水力压裂垂直裂缝形态及缝高控制数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂是油田增产的最主要技术措施之一。地层条件不同,水力压裂形成的裂缝可能是水平缝,也可能是垂直缝。对于垂直裂缝,其三维形态,尤其是裂缝的高度以及在地层中的穿层情况,直接影响压裂效果,是工程师非常关心的问题。本文以大型有限元软件ABAQUS为平台,模拟了地层中的水力压裂过程,重点研究了多种影响裂缝形态和缝高控制的因素,对水力压裂设计和工程实践有指导意义。
     本文从介绍水力压裂的概念以及水力压裂的作用出发,综述了国内外水力压裂技术的发展和应用的历程,回顾了模拟水力压裂的各种模型,介绍了相关的岩石力学理论和水力压裂涉及到的多种问题(近井筒效应,支撑剂的选择,页岩气体积压裂等)。通过说明垂直裂缝缝高控制的重要性和前人对缝高控制的研究,解释了本文的研究内容和意义。
     油藏通常都是多孔介质,可以看成是由固体骨架和骨架之间的孔隙组成的结构,采用Terzaghi有效应力原理实现多孔介质变形和渗流之间的耦合。总结了岩石固体骨架变形和孔隙流体渗流流动的基本方程组和边界条件,以及相应的瞬态有限元求解列式,该列式是本文模拟的数学基础。采用带有孔隙压力的cohesive单元模拟裂缝的行为,介绍了裂缝的起裂准则和扩展准则,引入无量纲的损伤因子表征裂缝起裂之后单元的损伤情况(单元刚度的退化)。流体在裂缝中的流动是线性的,切向流动的速率与缝内压力梯度成正比,法向流动的速率与裂缝中心和裂缝上下表面的压差成正比。阐述了线弹性模型和粘弹性模型的基本理论以及一种典型的粘弹性模型——标准线性固体的本构关系。说明了处理支撑剂浓度的方法,将支撑剂浓度分布对压裂的影响表征为压裂液粘性的变化。
     建立二维平面应变模型,模拟水力压裂过程中裂缝的垂向扩展过程。二维模型,有计算成本低,耗时少等优点。通过模拟大庆油田一口油井现场的实际压裂过程,得到井底压力,引用计算摩阻的经验公式,推算出井口压力,它与现场实测的井口压力演化吻合良好,验证了二维模型的可行性和合理性。采用该模型模拟了三层地层(一个产层夹在上下隔层中间)的地质参数对裂缝高度的影响,结果表明,高地应力、低弹性模量和高抗拉强度的隔层会使得裂缝高度减小,能很好的限制裂缝穿层。
     建立全三维模型,研究水力压裂过程中裂缝的三维形态和多种参数对裂缝形态和缝高控制的影响,包括:
     (1)多层地层中的水力压裂。首先通过模拟一口现场油井的压裂过程,对比模拟得到的井底缝口压力曲线和现场实测的曲线,验证了三维模型的可靠性。然后对多产层和隔层交替出现的油藏中的水力压裂过程进行模拟。结果表明,较高的隔层地应力和抗拉强度以及较小的弹性模量会使得裂缝高度减小,长度增大,原因是地层的地应力与抗拉强度对裂缝张开起到阻碍作用;而弹性模量越大则缝宽越小,裂缝对流体流动的抵制作用增强,流体压力增大,裂缝高度就越大。由于产层和隔层的交替出现,裂缝的横截面形态呈现波浪形。
     (2)岩石孔隙度和泥质含量对水力压裂的影响。根据线弹性体波速与弹性参数的关系,以及前人基于实验和测井数据拟合的波速与孔隙度和泥质含量的经验公式,给出了孔隙度和泥质含量与岩石弹性模量、泊松比、抗拉强度和渗透率之间的关系。模拟结果表明,地层的孔隙度和泥质含量越高,裂缝高度越小,这是因为孔隙度越大则地层渗透率越大,压裂液滤失的更多,而泥质含量越大则岩石弹性模量越小、抗拉强度越大,地层越难以被破坏,这些因素导致裂缝高度被限制住。
     (3)渗透率各项异性对水力压裂的影响。模拟了正交各向异性渗透率张量的三个分量对裂缝形态和井底压力的影响,结果表明,沿着裂缝宽度方向的渗透率分量越大,则裂缝长度和高度以及井底压力越小,而沿着裂缝长度和高度方向的渗透率分量对裂缝形态及井底压力的影响不大。这是因为,裂缝内的流体滤失是沿着裂缝壁面的法线方向的,它主要受沿着裂缝宽度方向的渗透率分量影响,该渗透率分量越大则滤失越大,另外两个方向的渗透率分量对流体滤失的影响很小。
     (4)粘弹性本构关系的地层中水力压裂过程的模拟。采用标准线性固体模型表征地层的应力应变关系,模拟结果表明,粘性系数与标准线性固体中的开尔文体的剪切模量越小,裂缝高度就越小,这是因为粘性系数或开尔文体的剪切模量减小,会导致材料的松弛模量降低,应力松弛,井底缝口压力下降,所以裂缝的高度变小。粘弹性模型模拟的裂缝高度比相应的线弹性模型模拟出的结果小
     (5)支撑剂沉降对水力压裂的影响。推导了支撑剂沉降模型并用于水力压裂的模拟,结果表明,由于支撑剂沉降,裂缝的横截面不是上下对称的,裂缝下半部比上半部宽。支撑剂沉降模型模拟的裂缝横截面积比均匀分布模型大,原因是均匀分布模型没有考虑裂缝中的流体滤失引起的支撑剂浓度升高——携砂液粘性增加——滤失减小这一过程,通过模拟现场一口油井的压裂过程可以看出支撑剂沉降模型得到的井底压力变化曲线比支撑剂均匀分布模型得到的曲线更接近现场实测结果。
     (6)层间剪切对水力压裂的影响。模拟了产层和隔层之间的界面剪切强度对裂缝形态的影响,结果表明,当界面剪切强度小于一个零界值的时候,裂缝延伸至界面时会引起界面剪切破坏,出现明显的层间滑移,裂缝尖端变钝,缝高被限制住,缝长大大增加;反之,当界面剪切强度较大时,界面不会被破坏,没有层间滑移现象,裂缝能够穿入隔层。
     本文的研究揭示了影响裂缝高度的关键因素及规律,对于水力压裂设计和工程实践有很好的参考价值。
Hydraulic fracturing is one of the primary technologies used for reservoir production enhancement. For different formation conditions, the hydraulic fracture shape may be horizontal or vertical. For vertical fracture, engineers pay close attention to the three dimensional fracture configurations, especially to the fracture height and the crossing layer situation. In this dissertation, the finite element software ABAQUS is used as a platform to simulate the hydraulic fracturing processes. The key point is to study the effect of various parameters on fracture configuration and fracture height control. The results are valuable for hydraulic treatment design and practice.
     First, the concept and function of hydraulic fracturing is introduced. The processes of hydraulic fracturing technology development and application at home and abroad are briefly reviewed. Different hydraulic fracturing models are summarized. Hydraulic fracturing related rock mechanics and other concerned problems (near wellbore effect, proppant choosing, volume fracturing in shale-gas reservoirs and so on) are expounded. Through the explanation of the importance of the fracture height control and the current results from other researchers, the contents and significance of this dissertation are presented.
     Usually the reservoir is a kind of porous media, and it is regarded as a structure constructed by solid framework and pore. The Terzaghi effective stress principle is adopted to couple the solid deformation and seepage flow. The basic equations and boundary conditions as well as the corresponding incremental finite element solution formulae are summarized. The formulae are the math foundation of this dissertation. Cohesive elements with pore pressure freedom are used to simulate the fracture behavior. The fracture initiation and propagation laws are explained. The dimensionless scalar-damage factor is introduced to characterize the damage situation of the elements (the stiffness of the damaged elements may decrease). The fluid flow in the fracture is assumed to be linear. The tangential flow rate is proportional to the pressure gradient in the fracture, and the normal flow rate is proportional to the pressure difference between the fracture center and the fracture top/bottom surface. The basic theories of linear elastic and viscolinear elastic are stated, and the constitutive relation of a typical viscoelastic model-standard linear model is introduced. The ways of dealing with proppant concentration are presented, and the influence of proppant concentration distribution on hydraulic fracturing is represented by the fracturing fluid viscocity vatiation.
     Two-dimensional plane strain model is established to simulate the vertical growth of hydraulic fracture. The advantages of two dimensional model are the small computational overburden and save of time. A hydraulic fracturing process of a well in Daqing Oilfield is simulated. Combing the obtained bottomhole pressure and the frictions based on the empirical formulae, the surface pressure can be derived. The surface pressure curve from the simulation is consistent with field-measured data, and thus the feasibility of the two-dimensional model is approved. For the three layered formation (one pay layer sandwiched between two barrier layers), the effect of lithological parameters on fracture height is investigated. The results indicate that larger in-situ stress, smaller elastic modulus and larger tensile strength in barrier layers could make the fracture height smaller, and the crossing layer status is restricted.
     Fully three-dimensional model is established to study various factors which may influence the three-dimensional fracture configuration and fracture height. Main results are summarized below.
     (1) Hydraulic fracturing process in multi-layered reservoir. A typical hydraulic fracturing process of a well in Oilfield is simulated. The bottomhole pressure curve obtained from the simulation is compared with field-measured data, and the three-dimensional model is validated. Then hydraulic fracturing processes in multi-layered reservoir are simulated. The results show that larger in-situ stress and tensile strength, as well as smaller elastic modulus in barrier layers could make the fracture to be lower and longer. The reason is that in-situ stress and tensile strength hinder the fracture from opening; larger elastic modulus will make the fracture to be narrower, which has larger resistance to fluid flow, leading to the enlarged bottomhole pressure and fracture height. Since the pay layers and the barrier layers are interlinked by turns, the fracture cross-section is wave-shape.
     (2) Effect of rock porosity and clay content on hydraulic fracturing. According to the relation between linear elastic wave velocity and elastic parameters, as well as several empirical formulae based on the laboratory test and well logging data, porosity and clay content are connected to elastic modulus, Poisson's ratio, tensile strength and permeability. Numerical results indicate that larger porosity and clay content could confine the fracture height. Larger porosity will make the permeability increase, and more fracturing fluid may leak off into the reservoir. Larger clay content will make the elastic modulus decrease and tensile strength enlarge, and therefore the formation will become harder to be damaged. All these factors will lead the fracture height smaller.
     (3) Effect of orthotropic permeability on hydraulic fracturing. The influence of orthotropic permeability components on fracture configuration and bottomhole pressure is discussed. The conclusion is that as the permeability component along the fracture width direction increase, the fracture length, fracture height and bottomhole pressure may decrease. The influence of the permeability components along the fracture length and height directions on hydraulic fracturing is not evident. This may be interpreted with the direction of fluid leaking off. The fluid leaking off is mainly governed by the permeability component along the fracture width direction. The other two permeability components have little influence on fluid leaking off.
     (4) Simulation of hydraulic fracture propagating in the formation with viscoelastic property. Standard linear solid model is used to characterize the constitutive relation of formation. Numerical results indicate that as the viscosity and the shear modulus of Kelvin body in the standard linear solid decrease, the fracture height decreases. When any of the two parameters decreases, the relaxation modulus decreases, leading to stress relaxation and bottomhole pressure drop. As a result, the fracture height will be reduced. The fracture height predicted by viscoelastic model is smaller than that predicted by the corresponding linear elastic model.
     (5) Effect of proppant setting on hydraulic fracturing. The proppant setting model is proposed and its application in hydraulic fracturing modeling is discussed. The results demonstrate that duo to proppant settling, the fracture cross-section shape should be asymmetric, i.e. the lower half part of the fracture cross-section is wider than the upper half part. Compared to the proppant uniform distribution model, the fracture cross-section area obtained from the proppant settling model is larger. This is caused by neglecting the influence of fluid leaking off on proppant concentration in uniform distribution model. The influence of fluid leaking off is the increase of proppant concentration, and then the viscosity of fluid will be larger. As a result, the fluid leaking off is restrained. A hydraulic fracturing process of a well in Oilfield is simulated, and the bottomhole pressure curve obtained from the proppant settling model is closer to the field-measured data than that obtained from uniform distribution model.
     (6) Effect of interface shear failure on hydraulic fracturing. The influence of shear strength of interface between barrier layer and pay layer on fracture configuration is investigated. The results demonstrate that when the shear strength of interface is lower than a critical value, the interface will be damaged so that serious slippage along the interface will occur and the facture tip becomes blunted. The fracture height is confined and the fracture length will increase. On the contrary, when the shear strength of interface is large enough, the interface will not be damaged and there is no slippage along the interface. The fracture vertical growth cannot be stopped and it may penetrate into barrier layer.
     The present dissertation explores the key factors influencing fracture height. The obtained results are valuable for design and engineering practice of hydraulic fracturing.
引文
[1]. Adachi, J., Siebrits, E., Peirce, A., et al. Computer simulation of hydraulic fractures [J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(5):739-757.
    [2]. Economides, M.J., Nolte, K.G. Reservoir Stimulation [M].3rd ed. New Jersey:John Wiley & Sons, Ltd,2002.
    [3]. 张广明.水平井水力压裂数值模拟研究[D].合肥:中国科学技术大学工程科学学院,2010.
    [4]. National Energy Board. A primer for understanding Canadian shale gas [R]. Canada:2009.
    [5]. 陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008.
    [6]. Grebe, J.J., Stoesser, M. Increasing crude production 20,000,000 bbl from established fields [J]. World Petroleum J,1935, (August):473-482.
    [7]. Veatch, R.W., Moschovidis, Z.A., Fast, C.R. An overview of hydraulic fracturing [R]. In: Gidley, Holditch, Nierode Veatch, editors. Recent advances in hydraulic fracturing. Monograph, vol.12. Richardson:Society of Petroleum Engineers; 1989.
    [8]. 杨秀夫,刘希圣,陈勉,等.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-25.
    [9]. 唐颖,唐玄,王广源,等.页岩气开发水力压裂技术综述[J].地质通报,2011,30(2-3):393-399.
    [10]. Sneddon, I.N., Elliot, A.A. The opening of a Griffith crack under internal pressure [J]. Quarterly of Applied Mathematics,1946,4:262-267.
    [11]. Khristianovich, S.A., Zheltov, Y.P. Formation of vertical fractures by means of highly viscous liquid [C]. Proceedings of the Fourth World Petroleum Congress, Rome,1955.
    [12]. Perkins, T.K., Kern, L.R. Width of hydraulic fracture [J]. Journal of Petroleum Technology, 1961,13(9):937-949.
    [13]. Hubbert, M.K., Willis, D.G. Mechanics of hydraulic fracturing [J]. Journal of Petroleum Technology,1957,9(6):153-168.
    [14]. Geertsma, J., de Klerk F. A rapid method of predicting width and extent of hydraulically induced fractures [J]. Journal of Petroleum Technology,1969,21:1571-1581.
    [15]. Sneddon, I.N. The distribution of stress in the neighborhood of a crack in an elastic solid [J]. Proc. R. Soc. London A,1946,187:229-260.
    [16]. Carter, R.D. Derivation of the general equation for estimating the extent of the fracture area [J]. Drilling and Production Practice, API,1957:261-270.
    [17]. Settari, A. A new general model of fluid loss in hydraulic fracturing [J]. SPE Journal,1985, 25(4):491-501.
    [18]. Williams, B.B. Fluid loss from hydraulically induced fractures [J]. Journal of Petroleum Technology,1970,22(6):882-888.
    [19]. Simonson, E.R., Abou-Sayed, A.S., Clifton, R.J. Containment of massive hydraulic fractures [J]. SPE Journal,1978,18(1):27-32.
    [20]. Fung, R.L., Vilajakumar, S., Cormack, D.E. Calculation of vertical fracture containment in layered formations [J]. SPE Formation Evaluation,1987,2(4):518-523.
    [21]. Cleary, M.P. Comprehensive design formulae for hydraulic fracturing [R]. SPE paper 9259, presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, 1980.
    [22], Nolte, K.G., Economides, M.J. Fracture design and validation with uncertainty and model limitations [J]. Journal of Petroleum Technology,1991,43(9):1147-1155.
    [23]. Nordgren, R.P. Propagation of a vertical hydraulic fracture [J]. SPE Journal,1972,12(8): 306-314.
    [24]. Smith, M.B., Klein, H.H. Practical applications of coupling fully numerical 2-D transport calculation with a PC-based fracture geometry simulator [R]. SPE paper 30505, presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA,1995.
    [25].王洪勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [26]. Bui, H.D. An Integral equations method for solving the problem of a plane crack of arbitrary shape [J]. Journal of the Mechanics and Physics of Solids,1977,25(1):29-39.
    [27]. Barree, R.D. A practical numerical simulator for three-dimensional fracture propagation in heterogeneous media [R]. SPE paper 12273, presented at the SPE Reservoir Simulation Symposium, San Francisco, California, USA,1983.
    [28]. Brady, B.H., Ingraffea, A.R., Morales, R.H. Three-dimensional analysis and visualization of the wellbore and the fracturing process in inclined wells [R]. SPE paper 25889, presented at the SPE Rocky Mountain Regional/Low Permeability Reservoir Symposium, Denver, Colorado, USA,1993.
    [29]. Dean, R.H., Schmidt, J.H. Hydraulic fracture predictions with a fully coupled geomechanical reservoir simulator [J]. SPE Journal,2009,14(4),707-714.
    [30].庄茁,柳占力,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012.
    [31]. Gordeliy, E., Peirce, A. Coupling schemes for modeling hydraulic fracture propagation using the XFEM [J]. Computer Methods in Applied Mechanics and Engineering,2013,253: 305-322.
    [32]. 马新仿,黄少云,张士诚.全三维水力压裂过程中裂缝及近缝地层的温度计算模型[J].石油大学学报(自然科学版),2001,25(5):38-41.
    [33]. 李连崇,梁正召,李根,等.水力压裂裂缝穿层及扭转扩展的三维模拟分析[J].岩石力学与工程学报,2010,29(增1):3208-215.
    [34].杨野,彪仿俊,王瀚.螺旋射孔对水平缝水力压裂过程影响的数值模拟[J].石油学报,2012,33(6):1076-1079.
    [35]. Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M., Risnes, R. Petroleum related rock mechanics (second edition) [M]. Amsterdam:Elsevier,2008.
    [36]. Biot, M.A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics, 1941,12:155-164.
    [37]. Biot, M.A. General solutions of the equations of elasticity and consolidation for a porous material [J]. Journal of Applied Physics,1956,23(1):91-96.
    [38]. Skempton, A.W. Effective stress in soils, concrete and rocks [C]. Proceedings of the conference on pore pressure and suction in soils. London:Butterworth,1960.
    [39]. Thompson, M., Willis, J.R. A reformulation of the equations of anisotropic poro-elasticity [J]. Journal of Applied Mechanics,1991,58(3):612-616.
    [40].徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-45.
    [41]. Griffith, A.A. The phenomena of rupture and flow in solids [J]. Philosophical Transactions of the Royal Society of London,1921,221:163-198.
    [42]. Irwin, GR. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics,1957,24:361-364.
    [43].谢和平,彭瑞东,周宏伟,等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展,2004,14(10):1086-1092.
    [44].葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观实验研究[M].北京:科学出版社,2004.
    [45]. Tang, C.A., Tham, L.G., Lee, P.K.K., et al. Coupled analysis of flow, stress and damage (FSD) in rock failure [J]. International Journal of Rock Mechanics & Mining Sciences,2002,39(4): 477-489.
    [46].赵尚毅,郑颖人,刘明维,等.基于Drucker-Prager准则的边坡安全系数定义及其转换[J].岩石力学与工程学报,2006,25(增1):2730-2734.
    [47]. 周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [48]. Zhang, C. Viscoelastic fracture mechanics [M]. Beijing:Science Press,2006.
    [49]. Hagin, P.N., Zoback, M.D. Viscous deformation of unconsolidated reservoir sands-Part 2: Linear viscoelastic models [J]. Geophysics,2004,69(3):742-751.
    [50]. Shi, X., Wen, D., Bao, X., et al. Application of rock creep experiment in calculating the viscoelastic parameters of earth medium [J]. Science in China:series D earth sciences,2006, 49(5):492-498.
    [51].邵志刚,傅容珊,薛霆虓,等.以Burgers体模型模拟震后粘弹性松弛效应[J].大地测量与地球动力学,2007,27(5):31-37.
    [52].朱滨.弹性力学[M].合肥:中国科学技术大学出版社,2008.
    [53].李庆忠.岩石的纵、横波速度规律[J].石油地球物理勘探,1992,27(1):1-12.
    [54]. Han, D., Nur, A., Morgan, D. Effect of porosity and clay content on wave velocities in sandstones [J]. Geophysics,1986,51(11):2093-2107.
    [55]. Freund, D. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure [J]. Geophysical Journal International,1992, 108(1):125-135.
    [56]. Deere, D.U., Miller, R.P. Engineering classification and index properties for intact rock tech [R]. Report No. AFWL-TR-65-116, New Mexico:Air Force Weapons Laboratory, Kirtland Air Force Base,1966.
    [57].刘让杰,张建涛,银本才,等.水力压裂支撑剂现状及展望[J].钻采工艺,2003,26(4):31-34.
    [58]. Dayan, A., Stracener, S.M., Clark, P.E. Proppant transport in slick-water fracturing of shale-gas formations [R]. SPE paper 125068, presented at the 2009 SPE Annual Technical Conference and Exhibition, New Orleans, USA,2009.
    [59]. 温庆志,罗明良,李加娜,等.压裂支撑剂在裂缝中的沉降规律[J].油气地质与采收率,2009,16(3):100-103.
    [60]. Harris, P.C., Walters, H.G., Bryant, J. Prediction of proppant transport from rheological data [J]. SPE Production & Operations,2009,24(4):550-555.
    [61]. Ouyang. S., Carey, G.F., Yew, C.H. An adaptive finite element scheme for hydraulic fracturing with proppant transport [J]. International Journal for Numerical Methods in Fluids 1997,24(7):645-670.
    [62]. Suman, G.O. Perforations-A prime source of well performance problems [J]. Journal of Petroleum Technology,1972, April:399-411.
    [63].唐汝众,王同涛,闫相祯,等.射孔参数对套管强度影响的有限元分析[J].石油机械,2010,38(1):32-34.
    [64]. Andrews, J.S., Bjorkesett, H., Djurhuus, J., et al. Determination of Optimum Perforation Design and Sanding Propensity in Long Horizontal Wells Based on Modified RP 19B Section IV Tests and Numerical Sand Prediction [R]. SPE paper 112050, presented at the 2008 SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, USA, 2008.
    [65]. Daneshy, A.A. Experimental Investigation of Hydraulic Fracturing Through Perforations [J]. Journal of Petroleum Technology,1973,25 (10):1201-1206.
    [66].张广清,陈勉.定向射孔水力压裂复杂裂缝形态[J].石油勘探与开发.2009,36(1):103-107.
    [67].罗天雨,王嘉淮,刘元爽.射孔对水力压裂多裂缝的影响[J].大庆石油地质与开发.2010,29(2):97-100.
    [68].彪仿俊,刘合,张劲,等.螺旋射孔条件下地层破裂压力的数值模拟研究[J].中国科学技术大学学报,2011,41(3):219-226.
    [69].张保平,方竞,田国荣,等.水力压裂中的近井筒效应[J].岩石力学与工程学报,2004,23(14):2476-2479.
    [70].崔彦立,殷静.薄层压裂中的近井筒效应及对策[J].吐哈油气,2004,9(2):123-129.
    [71]. Behrmann, L., Elbel, J. Effect of perforations on fracture initiation [J]. Journal of Petroleum Technology,1991,43(5):608-615.
    [72]. Weijers, L. The near-wellbore geometry of hydraulic fractures initiated from horizontal and deviated wells [M]. Delft:Delft University Press,1995.
    [73]. Romero, J., Mack, M.G., Elbel, J.L. Theoretical model and numerical investigation of near-wellbore effects in hydraulic fracturing [R]. SPE paper 30506, presented at the SPE Annual Technical Conference and Exhibition, Dallas, USA,1995.
    [74]. McClain, C. Fluid flow in pipes [M]. New York:The Industrial Press,1963.
    [75]. Willingham, J.D., Tan, H.C., Norman, L.R. Perforation friction pressure of fracturing fluid slurries [R]. SPE paper 25891, presented at the SPE Rocky Mountain Regional/Low Permeability Reservoirs Symposium, Denver, USA,1993.
    [76]. Lord, D.L., McGowen, J.M. Real-time treating pressure analysis aided by new correlation [R]. SPE paper 15367, presented at the SPE Annual Technical Conference and Exhibition, New Orleans, USA,1986.
    [77].刘合,张广明,张劲,等.油井水力压裂摩阻计算和井口压力预测[J].岩石力学与工程学报,2010,29(增1):2833-2839.
    [78].杨永华,砂岩储层酸压可行性研究[D].成都:西南石油学院,2004.
    [79]. Williams, B.B., Gidley, J.L., Schechter, R.S. Acidizing Fundamentals [M]. Texas:Society of Petroleum Engineering,1979.
    [80]. Settari, A. Modeling of acid-fracturing treatments [R]. SPE paper 21870, presented at the SPE Rocky Mountain Regional/Low Permeability Reservoirs Symposium, Denver, Colorado, USA,1991.
    [81]. Roodhart, L.P., Kamphuis, H., Davies, D.R. Improved acid-fracturing treatment designs based on in-situ temperature calculations [R]. SPE paper 26185, presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada,1993.
    [82]. Kamphuis, H., Davies, D.R, Roodhart, L.P. A new simulator for calculation of the in-situ temperature profile during well stimulation fracturing treatments [J]. Journal of Canadian Petroleum Technology,30(5),38-47.
    [83].杨永华,胡丹,黄禹忠.砂岩储层增产新技术——酸压[J].断块油气田,2006,13(3):78-80.
    [84]. Amaefule, J.O., Ajufo, A. Peterson, E., et al. Understanding formation damage processes [R]. SPE paper 16232, Proceedings of the SPE Production Operations Symposium, Oklahoma, USA,1987.
    [85].法鲁克.西维编著,杨凤丽,候中昊等译.油层伤害——原理、模拟、评价和防治[M].北京:石油工业出版社,2003.
    [86].熊湘华.低压低渗透油气田的低伤害压裂液研究[D].成都:西南石油学院,2003.
    [87].王丽伟,蒙传幼,崔明月,等.压裂液残渣及支撑剂嵌入对裂缝伤害的影响[J].钻井液与完井液,2007,24(5):59-61.
    [88].庄照锋,张士诚,李宗田,等.压裂液伤害程度表示方法探讨[J].油气地质与采收率,2010,17(5):108-110.
    [89].张强德,王培义,杨东兰.储层无伤害压裂技术——液态CO2压裂[J].石油钻采工艺,2002,24(4):47-50.
    [90]. Latil M. Enhanced Oil Recovery [M]. Paris:Editions Technip,1980.
    [91]. Bruno A.S., Abdulla B., Al-Katheeri, et al. Short-term and long-term aspects of a water injection strategy [R]. SPE paper 116989, presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE,2008.
    [92]. Thomas, R.L., Saxon, A., Milne, A.W. The use of Coiled Tubing during matrix acidizing of carbonate reservoirs completed in horizontal, deviated, and vertical wells [J]. SPE Production & Facilities,1998 (August):,147-162.
    [93]. Jamaluddin, A.K.M., Vandamme, L.M., Nazarko, T.W., et al. Heat transfer for clay-related near-wellbore formation damage [J]. Journal of Canadian Petroleum Technology,1998,37(1): 56-63.
    [94].李世臻,乔德武,冯志刚,等.世界页岩气勘探开发现状及对中国的启示[J].地质通报,2010,29(6):918-924.
    [95]. Curtis, J.B. Fractured shale-gas systems [J]. AAPG Bulletin,2002,86(11):1921-1938.
    [96].张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    [97]. 肖刚,唐颖.页岩气及其勘探开发[M].北京:高等教育出版社,2012.
    [98].江怀友,宋新民,安晓璇,等.世界页岩气资源勘探开发现状与展望[J].大庆石油地质与开发,2008,27(6):10-14.
    [99].张金川,姜生玲,唐玄,等.我国页岩气富集类型及资源特点[J].天然气工业,2009,29(12):109-114.
    [100].《页岩气地质与勘探开发实践丛书》编委会.中国页岩气地质研究进展[M],北京:石油工业出版社,2011.
    [101].孙赞东,贾承造,李相方,等.非常规油气藏勘探与开发(下册)[M],北京:石油工业出版社,2011.
    [102].赵勇,杨海波.页岩气开发现状及成功开发页岩气的关键因素[J].中外能源,2011,16(7):47-50.
    [103]. Arthur, J.D., Bohm, B., Layne, M. Evaluating implications of hydraulic fracturing in shale gas reservoirs [R]. SPE paper 121038, presented at the 2009 SPE Americas E&P Environmental & Safety Conference, San Antonio, Texas, USA,2009.
    [104]. Akbarnejad-Nesheli, B., Valko, P.P. and Lee, W.J. Relating fracture network characteristics to shale gas reserve estimation [R]. SPE paper 154841, presented at the Americas Unconventional Resource Conference, Pittsburgh, Pennsylvania, USA,2012.
    [105].王海庆,王勤.体积压裂在超低渗油藏的开发应用[J].中国石油和化工标准与质量,2012,2:143.
    [106]. Cipolla, C.L., Jensen, L., Ginty, W., et al. Complex hydraulic fracture behavior in horizontal wells, South Arne Field, Danish North Sea [R], SPE paper 62888, presented at the 2000 SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA,2000.
    [107]. Cipolla, C.L., Hansen, K.K., Ginty, W.R. Fracture treatment design and execution in low-porosity chalk reservoirs [J], SPE Production & Operations,2007,22(1):94-106.
    [108]. Soliman, M.Y., East, L. and Adams, D. Geomechnics aspects of multiple fracturing of horizontal and vertical wells [R]. SPE paper 86992, presented at the SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Bakersfield, California, USA,2004.
    [109]. Soliman, M.Y. East, L., Augustine, J. Fracturing design aimed at enhancing fracture complexity [R]. SPE paper 130043, presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain,2010.
    [110]. East, L., Soliman, M.Y. and Augustine, J. Methods for enhancing far-field complexity in fracturing operations [R]. SPE paper 133380, presented at the SPE Annual Technical Conference and Exhibition, Florence, Italy,2010.
    [111]. Romanson, R., East, L. and Stanojcic, M. Novel, multistage stimulation processes can help achieve and control branch fracturing and increase stimulated reservoir volume for unconventional reservoirs [R]. SPE paper 142959, presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria,2011.
    [112].连小华.低渗油藏整体压裂数值模拟研究[D].青岛:中国石油大学(华东),2008.
    [113].秦同洛.关于低渗透油田的开发问题[J].断块油气田,1994,1(3):21-23.
    [114].李道品.低渗透油田开发概论[J].大庆石油地质与开发,1997,16(3):33-37.
    [115].柳贡惠,庞飞,陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报(自然科学版),2000,24(5):45-48.
    [116].蔺海晓,杜春志.煤岩拟三轴水力压裂实验研究[J].煤炭学报,2011,36(11):1801-1805.
    [117].刘建中,刘翔鹗,孙聚晨,等.水平井水力压裂真三维物理模拟实验[J].石油勘探与开发,1993,20(6):69-76.
    [118].彪仿俊.水力压裂水平裂缝扩展的数值模拟研究[D].合肥:中国科学技术大学工程科学学院,2011.
    [119].肖曾利,蒲春生,秦文龙,等.低渗油藏非线性渗流特征及其影响[J].石油钻采工艺,2007,29(3):105-107.
    [120]. Smith, M.B., Bale, A.B., Britt, L.K., et al. Layered modulus effects on fracture propagation, proppant placement and fracture modeling [R]. SPE paper 71654, presented at the SPE Annual Technical Conferences and Exhibition, New Orleans, USA,2001.
    [121].王祥,郑玲,张珩,等.压裂井裂缝高度定量计算方法[J].断块油气田,2002,9(2):71-73.
    [122]. Gu, H., Siebrits, E. Effect of formation modulus contrast on hydraulic fracture height containment [J]. SPE Production & Operations,2008,23(2):170-176.
    [123]. Daneshy, A.A. Factors controlling the vertical growth of hydraulic fractures [R]. SPE paper 118789, presented at the 2009 SPE Hydraulic Fracturing Technology Conference, Woodlands, Texas, USA,2009.
    [124].连志龙.水力压裂扩展的流固耦合数值模拟研究[D].合肥:中国科学技术大学工程科学学院,2007.
    [125]. Marino, M.A., Luthin, J.N. Seepage and groundwater [M]. New York:Elsevier Scientific Pub Co,1982.
    [126]. Pan, H., Rui, H. Mixed element method for two-dimensional Darcy-Forchheimer model [J]. Journal of Scientific Computing,2012,52(3):563-587.
    [127]. Neupauer, R.M., Dennis, N.D. Classroom activities to illustrate concepts of Darcy's law and hydraulic conductivity [J]. Journal of Professional Issues in Engineering Education and Practice,2010,136(1):17-23.
    [128].张广明,刘合,张劲,等.储层流固耦合的数学模型和非线性有限元方程[J].岩土力学,2010,31(5):1657-1662.
    [129]. Turon, A., Camanho, P.P., Costa, J., et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading [J]. Mechanics of Materials,2006,38 (11):1072-1089.
    [130]. Camanho, P.P., Davila, C. G Mixed-mode decohesion finite elements for the simulation of delamination in composite materials [R]. Hampton:NASA, NASA/TM-2002-211737,2002.
    [131]. Nghiem, L.X., Forsyth, P.A., Behie, A. A Fully Implicit Hydraulic Fracture Model [J]. Journal of Petroleum Technology,1984,36(8):1191-1198.
    [132]. Costa, A. Permeability-porosity relationship:A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters, 2006,33 (2), doi:10.1029/2005GL025134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700