimax Sensitivity and Optimal Robustness. IEEE Transaction on Automatic Control, AC-28 (5): 585-601, 1983.
    [83] Kimura H. Robust Stabilization for A Class of Transfer Functions. IEEE Trans. Automat. Contr. AC-29 (6): 778-793, 1984.
    [84] Francis B A, Helton J W, Zames G. H_∞ Optimal Feedback Controllers for Linear Multivariable Systems. IEEE Transaction on Automatic Control, AC-29 (7): 888-900, 1984.
    [85] Vidyasagar M. and Kimura H. Robust Controllers for Uncertain Linear Multivariable Systems. Automatica, 22(1): 85-94, 1986.
    [86] Glover K. Robust Stabilization of Linear Multivariable Systems: Relations to Approximations. International Journal of Control, 43(3): 741-766, 1986.
    [87] Doyle J. Advance in multivariable control. Lecture Note at ONR/Honeywell Workshop, 1984.
    [88] Doyle J, Glover K, Khargonekar P P. State-space Solution to Standard H_2 and Control Problems. Proceedings American Control Conference, Atlanta, GA. 1988. & IEEE Transaction on Automatic Control, AC-29 (1): 831-847, 1989.
    [8
    
    [89] Doyle J, Packard A, Zhou K. Review of LFT's, LMI's and μ. Proceedings Conference Decision and Control, Brighton, England, 1991, 1227-1232.
    [90] 俞立.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [91] Tan W, Leung T, Tu Q. H_∞ Control for Singularly Perturbed Systems. Automatica, 1998, 34(2), 255-260.
    [92] 申铁龙.H_∞控制理论及应用.北京:清华大学出版社,1996.
    [93] Izumi Masubuchi, Yoshiyuki Kamitane, Atsumi Ohara and Nobuhide Suda. H_∞ Control for Descriptor Systems: A Matrix Inequalities Approach. Automatica, 1997, 33(4), 669-673.
    [94] Datta K B, Raiehaudhuri A. H_2/H_∞ Control of discrete singularly perturbed systems: the state feedback case. Automatica, 2002, 38, 1791-1797.
    [95] 黄琳.稳定性与鲁棒性的理论基础.北京:科学出版社,2003.
    [96] Sun W, Khargoneker P P and Shim D. Solution to the positive real control problem for linear time-invariant systems. IEEE Transactions on Automatic Control, 1994, 39(10), 2034-2046.
    [97] Zhang L, Lam J and Xu S. On positive realness of descriptor systems. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 2002, 49(3), 401-407.
    [98] Rolf J and Anders R. Observer-based strict positive real feedback control system design. Automatica. 2002,38. 1557-1564.
    [99] 郭雷,忻欣,冯春伯.基于线性矩阵不等式的奇异H∞控制问题的降阶控制器.控制理论与应用,1996,13(6),622-628.
    [100] 邹云,杨成梧.奇异摄动系统的极限解.自动化学报,1993,19(3),356-360.
    [101] Reddy H C, Moschytz G S. Unified cellular neural network cell dynamical equation using delta operator. Proceedings of IEEE International Symp. on Circuits and Systems, ISCAS '97, Hong Kong, 1997, 1: 577~580.
    [102] Kuznetsov A G, Bowyer R O, Clark D W. Estimation of multiple order models in the δ-domain. International Journal of Control, 72(7/8): 629~642.
    
    [103] Kouame D, Girault J M, Labat V, Ouahabi A. Delta high order cumulant-based recursive instrumental variable algorithm. IEEE Signal Processing Letters, 2000, 7(9): 262-265.
    [104] Ribeiro LAS, Jacobina C B, Lima A M N, Oliveira A C. Real-time estimation of the electric parameters of an induction machine using sinusoidal PWM voltage waveforms. IEEE Transaction Industry Applications, 2000, 36(3): 743-754.
    [105] Khodabakhshian A, Gosbell V J, Coowar F. Discretization of power system transfer functions. IEEE Transaction Power Systems, 1994, 9(1): 255-261.
    [106] Chan C Y. Discrete adaptive quasi-sliding mode control. International Journal of Control, 1999, 72(4): 365-373.
    [107] Collins E G, Song T. A delta operator approach to discrete-time H8 control. International Journal of Control, 1999, 72(4): 315-320.
    [108] Young P, Chotai A, Mckenna P, Tych W. Proportional-integral-plus (PIP) design for delta operator systems. International Journal of Control, 1998, 70(1): 123-168.
    [109] Premaratne K, Ekanayake M M, Suarez J I, Bauer P H. Two-dimensional delta-operator formulated discrete-time systems: state-space realization and its coefficient sensitivity properties. IEEE Transaction Signal Processing, 1998,46(12): 3445-3449.
    [110] Hendekli C M, Ertuzun A. Two-dimensional delta domain lattice filter and its application to adaptive image enhancement. IEEE Transaction Signal Processing, 1999, 47(1): 266-273.
    [111] Saksena V R, O'Reilly J, Kokotovic P V. Singular perturbations in control theory-A survey. Automatica, 1984,20(2): 1976-1983.
    [112] Shim K H, Sawan E M. Near-optimal state feedback design for singularly perturbed systems by unified approach. International Journal of Systems Science, 2002,33(3): 197-212.
    [113] Singh H. Unified approach for singularly perturbed control systems. PhD thesis, Marquette University, Milwaukee, WI, 2000.
    [114] Shim K H, Sawan E M. Kalman filter design for singularly perturbed systems by unified approach using delta operators. Proceedings of the American Control Conference. San Diego, California, 1999, 3873-3877.
    [1
    
    [115] 陈际达.线性控制系统.中南工业大学出版社.]987.
    [116] De Souza C E, Xie L. On the discrete-time bounded real lemma with application in the characterization of static state feedback H_∞ controllers. System & Control Letters, 1992, 18: 61-71.
    [117] Shao Z. Robust stability of singularly perturbed systems with state delays. IEE Proceedings Control Theory Application, 2003, 150(1): 2-6.
    [118] Klimushev A I, Krasovskii N K. Uncertain asymptotic stability of systems of differential equations with a small parameter in the derivative terms. Journal of applied Mathematics and mechanics, 1962, 25(9): 1011-1025.
    [119] Li T H S, Li J H. Stabilization bound of discrete two-time-scale systems. System & Control letters, 1992, 18: 479-489.
    [120] Ghosh R, Sen S, Datta K B. Method for evaluating stability bounds for discrete-time singularly perturbed systems. IEE Proceedings Control Theory Application, 1999, 146(2): 227-233.
    [121] Vidyasagar M. Nonlinear systems analysis, Prentice-Hall, Inc. 1978.
    [122] Wilkinson J H. The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.
    [123] 石钟慈,邓健新译,[英]J.H.威尔金森著.代数特征值问题.北京:科学出版社,2001.
    [124] Decarlo R A, Murray J, Saeks R. Multivariable Nyquist theory. International Journal of Control, 1977, 25: 657-675.
    [125] Pearson C E. On a differential equation of boundary layer type. Journal of Mathematic and Physical, 1968, 47(2): 134-154.
    [126] Miller J J H (ed.). Proceedings of the BAIL Ⅲ-Comp. and Asymp. Methods. Boole Press, Dublin, 1984.
    [127] Zou Y, Campbell S L. The jump behavior and stability analysis for 2-D singular systems. Multidimensional Systems and Signal Processing, 2000,11:321-338.
    [128] 杨成梧,邹云.2-D线性离散系统.北京:国防工业出版社,1995.
    [129] Middleton R H, Goodwin G C. Improved finite word length characteristics in digital control using Delta operators. IEEE Transactions on Automatic Control, 1986, 31 (11): 1015-1021.
    
    [130] Middleton R H, Goodwin G C. Digital control and estimation: a unified approach. Englewood Cliffs, NJ: Prentice-Hall, 1990.
    [131] 黄琳.系统与控制理论中的线性代数.北京:科学出版社,1984.
    [132] Il'in A M. Differencing scheme for a differential equation with a small parameter affecting the highest derivatives. Mathematical Notes, 1969, 6(2), 596-602.
    [133] Hemner P W, Miller J J H. Numerical analysis of singular perturbation problem. Academic Press, 1979.
    [134] Abrahamsson L R, Keller H B, Kreiss H O. Difference approximations for singular perturbations of systems of ordinary differential equations. Numer. Math, 1974, 22, 367-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700