第一性原理研究InSe纳米管和In_4Se_(3-x)单晶的结构、电子结构和热电性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是现代工业社会经济发展的基础,能源供给关系着人们的日常生活、国家的经济发展和国家安全。就目前来看,石油、天然气、煤炭等化石能源仍是能源的主要来源。由于化石能源不可再生、分布不均衡以及经济的高速发展对能源需求在逐步增加,对能源的争夺已经成为引发国际形势紧张的重要因素。此外,化石能源的大量使用还会引起温室气体效应和严重的环境危机。为此,新能源的开发和新型能源转化材料研究成为各国科学家关注的热点。热电材料是其中一种新型能源材料,它可以实现热能和电能之间的直接相互转化,能有效利用大量的工业废热、汽车废气、地热、太阳能以及实现无机械制冷。热电材料还具有无污染、无噪声、无可传动部分、体积小、反应快、易于维护、安全可靠等优点,有着极其广泛的应用前景。热电材料是利用固体中载流子和声子的输运及其相互作用,实现热能和电能之间的直接转化。目前较低的热电转换效率是限制热电材料广泛使用的主要原因。
     热电材料的转化效率(热电优值)高低由无量纲的ZT=S_2σT/(k_e+k_l)值来表示,它是由材料的塞贝克系数S、电导率σ和热导率k=k_e+k_l共同决定。在块材料中的这三个参数是相互联系、相互制约的,这成为限制块材料热电效率提高的主要因素。在纳米材料等低维材料中,塞贝克系数、电导率和热导率这三个参数之间相互关系发生改变,为纳米材料热电效率大幅提供了可能。纳米材料的热电效率相对于块材料大幅提高已经得到了实验上的验证,例如p型Bi_xSb_(2-x)Te_3纳米化合物,p型Si_(80)Ge_(20)纳米化合物和n型Si_(80)Ge_(20)纳米化合物的最大ZT值分别达到1.4,0.95,1.3,相对于它们分别相应的块材料ZT值1.0,0.65,0.9有较大提高。以Bi原子为基础的低维材料如Bi_(1-x)Sb_x薄膜、纳米线和纳米管已经成功合成,并有较好的热电效率。从相应的块体热电材料In_4Se_3中提取出来的InSe纳米管可能有好的热电表现。在本论文工作中,我们主要目标是研究探索相对于块体In_4Se_3的低维系统的结构和热电性质。我们探讨了InSe纳米管(InSeNTs)的结构、电子结构和热电性质。我们应用第一性原理的计算方法和玻尔兹曼理论预测了InSeNTs的结构并探索了InSeNTs的热电性质。经过充分地优化,(2,2)型被证明是最稳定的一种结构。(3,3)、(4,4)、(6,6)、(8,0)型InSeNTs是半导体性的,其它是金属性的。Se原子4p轨道的饱和度是决定InSeNTs导电性的重要因素。Se原子在半导体InSeNTs中与两个In原子成键,而在金属性InSeNTs中与三个In原子成键。(2,2)型纳米管费米面附近的功率因子是所研究InSeNTs中最大的,并且几乎是BiSb纳米管的十倍。费米面附近重带和轻带的同时出现会引起塞贝克系数和电导率的同时增大。本研究为新型高效热电材料的设计提供了一类极有希望的纳米结构材料。此外,在下一步的工作中还可以通过管大小、掺杂和表面结构调制进一步提高其热电效率。
     对In_4Se_(3-x)的研究多数集中在对多晶In_4Se_(3-x)材料的研究,一方面是由于多晶的界面效应可以有效降低材料的热导率,另一方面是多晶In_4Se_(3-x)材料的制备相对于单晶的生长更容易。实验上对Se原子缺陷的具体位置不能有效的控制,只能利用浓度变化来探究Se原子缺陷对晶体热电性质的影响。本文的主要目的是通过第一原理的计算方法对Se原子缺陷的具体位置、浓度对材料热电性质的各向异性、变化趋势、绝对大小以及正负塞贝克系数不同影响规律进行研究,并计算了相同缺陷浓度不同缺陷位置的态密度和能带结构,对缺陷具体位置影响因素进行了分析。
Energy is the basis for development of modern industrial society, energy supply relates to the people’sdaily life, the national economic development and the national security. As matters stand, fossil fuels suchas petroleum, natural gas and coal are still our major source of enegy. Due to the fossil fuels’unregeneration, uneven distribution and the very strong demand for it, energy is the main cause ofinternational tensions. The extensive use of fossil fuels is leading to greenhouse effect and environmentalcrisis. Therefore, exploration for new energy and research of new energy materials are a focus for concern.Thermoelectric material is a new kind of energy material, it can convert energy between thermal energy andelectrical energy. Home heating, automotive exhaust, and industrial processes all generate an enormousamount of unused waste heat that could be converted to electricity by using thermoelectrics. Asthermoelectric generators are solid-state devices with no moving parts, they are silent, reliable and scalable,making them ideal for small, distributed power generation. Thermoelectrics have long been too inefficientto be cost-effective in most applications.
     The efficiency of thermoelectric materials is given by the dimensionless figure of merit ZT=S_2σT/(k_e+k_l), where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature,and keand klare the electric and lattice thermal conductivity, respectively. Since the three physicalparameters S, σ, and K are coupled with each other, it remains a major difficulty to further enhance theZT value in bulk thermoelectric materials. High ZT has been achieved in many thermoelectricnanocomposites. For example, peak ZT is increased from1.0in bulk to1.4in p-type Bi_xSb_(2-x)Te_3nanocomposites, from0.65in bulk to0.95in p-type Si_(80)Ge_(20)nanocomposites, and from0.9in bulk to1.3 in n-type Si_(80)Ge_(20)nanocomposites. Bi-based low-demensional materials such as Bi_(1-x)Sb_xthin film,nanowires, and nanotubes have been successfully produced, and enhanced thermoelectric performanceshave been found in them. InSe nanotubes extracted from corresponding bulk In_4Se_3may also have highthermoelectric performance. In this work, we aim to achieve a better thermoelectric performance forInSeNTs by contacting the low-demensional system of In_4Se_3. We investigate the structural, electric, andthermoelectric properties of InSeNTs. We have employed first-principles calculations and Boltzmanntransport theory to predict InSeNT structures and expore their thermoelectric properties. After fullrelaxation,(2,2) InSeNT is the most stable one among the studied InSeNTs.(3,3),(4,4),(6,6), and (8,0)InSeNTs are semiconducting. Other studied InSeNTs are metallic. The filling degree of the Se4p orbitalplays a key role in determining whether these studied InSeNTs are semiconducting or metallic. The Seatom in the semiconducting InSeNTs is coordinated by two In atoms and that in the metallic InSeNTs is bythree In atoms. The S_2σ/τ of (2,2) InSeNT is much larger than that of other InSeNTs and is nearly10times larger than that of BiSb nanotubes around the Fermi level. It is found that an appearance of light andheavily bands around the Fermi level results in its high Seebeck coefficient and reasonable electricalconductivity. The current research proposes new types of nanotubes to design high-performancethermoelectric materials. Moreover, it is possible to further improve the thermoelectrial performance ofInSeNTs by optimization of tube sizes, doping, or tuning the surface structure in future work.
     Recently, most of the research efforts about thermoelectric material In_4Se_3crystal focus onSe-deficient polycrystalline compounds of In_4Se_(3-x). First, interface efforts of polycrystal can effectivelyreduce thermal conductivity. Second, the fabrication of polycrystalline In_4Se_(3-x)compounds is easier thangrowth of Se-deficient In_4Se_(3-x)single crystal. It is difficult to control the position of Se-deficient byexperiment, only to research how does the Se defects concentration affect the thermoelectric properties of polycrystalline compounds of In_4Se_(3-x). The main purpose of this paper is to study the influence of positionof Se defects and defects concentration on the anisotropy and the trend of changes of thermoelectriccoefficients. We studied the difference of change regularity of positive and negative Seebeck coefficients.We also calculated the density of states, electronic band structure of In_4Se_(3-x)single crystal with same defectconcentration and different Se-deficient position, and analyse effects of Se-deficient positions.
引文
[1] http://bake. baidu. com/view/862716. htmtarget=/-blank%22.
    [2] D. M. Rowe, Modern Thermoelectrics, Hot Technology,15(1983).
    [3] T. Caillat, J.-P. Fleurial, and A. Borshchevsky,Preparation and thermoelectric propertiesof semiconducting Zn4Sb3,J. Phys. Chem Solids,58,7(1997).
    [4] E. S. Toberer, M. Christensen, B. B. Iversen, and G. J. Snyder, High temperaturethermoelectric efficiency in Ba8Ga16Ge30, Phys. Rev. B,77,075203(2008).
    [5] T. Cailla, J. P. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties ofsemiconducting applicitions, Phys. B,363,196(2005).
    [6] K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Ag9TITe5:Ahigh-performance thermoelectric bulk material with extremely low thermal conductivity,Appl. Phys. Lett.,87,061919(2005).
    [7] Y. Gelbstein, Z. Dashky, and M. P. Dariel., High performance n-type PbTe-basedmaterials for thermoelectric applications, Phys. B,363,196(2005).
    [8] George S. Nolas, Glen A. Slack, and Sandra B. Schujman, Chapter6Semiconductorclathrates: A phononglass electron crystal materials with potential for thermoelectricapplications, Semiconductors and Semimetals,69,255(2001).
    [9] C. B. Vining, W. Laskow, H. O. Hanson, R. R. Vanderkeck, and P. D. Gorsuch,Thermoelectric properties of pressure-sintered Si0.8Ge0.2thermoelectric alloys,J. Appl.Phys.,69,4333(1991).
    [10] J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. S. Slack, Glasslike Heatconduction in high-mobility crystallin semiconductors, Phys. Rev. Lett.,82,779(1999).
    [11] G. S. Nolas and D. T. Morelli, Skutterudites: A phonon-glass-electron crystal approachto advanced thermoelectric energy conversion applications, Annual Review of MaterialsScience,29,89(1999).
    [12] S. R. Culp, S. J. Poon, N. Hickman, T. M. Tritt, and J. Blumm, Effect of Substitutions onthe thermoelectric figure of merit of half-heusler phases at800℃, Appl. Phys. Lett.,88,042106(2006).
    [13] K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, and I. Terasaki, Low thermal conductivity ofthe layered oxide(Na,Ca)Co2O4:another exam-ple of a phonon glass and electron crystal,Phy. Rev. B,61,12551(2000).
    [14] I.Terasaki, Y. Sasago, and K.Uchinokura, Large thermoelectric-power in NaCo2O4single crystals, Phy. Rev. B,56(20),12685(1997).
    [15] X. Shi and W. Zhang, Filling fraction limit for intrinsic voids in crystals:doping inskutterudites, Phys. Rev. B,95,185503(2005).
    [16] D. Berardsn and C. Codart, Chemical properties and thermo-power of the new series ofSkutterudite Ce1-pUbpFe4Sb12, J. Alloys Comp.,351,18(2003).
    [17] Y. Miyamoto, M. Niino and M. Koizumi, FGM research programmes in Japan fromstructural to functional uses, the4th Int'l Symposium on FGM,(1997).
    [18]郭成,朱维斗,金志浩。梯度功能材料的研究现状与展望。稀有金属材料与工程,24(3),18(1996).
    [19] J. Rodel and A. Neubrand, Research program on gradient materials in Germany, ElsevierScience BV All rights reserved (1997).
    [20]李雪辰,邓辉,迟志艳,王鹏,孙站江。准晶材料的结构特征和材料特性的研究。装备制造技术,3,32(2009).
    [21] L. D. Hicks and M. S.Dresselhans, Effect of quantum-well stucture on the thermoelectricfigure of merit, Phys. Rev. B,47,12727(1993).
    [22] R. R. Heikes and R. W. Ure, Thermoelectricity: Science and Engineering, Interscience,New York (1961).
    [23] S. Cho, A. Divenere, G. K. Yunki kim Wong, J. B. Ketterson, J. R. Meyer and C. A.Hoffman, Structural and thermoelectrie properties of MBE-grown doped and undopedBiSb alloy thin films, In Proc.17thInt.Conf. on Thermoelectrics,Nagoya, Japan,284(1998).
    [24] H. J. Goldsmid and J. W. Sharp, Effect of anisotropy of the Seebeck coefficient on thethermal conduetivity of polycrystalline BiSb alloys, In Proc.15thInti. Conf. OnThermoelectrics,Pasadena. CAUSA,14(1996).
    [25] R. B. Horst and L. R. Williams, Potential figure-of-merit of the BiSb alloys, In Proce.3rdInt. Conf. on Thermoelectrics, Arlington, TX USA,139(1980).
    [26] Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang and J. P. Tu, Syntheses and thermoelectricproperties of Bi2Te3/Sb2Te3bulk nanocomposites with laminated nanostrue, Apple. Phys.Lett.92(14),143106(2008).
    [27] I. Boniche, B. C. Morgan, P. J. Taylor, C. D. Meyer and D. P.Amold, Processdevelopment and material characterization of polycrystallin Bi2Te3, PbTe, and PbSnSeTethin film on silicon for millimeter-scale thermoelectric generators, Journal of VacuumScience and Technology A26(4),739(2008).
    [28] X. H. Ji, J. He, Z. Su, N. Gothard, N. Gothard and T. M. Teitt, Improved thermoelectricperformance in polycrystalline p-type Bi2Te3via an alkali metal salt hydrothermalnanocating treatment approach, J. Appl. Phys.,104(3),034907(2008).
    [29] Y. Gelbstein, Z. Dashevsky and M. P. Dariel, The search for mechanically stable PbTebased thermoelectric materials, J. Appl. Phys.,104(3),033702(2008).
    [30] F. Ren, B. D. Hall, J. E. Ni, E. D. Case, J. Sootsman, M. G. Kanatzidis, L. C Edgar., R.M.Trego and E. J. Timm, Mechanical characterization of PbTe based thermoelectricmaterials, Thermoelectric Power Generation,1044,121(2008).
    [1] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford,New York (1989); R. M. Dreizler and E. K. U. Gross, Density Functional Theory,Springer-Vertag, Berlin (1990).
    [2]冯端、金国钧,凝聚态物理学(上卷),高等教育出版社,北京(2003).
    [3] M. Born and K. Huang, Dynamical Theory of Crystal Lattices. USA: Oxford UniversitiesPress,1-432(1954).
    [4] D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field, Proc.Camb. Phil. Soc.,24,89(1928).
    [5] W. Kohn and L. J. Sham,Self-Consistent Equations Including Exchange and CorrelationEffects,Phys. Rev.,140, A1133(1965).
    [6] L H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc.,23,542(1927).
    [7] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, CanbridgeUniversity Press (2004).
    [8] J. P. Perdew,K. Burke,M. Ernzerhof,Generalized Gradient Approximation MadeSimple,Phys. Rev. Lett.,77,3865(1996).
    [9] C. Filippi,C. J. Umrigar,and M. Taut,Comparison of exact and approximate densityfunctionals for an exactly soluble model,J. Chem. Phys.,100,1290(1994).
    [10] V. I. Anisimov, J. Zaanen, and O. K. Andersn, Band theory and Mott insulators: HubbardU instead of Stoner I, Phys. Rev. B,44,943(1991).
    [11] V. I. Anisimov, M. A. Korotin, I. A. Nekrasov, A. S. Mylnikova, A.V. Lukoyanov, J. L.Wang, and Z. Zeng, The role of transition metal impurities and oxygen vacancies in theformation of ferromagnetism in Co-doped TiO2,J. Phys.: Condens Matter,18,1695(2006).
    [12] X. Gao, K. Uehara, D. D. Klug, S. Patchkovskii, J. S. Tse, and T. M.Tritt, Theoreticalstudies on the thermopower of semiconductors andlow-band-gap crystalline polymers,Phys. Rev. B,72,125202(2005).
    [13] P. B. Allen, Boltzmann theory and resistivity of metals, in: J. R. Chelikowsky, S.G.Louie (Eds.), Quantum Theory of Real Materials, Kluwer, Boston, pp.219–250(1996).
    [14] J. M. Ziman, Electrons and Phonons, Oxford Classics Series,Clarendon Press, Oxford(2001).
    [15] C. M. Hurd, The Hall Effect in Metals and Alloys, Plenum Press, New York–London(1972).
    [1] G. Mahan, B. Sales, and J. Sharp, Thermoelectric material: New approaches to an oldproblem, Phys. Today,50,42(1997).
    [2] J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, andG. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3-δcrystals, Nature,459,965(2009).
    [3] J. S. Rhyee, E. Cho, K. H. Lee, S. M. Lee, S. I. Kim, H. S. Kim, Y. S. Kwon, and S. J.Kim, Thermoelectric properties and anisotropic electronic band structure on the In4Se3-xcompounds, Appl. Phys. Lett.,95,212106(2009).
    [4] X. Shi, J. Y. Cho, J. R. Salvador, J. Yang, and H. Wang, Thermoelectric properties ofpolycrystalline In4Se3and In4Te3, Appl. Phys. Lett.,96,162108(2010).
    [5] X. Chen, Y. C. Wang, Y. M. Ma, T. Cui, and G. T. Zou, Origin of the HighThermoelectric Performance in Si Nanowires: A First-Principle Study, J. Phys. Chem. C,113,14001(2009).
    [6] H. Y. Lv, H. J. Liu, L. Pan, Y. W. Wen, X. J. Tan, J. Shi, and X. F. Tang, Structural,Electronic, and Thermoelectric Properties of BiSb Nanotubes, J. Phys. Chem. C,114,21234(2010).
    [7] L. D. Hicks, and M. S. Dresselhaus, Effect of quantum-well structures on thethermoelectric figure of merit, Phys. Rev. B,47,12727(1993).
    [8] L. D. Hicks, and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensionalconductor, Phys. Rev. B,47,16631(1993).
    [9] Y. C. Lan, A. J. Minnich, G. Chen, Z. F. Ren, Enhancement of ThermoelectricFigure-of-Merit by a Bulk Nanostructuring Approach, Adv. Funct. Mater.,20,357(2010).
    [10] S. Cho, A. DiVenere, G. K. Wong, J. B. Ketterson, and J. R. Meyer, Transport propertiesof Bi1-xSbxalloy thin films grown on CdTe(111)B, Phys, Rev. B,59,10691(1999).
    [11] S. Cho, Y. Kim, A. DiVenere, G. K. L. Wong, J. B. Ketterson, J. R. Meyer, AnisotropicSeebeck and magneto-Seebeck cofficients of Bi and Bi0.92Sb0.08alloy thin films, J. Appl.Phys.,88,808(2000).
    [12] M. Bi er, H. K se, and, i man, Selective Electrodeposition and Growth Mechanism ofThermoelectric Bismuth-Based Binary and Ternary Thin Films, J. Phys. Chem. C,114,8256(2010).
    [13] Y. M. Lin, S. B. Cronin, O. Rabin, J. Y. Ying, and M. S. Dresselhaus, Transportproperties of Bi1-xSbxalloy nanowires synthesized by preeure injection, Appl. Phys. Lett.,79,677(2001).
    [14] Y. M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, and M. S. Dresselhaus,Semimetal-semiconductor transition in Bi1-xSbxalloy nanowires and theirthermoelectric properties, Appl. Phys. Lett.,81,2403(2002).
    [15] Y. Zhang, L. Li, and G. H. Li, Fabrication and anomalous transport properties of anSb/Bi segment nanowire nanojunction array, Nanotechnology,16,2096(2005).
    [16] X. C. Dou, G. H. Li, and H. C. Lei, Kinetic versus Thermodynamic Control over GrowthProcess of Electrodeposited Bi/BiSb Superlattice Nanowires, Nano Lett.,8,1286(2008).
    [17] X. C. Dou, G. H. Li, X. H. Huang, and L. Li, Abnormal Growth of ElectrodepositedBiSb Alloy Nanotubes, J. Phys. Chem. C,112,8167(2008).
    [18] X. Chen, Z. W. Wang, and Y. M. Ma, Atomistic Design of High Thermoelectricity onSi/Ge Superlattice Nanowires, J. Phys. Chem. C,115,20696(2011).
    [19] X. Chen, Y. C. Wang, and Y. M. Ma, High Thermoelectric Performance of Ge/SiCore-Shell Nanowires: First-Principles Prediction, J. Phys. Chem. C,114,9096(2010).
    [20] G. Kresse, and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B,47,558(1993).
    [21] G. Kresse, and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-rowand transition elements, J. Phys.: Condens. Matter,6,8245(1994).
    [22] G. Kresse, and J.Furthmüller, Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set, Phys. Rev. B,54,11169(1996).
    [23] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation MadeSimple, Phys. Rev. Lett.,77,3865(1996).
    [24] D. D. Koelling, and B. N. Harmon, Journal of Physics C: Solid State Physics, J. Phys. C:Solid State Phys.,10,3107(1977).
    [25] P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev.,136, B864(1964).
    [26] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties, Vienna University ofTechnology: Vienna, Austria (2001).
    [27] G. K. H. Madsen, and D. J. Singh, BoltzTraP. A code for calculating band-structuredependent quantities, Comput. Phys. Commun.,175,67(2006).
    [28] T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan,Thermoelectric properties of Sb2Te3under pressure and uniaxial stress, Phys. Rev. B,68,085201(2003).
    [29] T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo,Transport coefficients from first-principles calculations,68,125210(2003).
    [30] T. Thonhauser, T. J. Scheidemantel, and J. O. Sofo, Improved thermoelectric devicesusing bismuth alloys, Appl. Phys. Lett.,85,588(2004).
    [31] H. Y. Lv, H. J. Liu, L. Pan, Y. W. Wen, X. J. Tan, J. Shi, and X. F. Tang, Enhancedthermoelectric performance of (Sb0.75Bi0.25)2Te3compound from first-principlescalculations, Appl. Phys. Lett.,96,142101(2010).
    [32] L. J. Zhang, M. H. Du, and D. J. Singh, Zintl-phase compounds with SnSb4tetrahedralanions: Electronic structure and thermoelectric properties, Phys. Rev. B,81,075117(2010).
    [33] J. P. Heremans, C. M. Thrush, D. T. Morelli, and M. C. Wu, Thermoelectric Power ofBismuth Nanocomposites, Phys. Rev. Lett.,88,216801(2002).
    [34] G. D. Mahan, and J. O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. U.S.A.,93,7436(1996).
    [1] J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, andG. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3-δcrystals, Nature,459,965(2009).
    [2] J. S. Rhyee,E. Cho,Kyunghan Ahn,K. H. Lee,and S. M. Lee,Thermoelectric propertiesof bipolar diffusion effect on In4Se3-xTexcompounds,Appl. Phys. Lett.,97,152104(2010).
    [3] J. S. Rhyee,E. Cho,K. H. Lee,S. M. Lee,S. Ⅱ Kim,H. S. Kim,Y. S. Kwon,and S.J. Kim,Thermoelectric properties and anisotropic electronic band structure on theIn4Se3-xcompounds,Appl. Phys. Lett.,95,212106(2009).
    [4] G. H. Zhu,Y. C. Lan,H. Wang,G. Joshi,Q. Hao,G. Chen,and Z. F. Ren,Effect ofselenium deficiency on the thermoelectric properties of n-type In4Se3-xcompounds,Phys.Rev. B,83,115201(2011).
    [5] G. Kresse, and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B,47,558(1993).
    [6] G. Kresse, and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-rowand transition elements, J. Phys.: Condens. Matter,6,8245(1994).
    [7] G. Kresse, and J.Furthmüller, Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set, Phys. Rev. B,54,11169(1996).
    [8] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation MadeSimple, Phys. Rev. Lett.,77,3865(1996).
    [9] D. D. Koelling, and B. N. Harmon, Journal of Physics C: Solid State Physics, J. Phys. C:Solid State Phys.,10,3107(1977).
    [10] P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev.,136, B864(1964).
    [11] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties, Vienna University ofTechnology: Vienna, Austria (2001).
    [12] G. K. H. Madsen, and D. J. Singh, BoltzTraP. A code for calculating band-structuredependent quantities, Comput. Phys. Commun.,175,67(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700