奥氏体不锈钢低温稀土氮碳共渗层相结构及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢表面改性是表面工程领域中的研究热点之一。奥氏体不锈钢低温化学热处理可获得无铬化物析出的单相改性层,使材料表面兼具优异的耐磨性和耐蚀性。提高处理温度或延长处理时间时,改性层中会析出Cr的化合物,导致了材料表面耐蚀性的下降。当前工艺技术很难制备较厚的单相改性层。单相层的相结构为间隙超饱和的膨胀奥氏体,也称为S相。S相的优异性能得到了广泛的研究,但其晶体学和形成机制仍未获得解决。本论文将低温稀土氮碳共渗技术应用于奥氏体不锈钢AISI304和AISI316的表面改性,以期利用稀土元素的催渗和微合金化作用提高改性层的厚度和改善韧性。利用第一性原理计算的方法对γ-Fe中合金原子的交互作用进行了研究,进而从原子和电子尺度对S相的晶体结构和形成机制进行表征;同时对共渗层中析出相的晶体结构,稳定性,弹性和电子性质等进行了研究,以揭示析出相对改性层性能的影响。
     AISI304和AISI316钢在430C和460C稀土氮碳共渗时,较佳的稀土添加量分别为0.05L/min和0.1L/min,稀土添加提高了氮碳共渗的速度。430C稀土氮碳共渗动力学中,共渗层厚度随时间延长而增厚;相同共渗工艺条件下,AISI304钢比AISI316钢的共渗层厚,且渗层中析出相更多;短时间共渗(≤8h),共渗层为单一SN相(含N的S相);延长处理时间,共渗层中CrN析出,发生了SN相向ε-Fe2-3N和γ′-Fe4N的转变。低温稀土氮碳共渗后,渗层显微硬度较基体提高4倍以上,最高可达1790HV;磨损机制由未处理态的严重粘着磨损、磨粒磨损和氧化磨损转变为轻微的粘着磨损和氧化疲劳磨损,磨损失重显著降低,耐磨性能提高。AISI316钢430C稀土氮碳共渗8h后,自腐蚀电位由未处理态的-143mv提高至-28mv,且钝化区扩大,耐蚀性提高。
     在微氮稀土渗碳中:增加乙醇流量可以获得更厚的渗层和减少渗层内的CrN析出;提高共渗温度或延长处理时间均诱发了共渗层内的马氏体相变和CrN析出;稀土的添加可以起到催渗的效果,但也加速了渗层内的马氏体相变和CrN析出。AISI316钢的460oC共渗层的相结构为S相,少量α′-Fe和CrN,显微组织为纳米级的条状晶粒。AISI304钢的共渗层分为两层:外层的马氏体相变层和里层的SC相(含C的S相)层。马氏体相变机制为应力诱发马氏体转变,S相分解为MX相和α′,S→α′+MX。应力来源为SC相内间隙原子的超饱和固溶和SC相与类MX相的晶格错配。
     在γ-Fe中,金属原子对Cr-Cr、Mo-Mo、Ti-Ti和Cr-Mo的第二近邻构型为最稳定分布,Cr-Ni的第一近邻构型为最稳定分布,Ni-Ni和Mn-Mn倾向于随机分布。间隙原子N-N、C-C和N-C的交互作用是浓度相关的:间隙原子浓度为20.wt%时,第二近邻构型为最稳定的分布方式;间隙原子浓度为11.1wt%时,原子间距离增加时交互作用由排斥变为吸引;在间隙原子浓度为5.9wt%,N-N的第一和第二近邻构型分别为强的和弱的排斥作用,而C-C第一和第二近邻构型分别为弱的和强的排斥作用,N-C之间均为强的排斥作用。在γ-Fe中,Cr、Mo和Ni与第一近邻的N或C之间均为排斥作用;Mn对第一近邻的N/C具有吸引作用;Ti对第一近邻的N为吸引作用,与第一近邻C为排除作用。
     SN相不具有理想的晶体结构,晶格中金属原子保持了准面心立方结构,N占据了Cr,Mo等原子的最近邻八面体间隙并形成短程有序。SN相是由于在低温条件下,合金元素的扩散被抑制,N扩散进入奥氏体的晶格中占据稳定或亚稳占位而形成的间隙超饱和的固溶体。N在不同间隙的占据稳定性的差异导致了N的化学势的不同,进而为N的扩散提供了驱动力。在SN相的生长过程中:N的稳定占位形成了SN相;亚稳占位和不稳定占位是N的扩散通道;SN层的生长需要界面位置N的堆积,且受N的反应扩散控制。
     SC相也不具有理想的晶体结构,金属原子为准面心立方结构,C占据部分完全由Fe构成八面体间隙,而不易于占据合金原子的最近邻间隙,而形成短程有序。在SC相和奥氏体不锈钢的晶格中,C在不同间隙位置的占位稳定性的不同导致了C的化学势差异,提供了C的扩散驱动力。与奥氏体不锈钢相比,C在SC相中有更高的扩散速率,形成了高C浓度的SC相层。在奥氏体不锈钢中,C的更高的占位稳定性导致了SC相中C向奥氏体不锈钢中的扩散和SC相层的生长。SC相层的生长受C的纯扩散控制。
     氮化物稳定性排序为:η-Fe2N>ε-Fe2N>ζ-Fe2N>ε-Fe3N>γ′-Fe4N>ZB-FeN> α"-Fe16N2>RS-FeN。密排六方ε-Fe6CxNy相中,间隙原子之间为排斥作用。间隙原子的稳定排布方式,增强了p-d杂化强度,降低了费米面附件的态密度,提高了ε-Fe6CxNy相的剪切模量。CrN中部分Cr原子可以被Fe、Mo、Ni、Mn、Ti等取代,形成稳定的三元合金Cr0.75Me0.25N;在Cr2N的晶格中,N原子优先占据1a和2d阵点,其次是2c阵点,最后是1b位置;N原子的稳定占位方式使得Cr2N具有更高的弹性模量和剪切模量。
Surface modification of austenite stainless steel has been one of the hot points in the surface engineer field. By low temperature thermochemical technology, a single phase layer without Cr compounds precipitation can be produced on the surface of austenite stainless steel, which provides the surface with the excellent wear and corrosion resistance. The phase structure of the single phase layer is the expanded austenite with interstitial supersaturation, which is also called S phase. The thickness of the single phase layer is limited due to the inevitable precipitation of Cr compounds when increasing the treatment temperature or prolonging the treatment time. Meanwhile, the crystal structure and formation mechanism of S phase are also problems that need to be solved. In this study, the low temperature rare earth (RE) nitrocarburizing is adopted to improve the surface properties of AISI304and AISI316steel, by which the thicker layer and good ductile are expected by the catalytic action and microalloying effects of RE elements. By first principles calculations, the interactions of alloy elements in γ-Fe are studied, and then the crystal structure and formation mechanism of S phase are characterized. The crystal structures, stability, elastic and electronic properties of the precipitation phases are also investigated.
     For AISI304and AISI316steels, the better RE addition are0.05and0.1L/min for430C和460C, respectively. The RE addition accelerates the nitrocarburizing process. The results of kinetic of RE nitrocarburizing at430C indicates that the modified layer increases with the prolonging treatment time; For AISI304steel, under the same condition, a thicker layer with more precipitations is obtained than that of AISI316steel; When the treatment time is shot (≤8h), a single phase layer of SN phase (N expanded S phase) is obtained; Prolonging the treatment time, CrN precipitates in the layer and the SN phase will transfer into ε-Fe2-3N and γ′-Fe4N. After RE nitrocarburizing, the surface hardness reaches to1790HV, which presents about four times promotion. After RE nitrocarburizing, the wear mechanismes change from the serve adhesive wear, abrasive wear and oxidative wear for the untreated steel to the slight abrasive wear, oxidative wear and fatigue wear for the treated steel. The wear loss is also decreased and the wear resistance is improved. By nitrocarburizing for8h at430C, the wear resistance gets promotion, indicating by the increasing corrosion potential from-143mv to28mv and the expanded passivation area.
     During the RE carburizing with micro C, the increase of ethanol flow could thicken the modified layer and surpress the CrN precipitation. Increasing the treatment time or prolonging the treatment time induces the martenite transformation and CrN precipitation. The RE addition accelerate the penetration, but also promote the martenite transformation and CrN precipitation. The phase structure of nitrocarburizing layer of AISI316steel compose of S phase, a little α′-Fe and CrN, while the microstructure is nanoscale lath grain. There are two sublayers for the nitrocarburizing AISI304steel: the outer martenite transmfornation layer and the inner SC phase. The mechanism of martenite transformation is stress induced martenite transformation and the S phase decomposes into MX phase and α′,S→α′+MX. The stress originates from the C supersaturation of SC phase and the mismatch between the SC and MX phases.
     In the γ-Fe, Cr-Cr,Mo-Mo,Ti-Ti and Cr-Mo pairs configuring as the second nearest neighbourhood is the most stable distributions, while the Cr-Ni pair prefers to configuring as the first nearest nerbourhood. For Ni-Ni and Mn-Mn, there are few differences between the several configurations. The interactions between N-N, C-C and N-C pairs are concentration dependence. When the interstitial concentration is20.wt%, the second nearest neighbourhood is the most stable distribution. with a concentration of11.1wt%, the interaction changes from repulsion to attraction when the distance between the atom pair becomes further and further. When the concentration is5.9wt%, the N-N pair presents weak and strong repulsion for the first and second nearest configuration, respectively, while the C-C shows strong and weak repulsion for the the first and second nearest configuration, respectively. The N-C pair exhibits strong repulsion effect. In the γ-Fe, Cr, Mo and Ni atoms will repel the first nearest interstitial atoms, while Mn atoms will appeal the nearest interstitial atom. The Ti atom will attract N and repel C in the first nearest octahedron interstitial.
     SN phase possesses non-ideal periodic crystal structure, where the metallic atoms stay in the quasi face center cubic cell and N atoms occupy the octahedral interstices nearest to Cr and Mo atoms and exist in short-range order. At relative low temperature, the mobility of metallic atoms is suppressed] and N atoms diffuse into austenite crystals and occupy stable or metastable interstitials, and the interstitial supersaturation solid solution, SN phase, forms. The stability discrepancies of N occupying kinds of interstices cause the different chemical potentials for N atoms which provide the drive force for N diffusion。During the growth of SN phase, stable occupations of N atoms cause the SN phase formation, while the metastable or unstable occupations presents as the diffusion path. The growth of SN phase layer needs the N accumulation at the interface between SN layer and matrix. The growth of SC layer is controlled by N reaction diffusion.
     SC phase possesses non-ideal periodic crystal structure, where the metallic atoms keep the quasi face center cubic cell and C atoms site at the octahedral interstices formed by Fe atoms and hardly locate at the interstices nearest to the alloy atoms. The differences of chemical potential of C atoms will be caused by the different occupation of C atoms in austenite stainless steels and SC phase, which will offer the drive force for C diffusion. C atoms have fast diffusion rate in SC phase than in austenite stainless steels, and then the SC phase layer with high C concentration forms. The more stable occupation of C in austenite stainless steels leads to the C diffusing into the matrix and growth of the SC layer. The growth of SC layer is controlled by C diffusion.
     The stability of iron nitrides can be sequenced as: η-Fe2N>ε-Fe2N>ζ-Fe2N>ε-Fe3N>γ′-Fe4N>ZB-FeN>α"-Fe16N2>RS-FeN. In the hexagonal close packed ε-Fe6CxNy, the interaction between the interstitial atoms is repulsion effect. The stable configuration of interstitial atoms enhances the p-d hybridization and reduces the states at the Fermi level, thus the ε-Fe6CxNy phase gets improved shear modulus. The Cr atoms in CrN can be substituted by other alloy elements, forming stable ternary compounds. In the Cr2N crystal, the N prefers to occupy the1a and2d sites, and then the2c site, finally is the1b site. The stable distribution of N atoms promotes the bulk modulus and shear modulus of Cr2N.
引文
[1] Zhang Z L, Bell T. Structured and Corrosion Resistance of Plasma Nitrided Stainless Steel. Surface Engineering [J].1985,1(2):131-136.
    [2] Gillham M, Jagt. R.V, Kolsteret. B. New Case Hardening Process forAustenitic Stainless Steels. Materials World [J].1996,12:460-462.
    [3] Ichii K, Fujimura K, Takase T. Structure of the Ion-Nitrided Layer of18-8Stainless Steel [J]. Technol Rep.Thermal Treatment (MD) Kansai Univ.1986,27:135-144.
    [4] Leyland A, Lewis D B, Stevensom P R, et al. Low-Temperature Plasma-Diffusion Treatment of Stainless Steels for Improved Wear Resistance [J].Surface and Coatings Technology.1993,62:608-617.
    [5] Marchev K, Cooper C V, Blucher J T, et al. Conditions for the Formation of aMartensitic Single-Phase Compound Layer in Ion-Nitrided316L AusteniticStainless Steel [J]. Surface and Coatings Technology.1998,99:225-228.
    [6] Lebrun J P. Treatment Method of a Metallic Substrate, Metallic SubstrateThereby Obtained and its Application: Eropean, EP0801142[P].2002-08-08.
    [7] Sun Y, Bell T. Process for the Treatment of Austenitic Stainless Steel Articles:Eropean, EP1000181[P].2002-02-02.
    [8] Sun Y. Hybrid Plasma Surface Alloying of Austenitic Stainless Steels withNitrogen and Carbon [J]. Materials Science and Engineering A.2005,404:124-129.
    [9] Sun Y, Haruman E. Effect of Carbon Addition on Low-Temperature Plasma Nitriding Characteristics of Austenitic Stainless Steel [J]. Vacuum.2006,81:114-119.
    [10] Tsujikawa M, Yamauchi N, Ueda N, et al. Behavior of Carbon in LowTemperature Plasma Nitriding Layer of Austenitic Stainless Steel [J]. Surfaceand Coatings Technology.2005,193:309-313
    [11] Tsujikawa M, Yoshida D, Yamauchi N, et al. Surface Material Design of316Stainless Steel by Combination of Low Temperature Carburizing andNitriding [J]. Surface and Coatings Technology.2005,2005:07-511.
    [12] Bell T. Surface Engineering of Austenitic Stainless Steel [J]. SurfaceEngineering.2002,18:415-422.
    [13] Pinedo C E. Private Communication. Heat Treat Ltd. Suzano, Brazil,2008.
    [14] Gallo S C, Dong H. On the Fundamental Mechanisms of Active ScreenPlasma Nitriding [J]. Vacuum.2010,84:321-325.
    [15] Gallo S C, Dong H.. Study of Active Screen Plasma Processing Conditionsfor Carburising and Nitriding Austenitic Stainless Steel [J]. Surface andCoating Technology.2009,203:3669-3675.
    [16] Gallo S C, Dong H. Corrosion Behaviour of Direct Current and ActiveScreen Plasma Carburised AISI316Stainless Steel in Boiling Sulphuric AcidSolutions [J]. Corrosion Engineering Science and Technology.2011,46:8-16.[17] Fayeulle S. Ion Implantation in Stainless Steels: Microstructures and Mechanical Properties [J]. Defect and Diffusion Forum.1988,57-58:327-358.
    [18] Williamson D L, Wang L, Wei R, et al. Irradiation Creep and Swelling ofAISI316to Exposures of130Dpa at385-400oc [J]. Materials Letters.1990,9:302-308
    [19] Samandi M, Shedden B A, Bell T, et al. Microelectronics and NanometerStructures Processing, Measurement and Phenomena [J]. Journal of VacuumScience and Technology B.1994,12(2):935-939.
    [20] Lei M K, Huang Y, Zhang Z L. In Situ Transformation of Nitrogen-InducedH.C.P. Martensite in Plasma Source Ion-Nitrided Austenitic Stainless Steel[J]. Journal of Materials Science Letters.1998,17:1165-1167.
    [21] Aoki K, Shirahata T, Tahara M, et al. Stainless Steel2000: Thermochemical Surface Engineering of Stainless Steel [M], London:Theinstitute of Materials,2001,389-405.
    [22] Tahara M, Senbokuya H, Kitano K, et al. Method of Nitriding AusteniticStainless Steel: Eropean, EP0588458B1[P],1996-05-01.
    [23] Williams P C, Mark S V. Modified Low Temperature Case HardeningProcesses: US,6547888B1[P],2003-04-15.
    [24] Baranowska J. Microstructural Changes in the Upper Surface of AusteniticSteel Induced by Ion Sputtering and Gas Nitriding [J]. Vacuum,2007,81:1216-1219.
    [25] Somers M A J, Christiansen T, M ller P. Case Hardening of Stainless Steel:DK,174707B1[P],2003-09-29.
    [26] Christiansen T, Somers M A J. Low Temperature Gaseous Nitriding andCarburising of Stainless Steel [J]. Surface Engineering.2005,21:445-455.
    [27] Christiansen T, Somers M A J. Carburizing in Hydrocarbon Gas: PatentApplication: WO,2006136166(A1)[P],2006-12-28.
    [28] Williams P C, Marx S V. Low Temperature Case Hardening Processes: US,6093303[P],2000-07-25.
    [29] Cao Y, Ernst F, Michal G M, Colossal Carbon Supersaturation in AusteniticStainless Steels Carburized at Low Temperature [J]. Acta Materialia.2003,51:4171-4181.
    [30] Michal G M, Ernst F, Kahn H, et al. Carbon Supersaturation Due toParaequilibrium Carburization [J]. Acta Materialia.2006,54:1597-1606.
    [31] Agarwal N, Kahn H, Avishai A, et al. Enhanced Fatigue Resistance in316LAustenitic Stainless Steel Due to Low-Temperature ParaequilibriumCarburization [J]. Acta Materialia.2007,55:5572-5580.
    [32] Marchev K, Hidalgo R, Landis M, et al. The Metastable M Phase Layer onIon-Nitrided Austenitic Stainless Steels: Part2: Crystal Structure andObservation of its Two-Directional Orientational Anisotropy [J]. Surface andCoatings Technology.1999,112:67-70.
    [33] Thaiwatthana S, Li X.Y, Dong H, et al. Thermal Stability of Carbon S Phasein316Stainless Steel [J]. Surface Engineering.2002,18:433-437.
    [34] El-Rahman A M A, El-Hossary F M, Fitz T, et al. Effect of N2to C2H2Ratioon R.F. Plasma Surface Treatment of Austenitic Stainless Steel [J]. Surfaceand Coatings Technology.2004,183:268-274.
    [35] Buhagiar J, Dong H, Bell T. Low Temperature Plasma Surface Alloying ofMedical Grade Austenitic Stainless Steel with C&N [J]. SurfaceEngineering.2007,23:313-317.
    [36] Fossati A, Borgioli F, Galvanetto E, et al. Glow-Discharge Nitriding of AISI316L Austenitic Stainless Steel: influence of Treatment Temperature [J].Surface and Coatings Technology.2005,200:2474-2480.
    [37] Sun Y, Li X Y, Bell T. X-Ray Diffraction Characterisation of LowTemperature Plasma Nitrided Austenitic Stainless Steels [J]. Journal ofMaterials Science.1999,34:4793-4802.
    [38] Farrell K, Specht E D, Pang J, et al. Characterization of a Carburized SurfaceLayer on an Austenitic Stainless Steel [J]. Journal of Nuclear Materials.2005,343:123-133.
    [39] Heuer A H, Ernst F, Kahn H, et al. Interstitial Defects in316L AusteniticStainless Steel Containing “Colossal” Carbon Concentrations: an InternalFriction Study [J]. Scripta Materialia.2007,56:1067-1070.
    [40] Sun Y. A Hybrid Low Temperature Surface Alloying Process for Austenitic Stainless Steels [J]. Transactions of Materids and Heat Treatment.2004,25:307-310.
    [41] Cheng Z, Li C X, Dong H, et al. Low Temperature Plasma Nitrocarburisingof AISI316Austenitic Stainless Steel [J]. Surface and Coatings Technology.2005,191:195-200
    [42] Fossati A, Borgioli F, Galvanetto E, et al. Glow Discharge Nitriding of AISI316L Austenitic Stainless Steel: influence of Treatment Pressure [J]. Surfaceand Coatings Technology.2006,200:5505-5513.
    [43] Fossati A, Borgioli F, Galvanetto E, et al. Glow-Discharge Nitriding of AISI316L Austenitic Stainless Steel: Influence of Treatment Time [J]. Surface andCoatings Technology.2006,200:3511-3517.
    [44] Lewis D B, Leyland A, Stevenson P R, et al. Metallurgical Study of Low-Temperature Plasma Carbon Diffusion Treatments for Stainless Steels [J].Surface and Coatings Technology.1993,60:416-423
    [45] Dong H. S-Phase Surface Engineering of Fe-Cr, Co-Cr and Ni-Cr Alloys [J].International Materials Reviews.2010,55(2):65-98.
    [46] Li X Y. Characterisation of S-Phase [D]. The University of Birmingham,1999.
    [47] Fewell M P, Mitchell D R G, Priest J M, et al. The Nature of ExpandedAustenite [J]. Surface and Coatings Technology.2000,131:300-306.
    [48] Li X Y, Sun Y, Bloyce A, et al. XTEM Characterization of Low TemperaturePlasma Nitride AISI316Austenitic Stainless Steel [J]. Institute of PhysicsConference Series.1997,153:633-636.
    [49] Mingolo N, Tschiptschin A P, Pinedo C E. On the Formation of ExpandedAustenite During Plasma Nitriding of an AISI316L Austenitic StainlessSteel [J]. Surface and Coatings Technology.2006,201:4215-4218.
    [50] Fewell M P, Priest J M. High-Order Diffractometry of Expanded AusteniteUsing Synchrotron Radiation [J]. Surface and Coatings Technology.2008,202:1802-1806.
    [51] Marchev K, Landis M, Vallerio R, et al. The M Phase Layer on Ion NitridedAustenitic Stainless Steel (III): an Epitaxial Relationship between the MPhase and the γ Parent Phase and a Review of Structural Identifications ofthis Phase [J]. Surface and Coatings Technology.1999,116-119:184-188.
    [52] Sun Y, Li X Y, Bell T. Structural Characterisation of Low TemperaturePlasma Carburised Austenitic Stainless Steel [J]. Materials Science andTechnology.1999,15:1171-1178.
    [53] Blawert C, Weisheit A, Mordike B L, et al. Plasma Immersion IonImplantation of Stainless Steel: Austenitic Stainless Steel in Comparison ToAustenitic-Ferritic Stainless Steel [J]. Surface and Coatings Technology.1996,85:15-27.
    [54] Paterson M S. X-Ray Diffraction by Face-Centered Cubic Crystals withDeformation Faults [J]. Journal of Applied Physics.1952,23:805-811.
    [55] Warren B E. X-Ray Diffraction [M]. New York: Addison-Wesley.1969
    [56] Wagner C N J, Boisseau J P, Aqua E N. Institute of Metals Division: X-RayDiffraction Study of Plastically Deformed Copper [J]. Transactions of theMetallurgicalsociety of AIME.1965,233:1280-1288.
    [57] Oddershede J, Christiansen T L, Stahl K. Modelling the X-Ray PowderDiffraction of Nitrogen-Expanded Austenite Using the Debye Formula [J].Journal of Applied Crystallography.2008,41:537-543.
    [58] Blawert C, Kalvelage H, Mordike B L, et al. Nitrogen and Carbon ExpandedAustenite Produced By PI3[J]. Surface and Coatings Technology.2001,136:181-187.
    [59] Warren B E. X-Ray Diffraction [M]. New York: Addison-Wesley.1969
    [60] Riviere J P, Cahoreau M, Meheust P. Chemical Bonding of Nitrogen in LowEnergy High Flux Implanted Austenitic Stainless Steel [J]. Journal ofApplied Physics.2002,91:6361-6366.
    [61] Velterop L, Delhez R, Keijser T H, et al. X-Ray Diffraction Analysis ofStacking and Twin Faults in F.C.C. Metals: a Revision and Allowance forTexture and Non-Uniform Fault Probabilities [J]. Journal of AppliedCrystallography.2000,33:296-306.
    [62] Christiansen T, Somers M A J. On the Crystallographic Structure of S-Phase[J]. Scripta Materialia.2004,50:35-37.
    [63] Daham K L, Betts A J, Dearnley P A. Surface Modification Technology XXI[M]. Materials Park,2007,519-526
    [64] Gavriljuk V G, Berns H. High Nitrogen Steel-Structure, Properties,Manufacturing, Applications [M]. Berlin: Springer,1999.45
    [65] Shanker P, Sundararaman D, Ranganathan S. Clustering and Ordering ofNitrogen in Nuclear Grade316LN Austenitic Stainless Steel [J]. Journal ofNuclear Materials.1998,254:1-8.
    [66] Myrayama M, Hono K, Hirukawa H, et al. The Combined Effect ofMolybdenum and Nitrogen on the Fatigued Microstructure of316TypeAustenitic Stainless Steel [J]. Scripta Materialia.1999,41:467-473.
    [67] Oddershede J, Christiansen T L, Stahl K, et al. EXAFS investigation of LowTemperature Nitride Stainless Steel [J]. Journal of Materials Science.2008,43:5358-5367.
    [68] Li X Y, Dong H. Effect of Annealing on Corrosion Behaviour of Nitrogen SPhase in Austenitic Stainless Steel [J]. Materials Science and Technology.2003,19:1427-1434.
    [69] Christiansen T, Somers M A J. Decomposition Kinetics of ExpandedAustenite with High Nitrogen Contents [J]. Z. Metallkd,2006,97:79-88.
    [70] Li X Y, Sun Y, Bell T. Stability of the Nitrogen S-Phase in AusteniticStainless Steel [J]. Z. Metallkd.1999,90:901-907.
    [71] Li X Y, Thaiwatthana S, Dong H. Thermal Stability of Carbon S Phase in316Stainless Steel [J]. Surface Engineering.2002,18:448-452.
    [72] Sun Y, Bell T, Kolosvary Z, et al. Stainless Steel2000: ThermochemicalSurface Engineering of Stainless Steel [M]. London: The institute ofMaterials,2001.65-81
    [73] Esfandiri M, Dong H. Plasma Surface Engineering of PrecipitationHardening Stainless Steels [J]. Surface Engineering.2006,22:86-92.
    [74] Gemma K, Satoh Y, Ushioku I, et al. Stainless Steel2000: ThermochemicalSurface Engineering of Stainless Steel [M]. London: The institute ofMaterials,2001.39-49
    [75] Williamson D L, Ozturk O, Wei R, et al. Metastable Phase Formation andEnhanced Diffusion in F.C.C. Alloys Under High Dose, High Flux NitrogenImplantation at High and Low Ion Energies [J]. Surface and CoatingsTechnology.1994,65:15-23.
    [76] Tsujikawa M, Noguchi S, Yamauchi N, et al. Effect of Molybdenum onHardness of Low-Temperature Plasma Carburized Austenitic Stainless Steel[J]. Surface and Coatings Technology.2007,201:5102-5107.
    [77] Esfandiri M, Dong H. Plasma Surface Engineering of PrecipitationHardening Stainless Steels [J]. Surface Engineer.2006,22:86-92.
    [78] Fewell M P, Priest J M, Baldwin M J, et al. Nitriding at Low Temperature [J].Surface and Coatings Technology.2000,131:284-290.
    [79] Grieveson P, Turkdogan E T. Kinetics of Reaction of Gaseous Nitrogen withIron. I. Kinetics of Nitrogen Solution in-Iron [J]. Transactions of TheMetallurgical Society of AIME.1964,230:407-414.
    [80] Hirvonen J, Anttila A. Annealing Behavior of Implanted Nitrogen in AISI316Stainless Steel [J]. Applied Physics Letters.1985,46:835-836.
    [81] Christiansen T, Somers M A J. Kinetics of Microstructure Evolution DuringGaseous Thermochemical Surface Treatment [J]. Journal of Phase Equilibriaand Diffusion.2005,26:520-528.
    [82] Wells C, Batz W, Mehl R F. Diffusion Coefficient of Carbon [J]. Transactionof American institute of Mining.1950,188(3):553-560.
    [83] Bowen A W, Leak G M. Solute Diffusion in Alpha-and Gamma-Iron [J].Metallurgical Transactions.1970,1:1695-1700.
    [84] Parascandola S, Moller W, Williamson D. The Nitrogen Transport inAustenitic Stainless Steel at Moderate Temperatures [J]. Applied PhysicsLetters.2000,76:2194-2196.
    [85] Mandl S, Rauschenbach B. Concentration Dependent Nitrogen DiffusionCoefficient in Expanded Austenite Formed by Ion Implantation [J]. Journalof Applied Physics.2002,91:9737-9742.
    [86] Parascandola S, Moller W, Williamson D. Stainless Steel2000:Thermochemical Surface Engineering of Stainless Steel [M], London: Theinstitute of Materials,2001.201-214.
    [87] Mand S, Rauschenbach B. Anisotropic Strain in Nitrided Austenitic StainlessSteel [J]. Journal of Applied Physics.2000,88:3323-3329.
    [88] Williamson D L, Wilbur P J, Fickett F R, et al.‘Stainless Steel2000:Thermochemical Surface Engineering of Stainless Steel’,(Ed. T. Bell and K.Akamatsu)’,333-352;2001, London, The institute of Materials.
    [89] Williamson D L, Davis J A, Wilbur P J. Effect of Austenitic Stainless SteelComposition on Low-Energy, High-Flux, Nitrogen Ion Beam Processing [J].Surface and Coatings Technology.1998,103-104:178-184.
    [90] Michal G M, Ernest F, Heuer A H. Carbon Paraequilibrium in AusteniticStainless Steel [J]. Metallurgical and Materials Transactions A.2006,37:1819-1824.
    [91] Tsujikawa M, Egawa M, Ueda N, et al. Effect of Molybdenum and Copperon S-Phase Layer Thickness of Low-Temperature Carburized AusteniticStainless Steel [J]. Surface and Coatings Technology.2008,202:5488-5492.
    [92] Menthe E, Rie K T, Schultze J W, et al. Structure and Properties of Plasma-Nitrided Stainless Steel [J]. Surface and Coatings Technology.1996,74-75:412-416.
    [93] Ernst F, Cao Y, Michal G M, et al. Carbide Precipitation in AusteniticStainless Steel Carburized at Low Temperature [J]. Acta Materialia.2007,55:1895-1906.
    [94] Buhagiar J, Li X Y, Dong H. Formation and Microstructural Characterisationof S-Phase Layers in Ni-Free Austenitic Stainless Steels by Low-Temperature Plasma Surface Alloying [J]. Surface and Coatings Technology.2009,204:330-345.
    [95] Yasumaru N. Stainless Steel2000: Thermochemical Surface Engineering ofStainless Steel [M]. London: The Institute of Materials,2001.229-245.
    [96] Berns H. Stainless Steels Suited for Solution Nitriding [J]. Mat.-Wiss.Werkstofftech,2002,33:5-11.
    [97] Blanter M S, Magalas L B, Carbon-Substitutional Interaction in Austenite [J].Scripta Materialia.43(2000)435.
    [98] Sozinov A L, Gavriljuk V G, Cellular Automaton Modelling of PrecipitateCoarsening [J]. Scripta Materialia.1999,41:679-701.
    [99] Oddershede J, Christiansen T L, St hl K, et al. EXAFS investigation of LowTemperature Nitrided Stainless Steel [J]. Journal of Materials Science.2008,43:5358-5367.
    [100] Oddershede J, Christiansen T L, St hl K, et al. Extended X-Ray AbsorptionFine Structure investigation of Nitrogen Stabilized Expanded Austenite [J].Scripta Materialia.2010,62:290-293.
    [101] Oddershede J, Christiansen T L, St hl K, et al. Extended X-Ray AbsorptionFine Structure investigation of Carbon Stabilized Expanded Austenite andCarbides in Stainless Steel AISI316[J]. Steel Research international.2011,82:1248-1254
    [102] Oddershede J, Christiansen T L, St hl K, et al. Extended X-Ray AbsorptionFine Structure investigation of Annealed Carbon Expanded Austenite [J].Steel Research international.2012,83:162-168.
    [103]韦永德,刘志如,王春义,等.用化学法对20钢、纯铁表面扩渗稀土元素的研究[J].金属学报.1983,19(5):197-200.
    [104] Li G, Jin H. The Influence of Additive Rare Earths on Ion Carburization [J].Surface and Coatings Technology.1993,59(1-3):117-120.
    [105] Zhu F Y, Cai C H, Meng Q C, et al. Observation and Analysis of theMicrostructure in Carburized Surface Layer of Steel20Cr2Ni4A Treatedwith Conventional and Rare Earth Carburizing Processes [J]. Journal of RareEarths.1996,14(2):156-157.
    [106] Zexi Y, Zongsen Y. Accelerating Effect of Rare Earth in Steel on its Surface-Carburizing Process [J]. Journal of Rare Earths.1999,17(1):51-52.
    [107] Bell T, Sun Y, Liu Z R, et al. Rare-Earth Surface Energineering [J]. HeatTreatment of Metals.2000,27(1):1-8.
    [108] Yan M F, Cai C H, Liu Z R. Replacement of Conventionally ComplexProcessing for Low Alloy Steel20Cr2Ni4A By Rare Earth Carburising AtLower Temperature [J]. Materials Science and Technology.2001,17(8):1021-1024.
    [109] Yan M F, Pan W, Bell T, et al. The Effect of Rare Earth Catalyst onCarburizing Kinetics in a Sealed Quench Furnace with EndothermicAtmosphere [J]. Applied Surface Science.2001,173:91-94.
    [110] Yan M F. Study on Absorption and Transport of Carbon in Steel During GasCarburizing with Rare-Earth Addition [J]. Materials Chemistry and Physics.2001,70(2):242-244.
    [111] Yan M F, Liu Z R, Bell T. Effect of Rare Earths on Diffusion Coefficient andTransfer Coefficient of Carbon During Carburizing [J]. Journal of RareEarths.2001,19(2):122-124.
    [112] Yan M F, Liu Z R. Study on Microstructure and Microhardness in SurfaceLayer of20CrMnTi Steel Carburised at880°C with and without RE [J].Materials Chemistry and Physics.2001,72(1):97-100.
    [113] Wang D, Li J, Zhong M. Microstructure and Property of20CrMo Steel withthe Process of Rare Earth Element Carburization [J]. Advanced MaterialsResearch.2011,317-319:479-483.
    [114] Peng J, Dong H, Bell T, et al. Effect of Rare Earth Elements on PlasmaNitriding of38CrMoAl Steel [J]. Surface Engineering.1996,12(2):147-151.
    [115] Cleugh D, Blawert C, Steinbach J, et al. Effects of Rare Earth Additions onNitriding of EN40B By Plasma Immersion Ion Implantation [J]. Surface andCoatings Technology.2001,142-144:392-396.
    [116] Zhang J, Sun Y. Plasma Nitriding of722M24Steel with Pure Lanthanum,Cerium and Neodymium as Sputter Sources [J]. Journal of Rare Earths.2001,19(2):110-116.
    [117] Cheng X H, Xie C Y. Effect of Rare Earth Elements on the ErosionResistance of Nitrided40Cr Steel [J]. Wear.2003,254(5-6):415-420.
    [118] Zhang J. Examination of Plasma Nitriding Microstructure with Addition ofRare Earths [J]. Journal of Rare Earths.2004,22(2):272-276.
    [119] Huang J, Xiong D, Fan X. Effect of Rare Earth Addition in Plasma Nitridingon Microstructure of Chromium Electro-Plating [J]. Advanced MaterialsResearch.2010,97-101:1514-1517.
    [120] Shangguan Q, Cheng X. Effect of Rare Earth Elements on ErosionResistance of Nitrocarburized Layers of38CrMoAl Steel [J]. Journal of RareEarths.2004,22(3):406-409.
    [121] Wang K, Liu J, Fan L. Effect of Rare Earth Elements on NitrocarburizingKinetics of35CrMo Steel [J]. Journal of Rare Earths.2006,24(SUPPL.3):297-299.
    [122] Tang L N, Yan M F. Effects of Rare Earths Addition on the Microstructure,Wear and Corrosion Resistances of Plasma Nitrided30CrMnSiA Steel [J].Surface and Coatings Technology.2012,206(8-9):2363-2370.
    [123] Liu R L, Yan M F, Wu D L. Effect of Rare Earths on Mechanical Propertiesof Plasma Nitrocarburized Surface Layer of17-4PH Steel [J]. Journal ofRare Earths.2009,27(6):1056-1061.
    [124] Liu R L, Yan M F, Wu Y Q, et al. Microstructure and Properties of17-4PHSteel Plasma Nitrocarburized with a Carrier Gas Containing Rare EarthElements [J]. Materials Characterization.2010,61(1):19-24.
    [125] Liu R L, Yan M F, Wu D L. Microstructure and Mechanical Properties of17-4PH Steel Plasma Nitrocarburized with and without Rare Earths Addition [J].Journal of Materials Processing Technology.2010,210(5):784-790.
    [126] Liu L R, Qiao Y J, Yan M F, et al. Effects of Rare Earth Elements on theCharacteristics of Low Temperature Plasma Nitrocarburized MartensiticStainless Steel [J]. Journal of Materials Science and Technology.2012,28(11):1046-1052.
    [127] Wu Y Q, Yan M F. Effects of Lanthanum and Cerium on Low TemperaturePlasma Nitrocarburizing of Nanocrystallized3J33Steel [J]. Journal of RareEarths.2011,29(4):383-387.
    [128] Feng X, Sui J H, Cai W, et al. Characterisation of Rare Earth AssistedPlasma Carbonitrided TiNi Alloys [J]. Surface Engineering.2012,28(8):636-638.
    [129] You Y, Yan M F. Behaviors and Interactions of La Atom with Other ForeignSubstitutional Atoms (Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb Or Mo) in IronBased Solid Solution from First Principles [J]. Computational MaterialsScience,2013,73:120-127.
    [130] You Y, Yan M F. Many-Body Potential for Nitrogen in α-Iron [J].Philosophical Magazine Letters,2012,92:656-667.
    [131] Suzuki K, Morita H, Kaneko T, et al. Crystal Structure and MagneticProperties of the Compound FeN [J]. Journal Alloys and Compounds.1993,201:11-16.
    [132] Rissanen L, Neubauer M, Lieb F P, et al. The New Cubic Iron-Nitride PhaseFeN Prepared by Reactive Magnetron Sputtering [J]. Journal Alloys andCompounds.1998,274:74-82
    [133] Soni H R, Mankad V, Gupta S K, et al. A First Principles Calculations ofStructural, Electronic, Magnetic and Dynamical Properties of MononitridesFeN and CoN [J]. Journal Alloys and Compounds.2012,522:106-113
    [134] Houari J A, Matar S F, Belkhir M A et al. Structural Stability and Magnetismof FeN from First Principles [J]. Physial Review B.2007,75:064420.
    [135] Perelomaa E V, Conna A W, Reynoldson R W. Comparison of FerriticNitrocarburising Technologies [J]. Surface and Coatings Technology.2001,145:44-50.
    [136] Suhadi A, Li C X, Bell T. Austenitic Plasma Nitrocarburising of Carbon Steelin N2-H2Atmosphere with Organic Vapour Additions [J]. Surface andCoatings Technology.2006,200:4397-4405.
    [137] Shang S. L, B ttger A J, Liu Z K. The Influence of Interstitial Distributionon Phase Stability and Properties of Hexagonal ε-Fe6Cx, ε-Fe6Ny and ε-Fe6CxNy Phases: a First-Principles Calculation [J]. Acta Materialia.2008,56:719-725.
    [138] Yan M F, Wu Y Q, Chen H T, et al. The Electronic Structure and Propertiesof Fe6(N1-xCx)2Carbonitrides By First-Principles Calculations [J]. Physica B.2012,407:4104-4107.
    [139] Lv Z Q, Fu W T, Sun S H, et al. Structural, Electronic and MagneticProperties of Cementite-Type Fe3X (X=B, C, N) by First-PrinciplesCalculations [J]. Solid State Sciences.2010,12(3):404-408.
    [140] Zhang W H, Lv Z Q, Shi Z P, et al. Electronic, Magnetic and ElasticProperties of ε-Phases Fe3X(X=B, C, N) from Density-Functional TheoryCalculations [J]. Journal of Magnetism and Magnetic Materials.2012,324:2271-2276.
    [141] Fang C M, Huis M A V, Zandbergen H W. Stability and Structures of The Ε-Phases of Iron Nitrides and Iron Carbides From First Principles [J]. ScriptaMaterialia.2011,64(3):296-299.
    [142] Fang C M, Huis M A V, Jansen J, et al. Role of Carbon and Nitrogen in Fe2Cand Fe2N from First-Principles Calculations [J]. Physical Review B.2011,84(9):094102.
    [143] Music D, Schneider J M. Elastic Properties of MFe3N (M=Ni, Pd, Pt)Studied by Ab initio Calculations [J]. Applied Physics Letters.2006,88(3):031914.
    [144] Chen L. Electronic Structure and Magnetism of Fe4-xMnxN Compounds [J].Journal of Applied Physics.2006,100(11):113717.
    [145] Wu Z, Meng J. Elastic and Electronic Properties of CoFe3N, RhFe3N, andIrFe3N from First Principles [J]. Applied Physics Letters.2007,90(24):241901.
    [146] Zhao E, Xiang H, Meng J, Wu Z. First-Principles Investigation on the Elastic,Magnetic and Electronic Properties of MFe3N (M=Fe, Ru, Os)[J]. ChemicalPhysics Letters.2007,449(1-3):96-100.
    [147] Gressmann T, Wohlschl gel M, Shang S, et al. Elastic Anisotropy of γ′-Fe4Nand Elastic Grain Interaction in γ′-Fe4N1y Layers on α-Fe: First-PrinciplesCalculations and Diffraction Stress Measurements [J]. Acta Materialia.2007,55(17):5833-5843.
    [148] Yang J, Sun H, Chen C. Anomalous Strength Anisotropy of γ-Fe4NIdentified By First-Principles Calculations [J]. Applied Physics Letters.2009,94(15):151914.
    [149] Yan M F, Wu Y Q, Liu R L. Plasticity and Ab initio Characterizations onFe4N Produced on the Surface of Nanocrystallized18Ni-Maraging SteelPlasma Nitrided at Lower Temperature [J]. Applied Surface Science.2009,255(21):8902-8906.
    [150] Wu Y Q, Yan M F. Electronic Structure and Properties of (Fe1xNix)4N(0≤x≤1.0)[J]. Physica B: Condensed Matter.2010,405(12):2700-2705.
    [151] Rebaza A V G, Desimoni J, Kurian S, et al. Ab initio Study of the Structural,Electronic, Magnetic, and Hyperfine Properties of GaxFe4–xN (0.00≤x≤1.00) Nitrides [J]. The Journal of Physical Chemistry C.2011,115(46):23081-23089.
    [152] Takahashi T, Burghaus J, Music D, et al. Elastic Properties of γ′-Fe4N Probedby Nanoindentation and Ab Initio Calculation [J]. Acta Materialia.2012,60(5):2054-2060.
    [153] Coehoorn R, Daalderop G H O, Jansen H J F. Full-Potential Calculations ofthe Magnetization of Fe16N2and Fe4N [J]. Physical Review B.1993,48:3830-3834.
    [154] Tanaka H, Harima H, Yamamoto T, et al. Electronic Band Structure andMagnetism of Fe16N2Calculated by the FLAPW Method [J]. PhysicalReview B.2000,62:15042.
    [155] Shi Y J, Du Y L, Chen G. First-Principles Study on Electronic Structure andElastic Properties of Fe16N2[J]. Physica B: Condensed Matter.2012,407:3423-3426.
    [156] Medvedeva N I, Karkina L E, Ivanovski A L. Effect of Chromium on theElectronic Structure of the Cementite Fe3C [J]. Physics of The Solid State.2006,48(1):15-19.
    [157] Zhou C T, Xiao B, Feng J, et al. First Principles Study on the ElasticProperties and Electronic Structures of (Fe,Cr)3C [J]. ComputationalMaterials Science.2009,45(4):986-992.
    [158] Shein I R, Medvedeva N I, Ivanovskii A L. Electronic Structure andMagnetic Properties of Fe3C with3d and4d Impurities [J]. Physica StatusSolidi (B).2007,244(6):1971-1981.
    [159] Jang J H, Kim I G, Bhadeshia H K. H. Substitutional Solution of Silicon inCementite: a First-Principles Study [J]. Computational Materials Science.2009,44(4):1319-1326.
    [160] Jang J H, Kim I G, Bhadeshia H K D H. First-Principles Calculations and theThermodynamics of Cementite [J]. Materials Science Forum.2010,638-642:3319-3324.
    [161] Ande C K, Sluiter M H F. First-Principles Prediction of Partitioning ofAlloying Elements between Cementite and Ferrite [J]. Acta Materialia.2010,58(19):6276-6281.
    [162] Wang C X, Lv Z Q, Fu W T, et al. Electronic Properties, Magnetic Propertiesand Phase Stability of Alloyed Cementite (Fe,M)3C (M=Co,Ni) fromDensity-Functional Theory Calculations [J]. Solid State Sciences.2011,13(8):1658-1663.
    [163] Li Y, Gao Y, Xiao B, Min T, et al. The Electronic, Mechanical Properties andTheoretical Hardness of Chromium Carbides by First-Principles Calculations[J]. Journal of Alloys and Compounds.2011,509(17):5242-5249.
    [164] Meenaatci A T A, Rajeswarapalanichamy R, Iyakutti K. First PrinciplesStudy of Pressure-induced Magnetic Transition in CrN [J]. Physica B:Condensed Matter.2011,406:2610-2615.
    [165] Scanavino I, Prencipe M. Ab initio Determination of the Bulk Modulus ofthe Chromium Nitride CrN [J]. RSC Advances.2013,3,17813-17821.
    [166] He L, Zhi Z. Structural, Electronic, and Magnetic Properties of CrN underHigh Pressure [J]. Chinese Physics B.2011,20:077102
    [167] Yang Y, Lu H, Yu C, Chen J M. First-Principles Calculations of MechanicalProperties of TiC and TiN [J]. Journal of Alloys and Compounds.2009,485:542-547.
    [168] Gao F M, He J L, Wu E D, et al. Hardness of Covalent Crystals [J]. PhysicalReview Letters.2003,91:015502.
    [169] Jhi S H, Ihm J, Louie S G, et al. Electronic Mechanism of HardnessEnhancement in Transition-Metal Carbonitrides [J]. Nature.1999,399:132-134
    [170] Li H, Zhang L, Zeng Q, et al. Structural, Elastic and Electronic Properties ofTransition Metal Carbides TMC (TM=Ti, Zr, Hf and Ta) from First-Principles Calculations [J]. Solid State Communications.2011,151(8):602-606.
    [171] Feng W, Cui S, Hu H, et al. Electronic Structure and Elastic Constants ofTiCxN1X, ZrxNb1XC and HfCxN1X Alloys: a First-Principles Study [J].Physica B: Condensed Matter.2011,406(19):3631-3635.
    [172] Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M=Nb, V, Mo andW) Carbide in Steels Using First-Principles Calculations [J]. Acta Materialia.2012,60(1):208-217.
    [173] Wang B, Liu Y, Liu Y, Ye J W. Mechanical Properties and ElectronicStructure of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, Tic0.75N0.25and TiN [J].Physica B: Condensed Matter.2012,407(13):2542-2548.
    [174] Krasnenko V, Brik M G. First-Principles Calculations of Hydrostatic PressureEffects on the Structural, Elastic and Thermodynamic Properties of CubicMonocarbides XC (X=Ti, V, Cr, Nb, Mo, Hf)[J]. Solid State Sciences.2012,14(10):1431-1444.
    [175] Kim J, Kang S. Elastic and Thermo-Physical Properties of TiC, TiN, andTheir Intermediate Composition Alloys Using Ab Initio Calculations [J].Journal of Alloys and Compounds.2012,528:20-27.
    [176] Jiang D E, Carter E A. Carbon Dissolution and Diffusion in Ferrite andAustenite from First Principles [J]. Physical Review B.2003,67(21):214103.
    [177] Domain C, Becquart C S, Foct J. Ab initio Study of Foreign Interstitial Atom(C, N) Interactions with Intrinsic Point Defects in α-Fe [J]. Physical ReviewB.2004,69(14):144112.
    [178] Becquart C S, Domain C, Foct J. Ab initio Calculations of Some Atomic andPoint Defect Interactions Involving C and N in Fe [J]. PhilosophicalMagazine.2005,85(4-7):533-540.
    [179] Ohnuma T, Soneda N, Iwasawa M. First-Principles Calculations of Vacancy-Solute Element Interactions in Body-Centered Cubic Iron [J]. ActaMaterialia.2009,57(20):5947-5955.
    [180] Sandberg N, Henriksson K O E, Wallenius J. Carbon Impurity Dissolutionand Migration in BCC Fe-Cr: First-Principles Calculations [J]. PhysicalReview B.2008,78:094110
    [181] Olsson P, Klaver T P C, Domain C. Ab initio Study of Solute Transition-Metal Interactions with Point Defects in BCC Fe [J]. Physical Review B.2010,81(5):054102.
    [182] Amara H, Fu C C, Soisson F, et al. Aluminum and Vacancies in α-Iron:Dissolution, Diffusion, and Clustering [J]. Physical Review B.2010,81(17):174101.
    [183] Simonovic D, Ande C K, Duff A I, et al. Diffusion of Carbon in BCC Fe inthe Presence of Si [J]. Physical Review B.2010,81(5):054116.
    [184] Choudhury S, Barnard L, Tucker J D, et al. Ab-initio Based Modeling ofDiffusion in Dilute Bcc Fe-Ni and Fe-Cr Alloys and Implications ForRadiation induced Segregation [J]. Journal of Nuclear Materials.2011,411(1-3):1-14.
    [185] Gorbatov O I, Korzhavyi P A, Ruban A V, et al. Vacancy-Solute Interactionsin Ferromagnetic and Paramagnetic BCC Iron: Ab Initio Calculations [J].Journal of Nuclear Materials.2011,419(1-3):248-255.
    [186] B o ski P, Kiejna A. Structural, Electronic, and Magnetic Properties of BCCIron Surfaces [J]. Surface Science.2007,601(1):123-133.
    [187] Jiang D E, Carter E A. Adsorption and Diffusion Energetics of HydrogenAtoms on Fe(110) from First Principles [J]. Surface Science.2003,547:85-98.
    [188] Jiang D E, Carter E A. Diffusion of Interstitial Hydrogen into and throughBcc Fe from First Principles [J]. Physical Review B.2004,70:064102
    [189] Jiang D E, Carter E A. Carbon Atom Adsorption on and Diffusion intoFe(110) and Fe(100) From First Principles [J]. Physical Review B.2005,71:045402.
    [190] Pick, LéGaré P, Demangeat C. Density-Functional Study of theChemisorption of N on and below Fe(110) and Fe(001) Surfaces [J]. PhysicalReview B.2007,75:195446
    [191] Braithwaite J S, Rez P. Grain Boundary Impurities in Iron [J]. ActaMaterialia.2005,53:2715-2726.
    [192] Geller C B, Freeman A J, Kim M. The Effect of Interstitial N on GrainBoundary Cohesive Strength in Fe [J]. Scripta Materialia.2004,50:1341-1343.
    [193] Lozovoi Y, Paxton A T, Finnis M W. Structural and Chemical Embrittlementof Grain Boundaries by Impurities: A General Theory and First-PrinciplesCalculations for Copper [J]. Physical Review B.74,1554162006
    [194] Inoue A, Nitta H, Iijima Y. Grain Boundary Self-Diffusion in High PurityIron [J]. Acta Materialia.2007,55:5910-5916.
    [195] Segall M D, Philip J D L, Probert M J, et al. First-Principles Simulation:Ideas, Illustrations and the CASTEP Code [J]. Journal of Physics: CondensedMatter.2002,14(11):2717.
    [196] Clark S J, Segall M D, Pickard C J, et al. First Principles Methods UsingCASTEP [J]. Zeitschrift FüR Kristallographie.2005,220:567-570.
    [197] Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Review.1964,136(3B):864-871.
    [198] Kohn W, Sham L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Physical Review.1965,140(4A): A1133-A1138.
    [199] Vanderbilt D. Soft Self-Consistent Pseudopotentials in a GeneralizedEigenvalue Formalism [J]. Physical Review B.1990,41(11):7892-7895.
    [200] Perdew J P, Wang Y. Accurate and Simple Analytic Representation of theElectron-Gas Correlation Energy [J]. Physical Review B.45(1992)13244-13249.
    [201] Fischer T H, Almlof J. General Methods for Geometry and Wave FunctionOptimization [J]. The Journal of Physical Chemistry.1992,96(24):9768-9774.
    [202] Segall M D. Population Analysis in Plane Wave Electronic StructureCalculations [J]. Molecular Physics.1996,89(2):571-577.
    [203] Segall M D, Shah R, Pickard C J, et al. Population Analysis of Plane-WaveElectronic Structure Calculations of Bulk Materials [J]. Physical Review B.1996,54(23):16317-16320.
    [204] Portal D S, Artacho E, Soler J M. Projection of Plane-Wave Calculations intoAtomic Orbitals [J]. Solid State Communications.1995,95(10):685-690.
    [205] Mulliken R S, Electronic Population Analysis on LCAO-MO MolecularWave Functions. I [J]. The Journal of Chemical Physics.1955,23(10):1833-1840.
    [206] Blawert C, Mordike B L, Jiraskova Y, et al. Structure and Composition ofExpanded Austenite Produced by Nitrogen Plasma Immersion IonImplantation of Stainless Steels X6CrNiTi1810and X2CrNiMoN2253[J].Surface and Coatings Technology.1999,116-119:189-198.
    [207] Xu X L, Wang L, Yu Z W, et al. Microstructural Characterization of PlasmaNitrided Austenitic Stainless Steel [J]. Surface and Coatings Technology.2000,132:270-274.
    [208] Boukhvalov D W, Gornostyrev Y N, Katsnelson M I, et al. Magnetism andLocal Distortions near Carbon Impurity in γ-Iron [J]. Physical ReviewLetters.2007,99:247-205.
    [209] Sozinov A L, Balanyuk A G, Gavriljuk V G. N-N Interaction and NitrogenActivity in the Iron Base Austenite [J]. Acta Materialia.1999,47:927-935.
    [210] Sozinov A L, Balanyuk A G, Gavriljuk V G. C-C Interaction in Iron-BaseAustenite and Interpretation of M ssbauer Spectra [J]. Acta Materialia.1997,45:225-232.
    [211] Sozinov A L, Gavriljuk V G. Estimation of Interaction Energies Me-(C, N) inF.C.C. Iron-Based Alloys Using Thermo-Calc Thermodynamic Database [J].Scripta Materialia.1999,41:679-684.
    [212] Blanter M S, Magalas L B. Carbon-Substitutional interaction in Austenite [J].Scripta Materialia.2000,43:435-440.
    [213] Peltzer L, Blanca Y, Desimoni J, et al. First Principles Determination ofHyperfine Parameters on FCC-Fe8X (X=C, N) Arrangements [J]. HyperfineInteractions.2005,161:197-202.
    [214] Timoshevskii A N, Timoshevskii V A, Yanchitsky B Z. The influence ofCarbon and Nitrogen on the Electronic Structure and Hyperfine interactionsin Face-Centred-Cubic Iron-Based Alloys [J]. Journal of Physics: CondensedMatter.2001,13:1051-1061.
    [215] Cheng L, B ttger A, Keijser T H D, et al. Lattice Parameters of Iron-Carbonand Iron-Nitrogen Martensites and Austenites [J]. Scripta Metallurgica etMaterialia.1990,24:509-514.
    [216] Suzuki K, Morita H, Kaneko T, et al. Crystal Structure and MagneticProperties of the Compound FeN [J]. Journal of Alloys and Compounds.1993,201:11-16.
    [217] Hirotsu Y, Nagakura S. Crystal Structure and Morphology of the CarbidePrecipitated from Martensitic High Carbon Steel During the First Stage ofTempering [J]. Acta Metallurgica.1972,20:645-655.
    [218] Jack K H. The Iron-Nitrogen System: the Crystal Structures of ε-Phase IronNitrides [J]. Acta Crystallographica.1952,5:404-411.
    [219] Pinsker Z G, Kaverin S V. The Electron Diffraction Analysis of the Structureof the Hexagonal Iron Nitrides [J]. Doklady Akademii Nauk SSSR.1954,96:519-522.
    [220] Honda T K, Orihara M, Sato Y M. Crystal Structure of Fe16N2[J]. KeyEngineering Materials.2000,181:213-216.
    [221] Soni H R, Mankad V, Gupta S K, et al. A First Principles Calculations ofStructural, Electronic, Magnetic and Dynamical Properties of MononitridesFeN and CoN [J]. Journal of Alloys and Compounds.2012,522:106-113.
    [222] Wu Z J, Zhao E J, Xiang H P, et al. Crystal Structures and Elastic Propertiesof Superhard IrN2and IrN3from First Principles [J]. Physiscal Review B.2007,76:054115.
    [223] Shi Y J, Du Y L, Chen G. First-Principles Study on the Elastic and ElectronicProperties of Hexagonal ε-Fe3N [J]. Computational Materials Science.2013,67:341-345.
    [224] Jhi S H, Ihm J, Louie S G, et al. Electronic Mechanism of HardnessEnhancement in Transition-Metal Carbonitrides [J]. Nature.1999,399:132-134.
    [225] Jhi S H, Louie S G, Cohen M L, et al. Vacancy Hardening and Softening inTransition Metal Carbides and Nitrides [J]. Physiacl Review Letters.2001,86:3348.
    [226] Gressmann T, Leineweber A, Mittemeijer E J. X-Ray Diffraction Line-Profile Analysis of Hexagonal ε-Iron Nitride Compound Layers:Composition-and Stress-Depth Profiles [J]. Philosophical Magazine2008,88:145-169.
    [227] Niewa R, Rau D, Wosylus A, et al. High-Pressure High-Temperature Single-Crystal Growth, Ab initio Electronic Structure Calculations and Equation ofState of Fe3N1+X [J]. Chemistry of Materials.2009,21:392-398.
    [228] Lv Z Q, Zhang F C, Sun S H, et al. First-Principles Study on the Mechanical,Electronic and Magnetic Properties of Fe3C [J]. Compututioanl MaterialsScience.2008,44:690-694.
    [229] Kim S J, Marquart T, Franzen H F. Structure Refinement for Cr2N [J].Journal of The Less Common Metals.1990,158:L9-L10.
    [230] Lee T H, Kim S J, Shin E, et al. On the Crystal Structure of Cr2N Precipitatesin High-Nitrogen Austenitic Stainless Steel. III. Neutron Diffraction Studyon the Ordered Cr2N Superstructure [J]. Acta Crystallographica Section B.2006,62:979-986.
    [231] Wei G, Rar A, Barnar J A. Composition, Structure, and NanomechanicalProperties of DC-Sputtered Crnx (0≤X≤1) Thin Films [J]. Thin Solid Films.2001,398-399:460-464.
    [232] Lin J, Sproul WD, Moore J J, et al. High Rate Deposition of Thick CrN andCr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering[J]. Surface and Coating Technology.2011,205:3226-3234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700