Wnt/β-catenin信号通路与胰腺癌吉西他滨耐药关系的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1背景和目的
     胰腺癌是最常见的恶性肿瘤之一,在美国与癌症相关的死亡原因位居第位四。早期胰腺癌患者通常采用手术治疗、辅助化疗或放疗,或联合治疗。手术切除是治疗胰腺癌的唯一机会,但是,只有不到20%的胰腺癌患者适合手术治疗,因为胰腺癌通常在发现时已处于进展期。吉西他滨是目前治疗胰腺癌的一线药物,治疗局部进展期胰腺癌时单药有效率仅为17.3%,无进展生存期为3.7个月;联合奥沙利铂的有效率为26.8%,无进展生存期为5.8个月。吉西他滨耐药可以是原发的或继发的,这是在化疗失败的最可能的原因之一。吉西他滨有一个复杂的代谢途径,很多机制均可以促进吉西他滨的细胞毒性和/或化疗耐药。Wnt信号通路已被报告将在癌症发展和耐药参与了白血病和肝癌。迄今为止,关于与Wnt信号和吉西他滨耐药性的关系研究很少。在此研究的第一和第二部分中,我们研究了典型信号通路之间的Wnt和吉西他滨耐药的相关性。在第三部分,我们使用流式细胞仪检测了胰腺癌细胞株相关干预前后肿瘤干细胞表面标志的比例分布。
     2主要试剂
     吉西他滨(200mg/支),Wnt3a和Dkk-1(10gg,R&D)
     3统计学分析
     报告基因和MTT结果两两组间比较采用单因素方差,后续检验采用q检验。相关性检验使用Pearson检验。当p<0.05时认为有统计学显著性差异。
     4实验方法和结果
     在本研究的第一部分,四株胰腺癌细胞SW1990,PANC-1,T3M4和BxPC-3等用于MTT法检测吉西他滨的耐药性,以半数抑制浓度或IC50表示;使用荧光素酶报告基因检测Wnt信号通路活性。结果显示,SW1990对吉西他滨耐药性最强,伴随着Wnt信号通路异常活化。对这四株细胞进行Pearson相关性检验分析可得经典Wnt信号通路与吉西他滨耐药呈非线性正相关。
     在本研究的第二部分,我们选择了SW1990为研究对象。分别用Wnt信号通路的激动剂rWnt3a和抑制剂rDkk-1处理SW1990细胞,发现rWnt3a和rDkk-1分别能有效地刺激或抑制Wnt信号通路的活性。rWnt3a对SW1990的生长和吉西他滨耐药都有促进作用,而rDkk-1则对SW1990的生长和耐药均无统计学显著性差异。
     在本研究的第三部分,我们运用流式细胞仪检测CD133、CD44、CD24和EpCAM在SW1990,PANC-1,T3M4和SW1990/Gem(SW1990耐吉西他滨细胞株)等四株胰腺癌细胞株中的表达。并且检测用吉西他滨、rWnt3a和rDkk-1对SW1990细胞干预后细胞表面CD133的表达。结果显示SW1990和SW1990/Gem中CD133的阳性表达率分别为5.7%和37.8%,SW1990吉西他滨处理三天CD133的阳性表达率为5.6%;PANC-1口T3M4中CD133无表达;CD44+CD24+EpCAM+细胞的比例在各株细胞间差异较大;使用rWnt3a和rDkk.1处理SW1990后,CD133+细胞的比例可分别上升(13.4%)和下降(3.0%)。
     5结论
     胰腺癌细胞株之间对吉西他的滨耐药性差异很大,可分为两组:耐药组(SW1990、PANC-1)和敏感组(T3M4、BxPC-3):
     Wnt信号通路的高水平激活在胰腺癌细胞株中不是普遍现象;
     胰腺癌细胞株对吉西他滨的耐药性与经典的Wnt信号通路活性之间呈非线性正相关;
     rWnt3a和rDkk-1可有效地调节Wnt信号通路活性,rWnt3a上调信号可介导细胞对吉西他滨耐药性增强;
     胰腺癌细胞株中SW1990细胞低表达CD133,PANC-1和T3M4细胞株不表达CD133。
BACKGROUND
     Pancreatic cancer is the fourth most common malignancy and the fourth leading cause of cancer-related death in the United States. Surgical resection offers the only chance of real cure; however, less than 20% of patients with pancreatic cancer are candidates for surgery because the disease is usually detected only in its later stages. Single-agent Gemcitabine is the standard therapy for advanced pancreatic cancer with low response rate of 17.3% and short progression-free survival of 3.7 month. Cellular resistance to gemcitabine can be intrinsic or acquired during gemcitabine treatment, which is the most possible reason for failure in chemotherapy. Gemcitabine has a complex pathway of metabolism, and there are many mechanisms that can contribute to gemcitabine cytotoxicity and/or chemoresistance. Wnt signaling pathway has been reported to be involved in cancer development and chemoresistance in leukemia and hepatocellular carcinoma. To date, there's few study on the relationship between Wnt signaling and gemcitabine resistance. In PartⅠandⅡof this preliminary study, the relevance between the canonical Wnt signaling pathway and gemcitabine resistance was studied. In partⅢ, by FCM analysis we determined the percentage of CD133+and CD44+CD24+EpCAM+cells in pancreatic cell lines either with or without treatment.
     CHEMICALS
     Gemcitabine was a commercial prodcut from Eli Lilly Pharmaceuticals. Recombinant Wnt3a and Dkk-1 were both from R & D.
     STATISTICAL ANALYSES
     Data from reporter and MTT assays was analyzed using one-way ANOVA followed by Newman-Keul's multiple comparison test. P-values less than or equal to 0.05 were considered significant.
     METHODS AND RESULTS
     In PartⅠof this study, four pancreatic cancer cell lines, SW1990, PANC-1, T3M4 and BxPC-3, were used for assessing the resistance against gemcitabine and the Wnt activity. The relative cytotoxicity of gemcitabine in each cell line was assessed with a MTT assay, in which cells were exposed to increasing concentrations of gemcitabine. Chemosensitivity was expressed as the drug concentration that inhibited cell proliferation by 50%(IC50 values). Reporter assays were used for Wnt activity, in which TOPflash or FOPflash, constructed in Dr. Moon R.T.'s Laboratory, was co-transfected into cells with renilla luciferase as internal control. Western blotting was performed for determining active P-catenin in cells. The results showed that SW1990 had the highest IC50 and Wnt activity, followed by PANC-1, T3M4 and BxPC-3, accordingly. Non-linear positive correlation was determined by Pearson's test between the canonical Wnt signaling pathway and gemcitabine resistance.
     Next in Part II, we chose SW1990 for alternating the Wnt signaling pathway activity. rWnt3a was used as agonist and rDkk-1 as antagonist. The results revealed that rWnt3a could enhance the Wnt activity, but rDkk-1 couldn't. The IC50 increased with significant difference after Wnt3a treatment, while IC50 slightly fell down without significant difference after rDkk-1 treatment, indicating that up-regulation of Wnt signaling could mediate gemcitabine resistance.
     In Part III, by FCM analysis we determined percentage of CD133+and CD44+CD24+EpCAM+cells in four pancreatic cancer cell lines (SW1990, PANC-1, T3M4 and SW1990/Gem). SW1990/Gem was a SW1990-derived cell line established after exposure to various concentrations of gemcitabine. The results showed that both SW1990 and SW1990/Gem had CD133 expression on cell surface, the proportion of which was 5.7% and 37.8%, respectively. PANC-1 and T3M4 had not any CD133 expression on cell surface. CD44+CD24+EpCAM+proportion was various in different cell lines, ranging from 10.9% to 72.1%. Here, we also detected Cd133 expression in SW1990 with additional temporary treatment by rWnt3a, rDkk-1 or gemcitabine, with CD133+fraction of 13.4%,3.0% and 5.6%, respectively.
     CONCLUSION
     Pancreatic cancer cell lines, SW1990, PANC-1, T3M4 and BxPC-3, have various IC50 value against gemcitabine, by which they can be simply divided into two groups: chemoresistant group (SW1990, PANC-1) and chemosensitive group (T3M4, BxPC-3). Activation of Wnt signaling pathway was not common in pancreatic cancer cell lines. Non-linear positive correlation was determined by Pearson's test between the canonical Wnt signaling pathway and gemcitabine resistance.
     rWnt3a and rDkk-1 are valid to regulate the Wnt activity. Up-regulation of Wnt signaling by rWnt3a can mediate gemcitabine resistance.
     There is a small fraction, or even no fraction, of CD133+cells in pancreatic cancer cell lines. CD 133 expression may be associated with gemcitabine resistance and Wnt signaling pathway activity.
引文
[1]李新建,上海市胰腺癌的流行现状和趋势研究[J].外科理论与实践,2002,7(5).
    [2]Parkin, D.M., F. Bray, J. Ferlay, and P. Pisani, Global cancer statistics,2002[J]. CA Cancer J Clin,2005,55(2):74-108.
    [3]Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M.J. Thun, Cancer statistics,2008[J]. CA Cancer J Clin,2008,58(2):71-96.
    [4]赵玉沛,胰腺癌诊断与治疗的现状与未来[J].中华肝胆外科杂志,2009,15(5).
    [5]Louvet, C., R. Labianca, P. Hammel, G. Lledo, M.G. Zampino, T. Andre, A. Zaniboni, M. Ducreux, E. Aitini, J. Taieb, R. Faroux, C. Lepere, and A. de Gramont, Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer:results of a GERCOR and GISCAD phase III trial[J]. J Clin Oncol,2005,23(15):3509-16.
    [6]Duxbury, M.S., H. Ito, E. Benoit, M.J, Zinner, S.W. Ashley, and E.E. Whang, Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase:A novel therapeutic strategy in pancreatic cancer[J]. Surgery,2004,136(2):261-9.
    [7]Garcia-Manteiga, J., M. Molina-Arcas, F.J. Casado, A. Mazo, and M. Pastor-Anglada, Nucleoside transporter profiles in human pancreatic cancer cells: role of hCNTl in 2',2'-difluorodeoxycytidine-induced cytotoxicity[J]. Clin Cancer Res,2003,9(13):5000-8.
    [8]Giovannetti, E., M. Del Tacca, V. Mey, N. Funel, S. Nannizzi, S. Ricci, C. Orlandini, U. Boggi, D. Campani, M. Del Chiaro, M. Iannopollo, G. Bevilacqua, F. Mosca, and R. Danesi, Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine[J]. Cancer Res,2006,66(7):3928-35.
    [9]Nakano, Y, S. Tanno, K. Koizumi, T. Nishikawa, K. Nakamura, M. Minoguchi, T. Izawa, Y. Mizukami, T. Okumura, and Y. Kohgo, Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells[J]. Br J Cancer,2007,96(3):457-63.
    [10]Ohhashi, S., K. Ohuchida, K. Mizumoto, H. Fujita, T. Egami, J. Yu, H. Toma, S. Sadatomi, E. Nagai, and M. Tanaka, Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer[J]. Anticancer Res,2008,28(4B):2205-12.
    [11]Funamizu, N., A. Okamoto, Y. Kamata, T. Misawa, T. Uwagawa, T. Gocho, K. Yanaga, and Y. Manome, Is the resistance of gemcitabine for pancreatic cancer settled only by overexpression of deoxycytidine kinase?[J]. Oncol Rep,2010, 23(2):471-5.
    [12]Mahon, P.C., P. Baril, V. Bhakta, C. Chelala, K. Caulee, T. Harada, and N.R. Lemoine, S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer[J]. Cancer Res, 2007,67(14):6786-95.
    [13]Erkan, M., J. Kleeff, I. Esposito, T. Giese, K. Ketterer, M.W. Buchler, N.A. Giese, and H. Friess, Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis[J]. Oncogene,2005, 24(27):4421-32.
    [14]Duxbury, M.S., H. Ito, E. Benoit, T. Waseem, S.W. Ashley, and E.E. Whang, RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance[J]. Clin Cancer Res,2005,11(9):3433-8.
    [15]Reya, T., S.J. Morrison, M.F. Clarke, and I.L. Weissman, Stem cells, cancer, and cancer stem cells[J]. Nature,2001,414(6859):105-11.
    [16]Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med,1997, 3(7):730-7.
    [17]Singh, S.K., C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, and P.B. Dirks, Identification of human brain tumour initiating cells[J]. Nature,2004,432(7015):396-401.
    [18]Al-Hajj, M., M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, and M.F. Clarke, Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA,2003,100(7):3983-8.
    [19]Zhang, S., C. Balch, M.W. Chan, H.C. Lai, D. Matei, J.M. Schilder, P.S. Yan, T.H. Huang, and K.P. Nephew, Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res,2008,68(11): 4311-20.
    [20]Fang, D., T.K. Nguyen, K. Leishear, R. Finko, A.N. Kulp, S. Hotz, P.A. Van Belle, X. Xu, D.E. Elder, and M. Herlyn, A tumorigenic subpopulation with stem cell properties in melanomas[J]. Cancer Res,2005,65(20):9328-37.
    [21]Hilbe, W., S. Dirnhofer, F. Oberwasserlechner, T. Schmid, E. Gunsilius, G. Hilbe, E. Woll, and C.M. Kahler, CD 133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer[J]. J Clin Pathol,2004, 57(9):965-9.
    [22]Collins, A.T., P.A. Berry, C. Hyde, M.J. Stower, and N.J. Maitland, Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res,2005, 65(23):10946-51.
    [23]Ma, S., K.W. Chan, L. Hu, T.K. Lee, J.Y. Wo, I.O. Ng, B.J. Zheng, and X.Y. Guan, Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology,2007,132(7):2542-56.
    [24]Yang, Z.F, D.W. Ho, M.N. Ng, C.K. Lau, W.C. Yu, P. Ngai, P.W. Chu, C.T. Lam, R.T. Poon, and S.T. Fan, Significance of CD90+cancer stem cells in human liver cancer[J]. Cancer Cell,2008,13(2):153-66.
    [25]Li, C., D.G. Heidt, P. Dalerba, C.F. Burant, L. Zhang, V. Adsay, M. Wicha, M.F. Clarke, and D.M. Simeone, Identification of pancreatic cancer stem cells[J]. Cancer Res,2007,67(3):1030-7.
    [26]Hermann, P.C., S.L. Huber, T. Herrler, A. Aicher, J.W. Ellwart, M. Guba, C.J. Bruns, and C. Heeschen, Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell,2007,1(3):313-23.
    [27]Dalerba, P., S.J. Dylla, I.K. Park, R. Liu, X. Wang, R.W. Cho, T. Hoey, A. Gurney, E.H. Huang, D.M. Simeone, A.A. Shelton, G. Parmiani, C. Castelli, and M.F. Clarke, Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Natl Acad Sci U S A,2007,104(24):10158-63.
    [28]O'Brien, C.A., A. Pollett, S. Gallinger, and J.E. Dick, A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature,2007, 445(7123):106-10.
    [29]Ricci-Vitiani, L., D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria, Identification and expansion of human colon-cancer-initiating cells[J]. Nature,2007,445(7123):111-5.
    [30]Dean, M., T. Fojo, and S. Bates, Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005,5(4):275-84.
    [31]Marhaba, R., P. Klingbeil, T. Nuebel, I. Nazarenko, M.W. Buechler, and M. Zoeller, CD44 and EpCAM:cancer-initiating cell markers[J]. Curr Mol Med, 2008,8(8):784-804.
    [32]Yamashita, T., A. Budhu, M. Forgues, and X.W. Wang, Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma[J]. Cancer Res,2007,67(22):10831-9.
    [33]Katoh, Y. and M. Katoh, Comparative genomics on PROM1 gene encoding stem cell marker CD133[J]. Int J Mol Med,2007,19(6):967-70.
    [34]Polakis, P., Wnt signaling and cancer[J]. Genes Dev,2000,14(15):1837-51.
    [35]Yang, W., H.X. Yan, L. Chen, Q. Liu, YQ. He, L.X. Yu, S.H. Zhang, D.D. Huang, L. Tang, X.N. Kong, C. Chen, S.Q. Liu, M.C. Wu, and H.Y Wang, Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells[J]. Cancer Res,2008,68(11):4287-95.
    [36]Noda, T., H. Nagano, I. Takemasa, S. Yoshioka, M. Murakami, H. Wada, S. Kobayashi, S. Marubashi, Y Takeda, K. Dono, K. Umeshita, N. Matsuura, K. Matsubara, Y. Doki, M. Mori, and M. Monden, Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma[J]. Br J Cancer,2009,100(10): 1647-58.
    [1]赵玉沛,胰腺癌诊断与治疗的现状与未来[J].中华肝胆外科杂志,2009,15(5).
    [2]Funamizu, N., A. Okamoto, Y. Kamata, T. Misawa, T. Uwagawa, T. Gocho, K. Yanaga, and Y. Manome, Is the resistance of gemcitabine for pancreatic cancer settled only by overexpression of deoxycytidine kinase?[J]. Oncol Rep,2010, 23(2):471-5.
    [3]Gauchez, A.S., J. Lunardi, C. Pernin, D. Marti-Battle, and D. Fagret, Detection of chemoresistance profile of cell lines K562, KB, GLC4 and HL60 through characterisation of the hmdrl, mrp and lrp transcripts [J]. In Vivo,2001,15(1): 101-4.
    [4]Polakis, P., Wnt signaling and cancer[J]. Genes Dev,2000,14(15):1837-51.
    [5]Fahy, B.N., M. Schlieman, S. Virudachalam, and R.J. Bold, AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2[J]. Br J Cancer,2003,89(2):391-7.
    [6]Jiang, T. and Y. Qiu, Interaction between Src and a C-terminal proline-rich motif of Akt is required for Akt activation[J]. J Biol Chem,2003,278(18):15789-93.
    [7]Zhou, H., X.M. Li, J. Meinkoth, and R.N. Pittman, Akt regulates cell survival and apoptosis at a postmitochondrial level[J]. J Cell Biol,2000,151(3):483-94.
    [8]Duxbury, M.S., H. Ito, M.J. Zinner, S.W. Ashley, and E.E. Whang, siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity[J]. J Am Coll Surg,2004,198(6):953-9.
    [9]Kang, C.M., H.K. Kim, H. Kim, G.H. Choi, K.S. Kim, J.S. Choi, and W.J. Lee, Expression of Wnt target genes in solid pseudopapillary tumor of the pancreas:a pilot study[J]. Pancreas,2009,38(2):e53-9.
    [10]Heiser, P.W., D.A. Cano, L. Landsman, G.E. Kim, J.G. Kench, D.S. Klimstra, M.M. Taketo, A.V. Biankin, and M. Hebrok, Stabilization of beta-catenin induces pancreas tumor formation[J]. Gastroenterology,2008,135(4):1288-300.
    [11]Pujal, J., G. Capella, and F.X. Real, The Wnt pathway is active in a small subset of pancreas cancer cell lines[J]. Biochim Biophys Acta,2006,1762(1):73-9.
    [12]Pasca di Magliano, M., A.V. Biankin, P.W. Heiser, D.A. Cano, P.J. Gutierrez, T. Deramaudt, D. Segara, A.C. Dawson, J.G. Kench, S.M. Henshall, R.L. Sutherland, A. Dlugosz, A.K. Rustgi, and M. Hebrok, Common activation of canonical Wnt signaling in pancreatic adenocarcinoma[J]. PLoS One,2007,2(11):e1155.
    [13]Al-Aynati, M.M., N. Radulovich, R.H. Riddell, and M.S. Tsao, Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia[J]. Clin Cancer Res,2004,10(4):1235-40.
    [14]Zeng, G., M. Germinaro, A. Micsenyi, N.K. Monga, A. Bell, A. Sood, V. Malhotra, N. Sood, V. Midda, D.K. Monga, D.M. Kokkinakis, and S.P. Monga, Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma[J]. Neoplasia,2006, 8(4):279-89.
    [1]Collavin, L. and M.W. Kirschner, The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm[J]. Development,2003,130(4):805-16.
    [2]Aravind, L. and E.V. Koonin, A colipase fold in the carboxy-terminal domain of the Wnt antagonists-the Dickkopfs[J]. Curr Biol,1998,8(14):R477-8.
    [3]Brott, B.K. and S.Y. Sokol, Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J]. Mol Cell Biol,2002,22(17):6100-10.
    [4]Barker, N., The canonical Wnt/beta-catenin signalling pathway[J]. Methods Mol Biol,2008,468:5-15.
    [5]Mikels, A.J. and R. Nusse, Wnts as ligands:processing, secretion and reception[J]. Oncogene,2006,25(57):7461-8.
    [6]Yang, J.L., V.M. Maher, and J.J. McCormick, Kinds of mutations formed when a shuttle vector containing adducts of benzo[a]pyrene-7,8-diol-9,10-epoxide replicates in COS7 cells[J]. Mol Cell Biol,1987,7(3):1267-70.
    [7]Willert, K., J.D. Brown, E. Danenberg, A.W. Duncan, I.L. Weissman, T. Reya, J.R. Yates,3rd, and R. Nusse, Wnt proteins are lipid-modified and can act as stem cell growth factors[J]. Nature,2003,423(6938):448-52.
    [8]Takada, R., Y. Satomi, T. Kurata, N. Ueno, S. Norioka, H. Kondoh, T. Takao, and S. Takada, Monounsaturated fatty acid modification of Wnt protein:its role in Wnt secretion[J]. Dev Cell,2006,11(6):791-801.
    [9]Dunty, W.C., Jr., K.K. Biris, R.B. Chalamalasetty, M.M. Taketo, M. Lewandoski, and T.P. Yamaguchi, Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation[J]. Development,2008,135(1):85-94.
    [10]Lee, S.M., S. Tole, E. Grove, and A.P. McMahon, A local Wnt-3a signal is required for development of the mammalian hippocampus[J]. Development,2000, 127(3):457-67.
    [11]Nusse, R., Wnt signaling and stem cell control[J]. Cell Res,2008,18(5):523-7.
    [12]Nusse, R., Developmental biology. Making head or tail of Dickkopf[J]. Nature, 2001,411(6835):255-6.
    [13]Heller, R.S., T. Klein, Z. Ling, H. Heimberg, M. Katoh, O.D. Madsen, and P. Serup, Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas[J]. Gene Expr,2003,11(3-4):141-7.
    [14]Takahashi, N., T. Fukushima, K. Yorita, H. Tanaka, K. Chijiiwa, and H. Kataoka, Dickkopf-1 is overexpressed in human pancreatic ductal adenocarcinoma cells and is involved in invasive growth[J]. Int J Cancer,2010,126(7):1611-20.
    [15]Hannoush, R.N., Kinetics of Wnt-driven beta-catenin stabilization revealed by quantitative and temporal imaging[J]. PLoS One,2008,3(10):e3498.
    [16]Pukrop, T., F. Klemm, T. Hagemann, D. Gradl, M. Schulz, S. Siemes, L. Trumper, and C. Binder, Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines[J]. Proc Natl Acad Sci U S A,2006,103(14):5454-9.
    [17]Vergote, D., G.S. Butler, M. Ooms, J.H. Cox, C. Silva, M.D. Hollenberg, J.H. Jhamandas, C.M. Overall, and C. Power, Proteolytic processing of SDF-1 alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration[J]. Proc Natl Acad Sci U S A,2006,103(50):19182-7.
    [18]Xie, H., S. Tranguch, X. Jia, H. Zhang, S.K. Das, S.K. Dey, C.J. Kuo, and H. Wang, Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation[J]. Development,2008,135(4):717-27.
    [19]Silva, A.K., H. Yi, S.H. Hayes, G.M. Seigel, and A.S. Hackam, Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines:a potential role for the canonical Wnt signaling pathway[J]. Mol Vis,2010,16: 36-45.
    [20]Nawroth, R., A. van Zante, S. Cervantes, M. McManus, M. Hebrok, and S.D. Rosen, Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells[J]. PLoS One,2007,2(4):e392.
    [21]Noda, T., H. Nagano, I. Takemasa, S. Yoshioka, M. Murakami, H. Wada, S. Kobayashi, S. Marubashi, Y Takeda, K. Dono, K. Umeshita, N. Matsuura, K. Matsubara, Y. Doki, M. Mori, and M. Monden, Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma[J]. Br J Cancer,2009,100(10): 1647-58.
    [22]Gosepath, E.M., N. Eckstein, A. Hamacher, K. Servan, G. von Jonquieres, H. Lage, B. Gyorffy, H.D. Royer, and M.U. Kassack, Acquired cisplatin resistance in the head-neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1[J]. Int J Cancer,2008,123(9):2013-9.
    [23]Flahaut, M., R. Meier, A. Coulon, K.A. Nardou, F.K. Niggli, D. Martinet, J.S. Beckmann, J.M. Joseph, A. Muhlethaler-Mottet, and N. Gross, The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway[J]. Oncogene,2009,28(23):2245-56.
    [24]Wang, Z., Q. Ma, Q. Liu, H. Yu, L. Zhao, S. Shen, and J. Yao, Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway[J]. Br J Cancer,2008,99(10):1695-703.
    [1]Hong, S.P., J. Wen, S. Bang, S. Park, and S.Y. Song, CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells[J]. Int J Cancer, 2009,125(10):2323-31.
    [2]Yeung, T.M., S.C. Gandhi, J.L. Wilding, R. Muschel, and W.F. Bodmer, Cancer stem cells from colorectal cancer-derived cell lines[J]. Proc Natl Acad Sci U S A, 2010,107(8):3722-7.
    [3]Olempska, M., P.A. Eisenach, O. Ammerpohl, H. Ungefroren, F. Fandrich, and H. Kalthoff, Detection of tumor stem cell markers in pancreatic carcinoma cell lines[J]. Hepatobiliary Pancreat Dis Int,2007,6(1):92-7.
    [4]Hermann, P.C., S.L. Huber, T. Herrler, A. Aicher, J.W. Ellwart, M. Guba, C.J. Bruns, and C. Heeschen, Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell,2007,1(3):313-23.
    [5]Li, C., D.G. Heidt, P. Dalerba, C.F. Burant, L. Zhang, V. Adsay, M. Wicha, M.F. Clarke, and D.M. Simeone, Identification of pancreatic cancer stem cells[J]. Cancer Res,2007,67(3):1030-7.
    [6]Dalerba, P., S.J. Dylla, I.K. Park, R. Liu, X. Wang, R.W. Cho, T. Hoey, A. Gurney, E.H. Huang, D.M. Simeone, A.A. Shelton, G. Parmiani, C. Castelli, and M.F. Clarke, Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Natl Acad Sci U S A,2007,104(24):10158-63.
    [7]牛备战,吉西他滨诱导胰腺癌细胞株SW1990的耐药作用与硫氧还蛋白还原酶活性的改变[J].中国医学科学院学报,2005,27(5).
    [8]Rappa, G., O. Fodstad, and A. Lorico, The stem cell-associated antigen CD 133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma[J]. Stem Cells,2008,26(12):3008-17.
    [9]Katoh, Y. and M. Katoh, Comparative genomics on PROM1 gene encoding stem cell marker CD133[J]. Int J Mol Med,2007,19(6):967-70.
    [10]Horst, D., L. Kriegl, J. Engel, A. Jung, and T. Kirchner, CD133 and nuclear beta-catenin:the marker combination to detect high risk cases of low stage colorectal cancer[J]. Eur J Cancer,2009,45(11):2034-40.
    [1]Sharma, R.P. and V.L. Chopra, Effect of the Wingless (wgl) mutation on wing and haltere development in Drosophila melanogaster[J]. Dev Biol,1976,48(2): 461-5.
    [2]Nusse, R. and H.E. Varmus, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell, 1982,31(1):99-109.
    [3]Rijsewijk, F., M. Schuermann, E. Wagenaar, P. Parren, D. Weigel, and R. Nusse, The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless[J]. Cell,1987,50(4):649-57.
    [4]Barker, N. and H. Clevers, Mining the Wnt pathway for cancer therapeutics[J]. Nat Rev Drug Discov,2006,5(12):997-1014.
    [5]Clevers, H., Wnt/beta-catenin signaling in development and disease[J]. Cell,2006, 127(3):469-80.
    [6]Coudreuse, D. and H.C. Korswagen, The making of Wnt:new insights into Wnt maturation, sorting and secretion[J]. Development,2007,134(1):3-12.
    [7]Miller, J.R., The Wnts[J]. Genome Biol,2002,3(1):REVIEWS3001.
    [8]Zeng, X., K. Tamai, B. Doble, S. Li, H. Huang, R. Habas, H. Okamura, J. Woodgett, and X. He, A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J]. Nature,2005,438(7069):873-7.
    [9]Aberle, H., A. Bauer, J. Stappert, A. Kispert, and R. Kemler, beta-catenin is a target for the ubiquitin-proteasome pathway[J]. EMBO J,1997,16(13): 3797-804.
    [10]Staal, F.J., M. Noort Mv, G.J. Strous, and H.C. Clevers, Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin[J]. EMBO Rep, 2002,3(1):63-8.
    [11]Cavallo, R.A., R.T. Cox, M.M. Moline, J. Roose, G.A. Polevoy, H. Clevers, M. Peifer, and A. Bejsovec, Drosophila Tcf and Groucho interact to repress Wingless signalling activity[J]. Nature,1998,395(6702):604-8.
    [12]Roose, J., M. Molenaar, J. Peterson, J. Hurenkamp, H. Brantjes, P. Moerer, M. van de Wetering,O. Destree, and H. Clevers, The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors[J]. Nature,1998, 395(6702):608-12.
    [13]Korinek, V., N. Barker, P.J. Morin, D. van Wichen, R. de Weger, K.W. Kinzler, B. Vogelstein, and H. Clevers, Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma[J]. Science,1997, 275(5307):1784-7.
    [14]van de Wetering, M. and H. Clevers, Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix[J]. EMBO J,1992,11(8):3039-44.
    [15]Davidson, G, W. Wu, J. Shen, J. Bilic, U. Fenger, P. Stannek, A. Glinka, and C. Niehrs, Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction[J]. Nature,2005,438(7069):867-72.
    [16]Bilic, J., Y.L. Huang, G. Davidson, T. Zimmermann, C.M. Cruciat, M. Bienz, and C. Niehrs, Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation[J]. Science,2007,316(5831):1619-22.
    [17]Townsley, F.M., B. Thompson, and M. Bienz, Pygopus residues required for its binding to Legless are critical for transcription and development[J]. J Biol Chem, 2004,279(7):5177-83.
    [18]Hoffmans, R., R. Stadeli, and K. Basler, Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin[J]. Curr Biol,2005, 15(13):1207-11.
    [19]Korinek, V., N. Barker, P. Moerer, E. van Donselaar, G. Huls, P.J. Peters, and H. Clevers, Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4[J]. Nat Genet,1998,19(4):379-83.
    [20]van Es, J.H., P. Jay, A. Gregorieff, M.E. van Gijn, S. Jonkheer, P. Hatzis, A. Thiele, M. van den Born, H. Begthel, T. Brabletz, M.M. Taketo, and H. Clevers, Wnt signalling induces maturation of Paneth cells in intestinal crypts[J]. Nat Cell Biol,2005,7(4):381-6.
    [21]Zhou, P., C. Byrne, J. Jacobs, and E. Fuchs, Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate[J]. Genes Dev,1995,9(6):700-13.
    [22]Batlle, E., J.T. Henderson, H. Beghtel, M.M. van den Born, E. Sancho, G. Huls, J. Meeldijk, J. Robertson, M. van de Wetering, T. Pawson, and H. Clevers, Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB[J]. Cell,2002,111(2):251-63.
    [23]Kinzler, K.W., M.C. Nilbert, L.K. Su, B. Vogelstein, T.M. Bryan, D.B. Levy, K.J. Smith, A.C. Preisinger, P. Hedge, D. McKechnie, and et al., Identification of FAP locus genes from chromosome 5q21[J]. Science,1991,253(5020):661-5.
    [24]Powell, S.M., N. Zilz, Y. Beazer-Barclay, T.M. Bryan, S.R. Hamilton, S.N. Thibodeau, B. Vogelstein, and K.W. Kinzler, APC mutations occur early during colorectal tumorigenesis[J]. Nature,1992,359(6392):235-7.
    [25]Groden, J., A. Thliveris, W. Samowitz, M. Carlson, L. Gelbert, H. Albertsen, G. Joslyn, J. Stevens, L. Spirio, M. Robertson, and et al., Identification and characterization of the familial adenomatous polyposis coli gene[J]. Cell,1991, 66(3):589-600.
    [26]Morin, P.J., A.B. Sparks, V. Korinek, N. Barker, H. Clevers, B. Vogelstein, and K.W. Kinzler, Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC[J]. Science,1997,275(5307):1787-90.
    [27]Sparks, A.B., P.J. Morin, B. Vogelstein, and K.W. Kinzler, Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer[J]. Cancer Res,1998, 58(6):1130-4.
    [28]Polakis, P., Wnt signaling and cancer[J]. Genes Dev,2000,14(15):1837-51.
    [29]Chung, G.G., E. Provost, E.P. Kielhorn, L.A. Charette, B.L. Smith, and D.L. Rimm, Tissue microarray analysis of beta-catenin in colorectal cancer shows nuclear phospho-beta-catenin is associated with a better prognosis[J]. Clin Cancer Res,2001,7(12):4013-20.
    [30]Kohno, H., R. Suzuki, S. Sugie, and T. Tanaka, Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate[J]. Cancer Sci,2005,96(2): 69-76.
    [31]Brabletz, T., A. Jung, K. Hermann, K. Gunther, W. Hohenberger, and T. Kirchner, Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front[J]. Pathol Res Pract,1998,194(10): 701-4.
    [32]Lammi, L., S. Arte, M. Somer, H. Jarvinen, P. Lahermo, I. Thesleff, S. Pirinen, and P. Nieminen, Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer[J]. Am J Hum Genet,2004,74(5):1043-50.
    [33]Liu, C., Y. Li, M. Semenov, C. Han, G.H. Baeg, Y. Tan, Z. Zhang, X. Lin, and X. He, Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism[J]. Cell,2002,108(6):837-47.
    [34]Duval, A., S. Rolland, E. Tubacher, H. Bui, G. Thomas, and R. Hamelin, The human T-cell transcription factor-4 gene:structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines[J]. Cancer Res,2000,60(14):3872-9.
    [35]Tang, W.W., A.A. Stelter, S. French, S. Shen, S. Qiu, R. Venegas, J. Wen, H.Q. Wang, and J. Xie, Loss of cell-adhesion molecule complexes in solid pseudopapillary tumor of pancreas[J]. Mod Pathol,2007,20(5):509-13.
    [36]Heiser, P.W., D.A. Cano, L. Landsman, G.E. Kim, J.G. Kench, D.S. Klimstra, M.M. Taketo, A.V. Biankin, and M. Hebrok, Stabilization of beta-catenin induces pancreas tumor formation[J]. Gastroenterology,2008,135(4):1288-300.
    [37]Cavard, C., A. Audebourg, F. Letourneur, V. Audard, F. Beuvon, N. Cagnard, B. Radenen, P. Varlet, M.C. Vacher-Lavenu, C. Perret, and B. Terris, Gene expression profiling provides insights into the pathways involved in solid pseudopapillary neoplasm of the pancreas[J]. J Pathol,2009,218(2):201-9.
    [38]Horii, A., S. Nakatsuru, Y. Miyoshi, S. Ichii, H. Nagase, H. Ando, A. Yanagisawa, E. Tsuchiya, Y. Kato, and Y. Nakamura, Frequent somatic mutations of the APC gene in human pancreatic cancer[J]. Cancer Res,1992,52(23):6696-8.
    [39]Kawakami, M., Y. Kimura, T. Furuhata, H. Zenbutsu, Y. Yanai, M. Mukaiya, Y Satoh, S. Murata, and K. Hirata, beta-Catenin alteration in cancer of the ampulla of Vater[J]. J Exp Clin Cancer Res,2002,21(1):23-7.
    [40]Pan, K.F., W.G. Liu, L. Zhang, W.C. You, and Y.Y Lu, Mutations in components of the Wnt signaling pathway in gastric cancer[J]. World J Gastroenterol,2008, 14(10):1570-4.
    [41]Lowy, A.M., C. Fenoglio-Preiser, O.J. Kim, J. Kordich, A. Gomez, J. Knight, L James, and J. Groden, Dysregulation of beta-catenin expression correlates with tumor differentiation in pancreatic duct adenocarcinoma[J]. Ann Surg Oncol, 2003,10(3):284-90.
    [42]Pujal, J., G. Capella, and F.X. Real, The Wnt pathway is active in a small subset of pancreas cancer cell lines[J]. Biochim Biophys Acta,2006,1762(1):73-9.
    [43]Suriano, G, N. Vrcelj, J. Senz, P. Ferreira, H. Masoudi, K. Cox, S. Nabais, C. Lopes, J.C. Machado, R. Seruca, F. Carneiro, and D.G. Huntsman, beta-catenin (CTNNB1) gene amplification:a new mechanism of protein overexpression in cancer[J]. Genes Chromosomes Cancer,2005,42(3):238-46.
    [44]Zhou, Y.N., C.P. Xu, B. Han, M. Li, L. Qiao, D.C. Fang, and J.M. Yang, Expression of E-cadherin and beta-catenin in gastric carcinoma and its correlation with the clinicopathological features and patient survival[J]. World J Gastroenterol,2002,8(6):987-93.
    [45]Fang, D.C., Y.H. Luo, S.M. Yang, X.A. Li, X.L. Ling, and L. Fang, Mutation analysis of APC gene in gastric cancer with microsatellite instability[J]. World J Gastroenterol,2002,8(5):787-91.
    [46]Sun, X.J., Z.H. Zheng, H. Fu, H.M. Xu, D.M. Hao, Y. Yuan, and K.L. Sun, [The I1307K mutation and protein expression of APC gene in gastric cancer][J]. Yi Chuan,2003,25(3):253-357.
    [47]Grace, A., D. Butler, M. Gallagher, R. Al-Agha, Y. Xin, M. Leader, and E. Kay, APC gene expression in gastric carcinoma:an immunohistochemical study[J]. Appl Immunohistochem Mol Morphol,2002,10(3):221-4.
    [48]Kirikoshi, H., H. Sekihara, and M. Katoh, Up-regulation of WNT10A by tumor necrosis factor alpha and Helicobacter pylori in gastric cancer[J]. Int J Oncol, 2001,19(3):533-6.
    [49]Kurayoshi, M., N. Oue, H. Yamamoto, M. Kishida, A. Inoue, T. Asahara, W. Yasui, and A. Kikuchi, Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion[J]. Cancer Res,2006, 66(21):10439-48.
    [50]Katoh, M., H. Kirikoshi, H. Terasaki, and K. Shiokawa, WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT-beta-catenin-TCF signaling pathway[J]. Biochem Biophys Res Commun,2001, 289(5):1093-8.
    [51]To, K.F., M.W. Chan, W.K. Leung, J. Yu, J.H. Tong, T.L. Lee, F.K. Chan, and J.J. Sung, Alterations of frizzled (FzE3) and secreted frizzled related protein (hsFRP) expression in gastric cancer[J]. Life Sci,2001,70(4):483-9.
    [52]He, J., T. Sheng, A.A. Stelter, C. Li, X. Zhang, M. Sinha, B.A. Luxon, and J. Xie, Suppressing Wnt signaling by the hedgehog pathway through sFRP-1[J]. J Biol Chem,2006,281(47):35598-602.
    [53]Cheng, Y.Y., J. Yu, Y.P. Wong, E.P. Man, K.F. To, V.X. Jin, J. Li, Q. Tao, J.J. Sung, F.K. Chan, and W.K. Leung, Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer[J]. Br J Cancer,2007,97(7):895-901.
    [54]Ebert, M.P., G. Fei, S. Kahmann, O. Muller, J. Yu, J J. Sung, and P. Malfertheiner, Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer[J]. Carcinogenesis, 2002,23(1):87-91.
    [55]Clements, W.M., J. Wang, A. Sarnaik, O.J. Kim, J. MacDonald, C. Fenoglio-Preiser, J. Groden, and A.M. Lowy, beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer[J]. Cancer Res,2002,62(12): 3503-6.
    [56]Murata-Kamiya, N., Y. Kurashima, Y. Teishikata, Y. Yamahashi, Y. Saito, H. Higashi, H. Aburatani, T. Akiyama, R.M. Peek, Jr., T. Azuma, and M. Hatakeyama, Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells[J]. Oncogene,2007,26(32):4617-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700