虎杖苷抗肿瘤作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重威胁人类健康和生命的疾病,由于人口增长、老龄化和不良生活习惯的影响,近年来在全世界范围内恶性肿瘤的发病率持续上升。恶性肿瘤已成为发达国家和发展中国家的首位死因。乳腺癌是世界各地女性最常见的恶性肿瘤之一,占女性新发恶性肿瘤的23%,具有发病率高、侵袭性强、病程进展缓慢等特点。肺癌则是男性中最常见的恶性肿瘤,是男性癌性死亡的首位原因,女性癌性死亡的第二大肿瘤。
     目前对于恶性肿瘤的主要治疗方法包括:手术,放射治疗,化疗和分子靶向治疗。化疗在恶性肿瘤治疗中仍处于基础地位,但目前临床上广泛使用的化疗药物疗效有限,毒性作用较大,经几次应用后还会发生耐药。近年来,采用传统中药等植物提取物探讨恶性肿瘤治疗的新途径引起了人们的关注,从传统中药提取的抗肿瘤药物如冬凌草甲素、黄连素、姜黄素的体外实验表明可抑制多种肿瘤细胞的增殖,从植物中提取的紫杉醇、喜树碱、长春新碱等药物已在临床上广泛应用。因此筛选新型抗肿瘤的植物药,确定其抗肿瘤作用并探讨其机制,已成为当今肿瘤治疗研究领域的热点之一。
     虎杖苷是从虎杖的干燥根茎中提取的第4种单体,又名白藜芦醇苷,现代药理学研究表明虎杖苷对心肌细胞、血管平滑肌细胞、抗血小板聚集、改善微循环等有显著作用,此外还能减轻多种因素造成的组织器官损伤,具有保护肝细胞,降血脂及抗脂质过氧化等作用。而对其抗肿瘤作用的研究报道仍较少,本课题是研究虎杖苷在乳腺癌细胞、肺癌中的生物学功能以及相关机制,旨为进一步开展虎杖苷抗肿瘤作用的基础和临床研究提供实验基础和理论依据。本课题实验内容主要分为五部分:
     第一部分虎杖苷对恶性肿瘤增殖抑制效应的研究
     目的:
     研究虎杖苷在体内外对乳腺癌、肺癌生长的影响,并观察其对正常细胞的毒性和在体内的对实验动物的毒副作用。
     方法:
     应用MTT或CCK8法检测虎杖苷对10种不同来源的恶性肿瘤细胞及两种正常上皮细胞生存曲线的影响并比较了虎杖苷和白藜芦醇抑制肿瘤细胞生长的效力。应用流式细胞术分析虎杖苷对乳腺癌及肺癌细胞的细胞周期变化的影响及凋亡诱导情况。采用人肺癌细胞皮下移植动物模型观察虎杖苷对动物体内肿瘤生长的影响及其毒副作用。
     结果:
     虎杖苷对10种不同来源的恶性肿瘤细胞包括乳腺癌MCF-7、MDA-MB-231,肺癌A549、NCI-H1975、宫颈癌Hela、卵巢癌SKOV-3、肝癌SM7721、鼻咽癌CNE-1,白血病HL-60及K562细胞均具有明显的抑制其生长的作用,且生长抑制作用呈剂量和时间-效应关系。虎杖苷对正常乳腺上皮细胞MCF-10A及肺支气管上皮细胞HBE的毒性作用小于相应的肿瘤细胞。虎杖苷对乳腺癌及肺癌细胞的生长抑制作用明显强于其糖配基白藜芦醇。流式细胞术的结果显示虎杖苷可引起肿瘤细胞阻滞于细胞周期进程的S期,虎杖苷诱导肿瘤细胞发生凋亡。动物实验结果显示虎杖苷可明显抑制裸鼠移植瘤的生长且未见明显毒副反应。
     第二部分虎杖苷抗肿瘤作用的分子机制研究
     目的:
     研究虎杖苷抑制肿瘤细胞生长、引起细胞周期阻滞及诱导肿瘤细胞凋亡的分子机制。
     方法:
     采用人磷酸化激酶蛋白芯片及凋亡相关蛋白芯片检测经虎杖苷处理的乳腺癌细胞内磷酸化激酶及凋亡相关蛋白的变化。应用Western blot实验验证和检测与细胞生长、细胞周期进程和细胞凋亡相关蛋白的变化。应用MTT法及流式细胞术检测PI3K、Erk、JNK、P38抑制剂对虎杖苷抗肿瘤作用的影响。
     结果:
     虎杖苷处理后的乳腺癌细胞内CREB的活性受到抑制,且抑制作用在虎杖苷作用后2小时即发生并一直持续至40小时。细胞周期相关蛋白Cyclin D1的表达在虎杖苷处理后的乳腺癌及肺癌细胞表达明显下降。虎杖苷处理后的乳腺癌细胞内源性和外源性凋亡途径均被激活。PI3K、Erk、JNK、P38抑制剂对虎杖苷抑制肿瘤细胞生长、引起细胞周期阻滞及诱导肿瘤细胞凋亡的作用无明显影响。
     第三部分虎杖苷对肿瘤细胞转移的影响及分子机制研究
     目的:
     研究虎杖苷对如乳腺癌及肺癌细胞转移及侵袭的影响,并对其分子机制进行初步探讨。
     方法:
     应用伤口愈合实验及Transwell细胞迁移实验观察虎杖苷对细胞迁移能力的影响。应用肿瘤细胞粘壁实验观察虎杖苷对肿瘤细胞粘附能力的影响。采用Transwell细胞侵袭实验观察虎杖苷对肿瘤细胞侵袭能力的影响。采用Western blot实验检测与细胞转移浸润相关蛋白表达的变化。
     结果:
     伤口愈合实验及Transwell细胞迁移实验显示虎杖苷可抑制乳腺癌及肺癌细胞的迁移,粘壁实验结果显示虎杖苷可抑制乳腺癌MDA-MB-231细胞的粘附能力,Transwell细胞侵袭实验结果显示虎杖苷可明显抑制乳腺癌细胞的侵袭能力。Western blot的实验结果显示经虎杖苷处理后的乳腺癌细胞E-cadherin、-catenin的表达上调,N-cadherin的表达下调,MMP-2、MMP-9的表达无明显变化。
     第四部分虎杖苷对阿霉素耐药乳腺癌细胞的生长抑制作用研究
     目的:
     研究虎杖苷对乳腺癌耐阿霉素细胞MCF-7/ADR增殖、细胞周期及凋亡的影响,并初步探讨其分子机制。
     方法:
     应用MTT法检测虎杖苷对乳腺癌耐阿霉素细胞MCF-7/ADR的生存曲线的影响,应用流式细胞术检测虎杖苷处理MCF-7/ADR细胞后细胞周期的变化和凋亡发生率,应用Western blot实验检测虎杖苷对MCF-7/ADR细胞的细胞周期、凋亡相关蛋白的影响。
     结果:
     MCF-7/ADR细胞除了对阿霉素耐药外还对吉西他滨和紫杉醇耐受,虎杖苷可抑制MCF-7/ADR的生长且其抑制作用与MCF-7细胞相比无明显差异。流式细胞术的结果显示虎杖苷引起MCF-7/ADR细胞发生细胞周期G0/G1期阻滞,虎杖苷诱导MCF-7/ADR细胞发生凋亡,且凋亡诱导效应呈剂量依赖。Western blot实验显示虎杖苷处理的MCF-7/ADR细胞Bcl-2、CyclinD1及NF-B表达下降、Bax及Cleaved-PARP表达上调。
     第五部分虎杖苷对晚期炎症因子HMGB1影响的研究
     目的:
     研究虎杖苷对LPS刺激巨噬细胞后晚期炎症因子HMGB1及多种早期炎症因子释放的影响。
     方法:
     应用Western blot实验检测虎杖苷及白藜芦醇对LPS刺激巨噬细胞产生的HMGB1的影响,应用Griess法检测虎杖苷对LPS刺激巨噬细胞产生的NO的影响,应用细胞因子芯片检测虎杖苷及白藜芦醇对LPS刺激巨噬细胞产生的多种早期炎症因子的影响。
     结果:
     LPS刺激巨噬细胞后,细胞释放大量HMGB1,虎杖苷在0.06和0.12mol/L的剂量范围内则可减少LPS所引起的HMGB1的释放,白藜芦醇在0.5-2.5mol/L的剂量范围内可抑制LPS诱导的HMGB1的释放。虎杖苷对LPS所引起的NO的释放无明显影响。细胞因子芯片的结果显示,虎杖苷及白藜芦醇在可抑制HMGB释放的浓度范围内对62种早期炎症因子无明显影响。
     结论
     (1)虎杖苷具有广谱的抑制肿瘤细胞增殖的作用,且虎杖苷在抑制肿瘤细胞生长的同时对正常细胞的毒性较小,在动物体内实验,虎杖苷可抑制裸鼠移植瘤的生长并对动物无明显毒副作用。虎杖苷通过导致细胞周期S期阻滞及诱导凋亡发挥抗肿瘤作用。虎杖苷抑制肿瘤细胞生长、引起细胞周期阻滞及诱导肿瘤细胞凋亡的机制可能与抑制CREB的活性,下调Cyclin D1,激活内外源性细胞凋亡信号通路有关。虎杖苷抗肿瘤作用与PI3K/AKT及MAPK信号通路及NF-B无关。
     (2)在不明显影响细胞生长的浓度下,虎杖苷在体外可抑制乳腺癌和肺癌细胞的贴壁能力、迁移和侵袭能力,其抑制乳腺癌转移能力的机制可能与上调E-cadherin、-catenin蛋白,下调N-cadherin蛋白的表达有关。
     (3)虎杖苷对乳腺癌耐阿霉素细胞仍具有增殖抑制作用,导致乳腺癌耐阿霉素MCF-7/ADR细胞细胞周期G0/G1期阻滞及发生凋亡,其机制可能上调Bax蛋白、激活PARP,下调Bcl-2及NF-B蛋白的表达有关。
     (4)虎杖苷对LPS诱导巨噬细胞后晚期炎症因子HMGB1及多种早期炎症因子的产生无明显影响。
Cancer has become an increasing health threat worldwide as a result of populationaging and growth as well as adoption of cancer-associated lifestyle. Breast cancer is themost frequently diagnosed cancer and the leading cause of cancer death among women.Lung cancer is the most commonly diagnosed cancer and the leading cause of cancerdeath in men. Despite advances in all the standard treatments, such as surgery,radiotherapy, chemotherapy, molecular targeting therapy, or combined regiment, theoverall outcome is still poor due to metastasis, drug resistance, and recurrence. Thus thequest to find novel agents for cancer therapy is a never-ending venture.
     With development of phytochemistry, more and more researchers pay theirattention to the importance of herbal plants. Famous examples of plant-basedtherapeutic anticancer drugs include camptothecin, etoposide, vincristine, and paclitaxel.These drugs have been use in cancer treatment for many years. Polydatin (PD) is one ofthe main effective elements of Polygonum cuspidatum. Pharmacological studies andclinical practice have demonstrated that polydatin has many biological functions, suchas protective effect against shock ischemia/reperfusion injury, congestive heart failure,and endometriosis. However, the effects of polydatin on human cancer cells have rarelybeen reported.
     In this study, a series of methods, including MTT assay, in vitro wound healingassay, in vitro cellular adhesion assay, and Transewell migration and invasion assay,were employed to determine cell growth and proliferation, invasion and migration. Flowcytometry was used to determine alteration of cell cycle progression and apoptosis.Human phosphor-kinase array, human apoptosis array and western blot assays wereemployed to investigate expression of proteins related to cell growth, cell cycle, andapoptosis. In animal studies, nude mice lung cancer transplant models were used toinvestigate tumor growth.
     As observed by MTT assay, polydatin has a broad spectrum of growth inhibition effects against10cancer cell lines. It is more potent to kill cancer cells than non-cancercells. It inhibited cell growth in a dose-and tome-dependent fashion. Animal studiesalso showed polydatin could inhibit tumor growth and did not have significant sideeffects. Flow cytometry assay indicated polydatin induced apoptosis and cell cycle Sphase arrest in breast and lung cancer cells. Human phosphor-kinase array, humanapoptosis array and western blot assays indicated the anti-proliferation and cell cyclearrest effects of polydatin might be associated with down regulation of pCREB andcyclinD1. Polydatin induced apoptosis through both intrinsic and extrinsic pathway. Baxis the major target in intrinsic pathway.
     In breast and lung cancer cells, polydatin significantly decreased the ability of celladhesion, cell migration and invasion at non-toxic dosage. Up-regulation of E-Cadherin,
     -Catenin and down-regulation of N-Cadherin partly contributed to these effects.Polydatin also showed great potential in inhibiting cell growth of adriamycin-resistantbreast cancer cells through inducing apoptosis and cell cycle G0/G1phase arrest.CyclinD1, Bcl-2, Bax and NF-B are involved in the inhibitory effect of polydatin inadriamycin-resistant breast cancer cells.
     In conclusion, polydain not only inhibits cancer growth both in vitro and in vivo,but also reduces ability of cell adhesion, migration and invasion. Furthermore, polydatinmay inhibit proliferation of drug resistant cells. These studies, for the first time,demonstrated that polydatin might be a promising compound for breast and lung cancertreatment. Although the exact mechanisms need to be further investigated, multiplepathways involved in cell cycle progression and apoptosis including pCREB, cyclinD1and Bcl-2family have been identified in the this study.
引文
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics.CA Cancer J Clin.2011Mar-Apr;61(2):69-90.
    2. World Health Organization. The Global Burden of Disease:2004Update. Geneva:World Health Organization;2008.
    3. McPherson K, Steel C M, Dixon J M. ABC of breast diseases.Breast cancerepidemiology, risk factors, and genetics. BMJ,2000,321(7261):624-628.
    4.陈占红,王晓稼.乳腺癌化学预防研究进展[J].浙江预防医学,2008,20(11):65-67.
    5.金华,杨志芬.30例乳腺癌患者的心理诊断及护理[J].现代中西医结合杂志,2009,18(2):195-196.
    6. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breastcancer: potential diagnostic and therapeutic applications[R]. Oncologist,2004;9(4):361-377.
    7.杨玲,李连弟,陈育德等.中国乳腺癌发病死亡趋势的估计与预测[J].中华肿瘤杂志,2006;6(28):438-440.
    8. Spiro SG, Tanner NT, Silvestri GA, et al. Lung cancer: Progress in diagnosis,staging and therapy. Respirology.2010,15:44-50.
    9. Goodgame B, Stinchcombe TE, Simon G, et al. Recent Advances in Lung Cancer:Summary of Presentations from the45th Annual Meeting of the American Societyof Clinical Oncology. J Thorac Oncol.2009,4:1293-1300.
    10. http://www.caca.org.cn.
    11. Sheth S. Current and emerging therapies for patients with advanced non-small-celllung cancer. Am J Health Syst Pharm.2010,67: S9-14.
    12. Liang HY, Zhou H, Li XL, et al. Chemo-radiotherapy for advanced non-small celllung cancer: concurrent or sequential? It's no longer the question: a systematicreview.Int J Cancer.2010,127:718-728.
    13. Jackman DM, Miller VA, Cioffredi LA, et al. Impact of Epidermal Growth FactorReceptor and KRAS Mutations on Clinical Outcomes in Previously UntreatedNon-Small Cell Lung Cancer Patients: Results of an Online Tumor Registry ofClinical Trials. Clinl Cancer Res.2009,16:5267-5273.
    14. Jackman D, Pao W, Riely GJ, et al. Clinical Definition of Acquired Resistance toEpidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-CellLung Cancer. J Clin Oncol.2010,2:357-360.
    15. Trigo Perez, Jose Manuel, Garrido Lopez, et al. SEOM clinical guidelines for thetreatment of non-small-cell lung cancer: an updated edition. Clin Transl Oncol.2010,12:735-41.
    16. Newman DJ, Cragg GM. Natural products as sources of new drugsover the last25years. Nat Prod.2007;70(3):461–477.
    17. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. JEthnopharmacol.2005;100(1-2):72–79.
    18. Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol.2007;9(12):767–776.
    19. Gao JP,Chen CX,Gu WL, et al. Effects of polydatin on attenuating ventricularremodeling in isoproterenol-induced mouse and pressure-overload rat models.Fitoterapia.2010,81(7):953-960.
    20. Zhang LP, Ma HJ, Bu HM, et al. Polydatin attenuates ischemia/reperfusion-inducedapoptosis in myocardium of the rat. Sheng Li Xue Bao.2009,61:367-72.
    21. Zhang PW, Yu CL, Wang YZ, et al. Influence of3,4′,5-trihydroxystibene-3-beta-mono-D-glucoside on vascular endothelialepoprostenol and platelet aggregation. Acta Pharmacologica Sinica.1995,16:265–268.
    22. Shan CW, Yang SQ, He HD, et al. Influences of3,4,5-trihydroxystibene-3-beta-mono-D-glucoside on rabbits’ platelet aggregationand thromboxane B2production in vitro. Acta Pharmaceutica Sinica1990,11:527–530.
    23. Wang YZ, Luo SF, Zhang PW, et al. Reduction effect of3,4′,5-trihydroxystibene-3-β-mono-D-glucoside on arterial thrombosis induced byvascular endothelial injury. Acta Pharmacologica Sinica.1995,16:159–162.
    24. Zhao KS, Jin C, Huang X et al. The mechanism of Polydatin in shock treatment.Clin Hemorheol Microcirc.2003;29(3-4):211-217.
    25. Wang X, Song R, Chen Y et al. Polydatin-a new mitochondria protector for acutesevere hemorrhagic shock treatmentExpert Opin Investig Drugs.2012Dec14.[Epub ahead of print]
    26. Wang X, Song R, Bian HN et al. Polydatin, a natural polyphenol, protects arterialsmooth muscle cells against mitochondrial dysfunction and lysosomaldestabilization following hemorrhagic shock. Am J Physiol Regul Integr CompPhysiol.2012;302(7):R805-814.
    27. Cheng Y, Zhang HT, Sun L et al. Involvement of cell adhesion molecules inpolydatin protection of brain tissues from ischemia-reperfusion injury. Brain Res.2006;1110(1):193-200.
    28. Miao Q, Wang S, Miao S et al. Cardioprotective effect of polydatin againstischemia/reperfusion injury: roles of protein kinase C and mito K(ATP) activation.Phytomedicine.2011;19(1):8-12.
    29. Ke-seng Zhao, Chunhua Jin, Xuliang Huang, et al. The mechanism of polydatin inshock treatment. Clin Hemorheol Microcirc.2003,29:211-217.
    30. Shu SY, Wang XY, Ling ZY, et al. Effect of polydatin on phospholipase A2in lungtissues in rats with endotoxic shock. Chin J Traumatol.2004,7:239-43.
    31. Xing WW, Wu JZ, Jia M, et al. Effects of polydatin from Polygonum cuspidatumon lipid profile in hyperlipidemic rabbits. Biomed Pharmacother.2009,63:457-62.
    32. Cuendet M, Potterat O, Salvi A, et al. Stilbene and dihydrochalcones with radicalscavenging activities from Loiseleuria procumbens. Phytochemistry.2000,54:871–874.
    33. Fabris S, Momo F, Ravagnan G, et al. Antioxidant properties of resveratrol andpiceid on lipid peroxidation in micelles and monolamellar liposomes. BiophysChem.2008,135:76-83.
    34. Indraccolo U, Barbieri FEffect of palmitoylethanolamide-polydatin combination onchronic pelvic pain associated with endometriosis: preliminary observations. Eur JObstet Gynecol Reprod Biol.2010,150(1):76-79.
    35. Yao J, Wang JY, Liu L, Zeng WS, Li YX, Xun AY, Zhao L, Jia CH, Feng JL, WeiXX, Wang LS. Planta Med.Polydatin ameliorates DSS-induced colitis in micethrough inhibition of nuclear factor-kappaB activation。2011,77(5):421-427.
    36. Zhou CS, Xiang HY, Xiao JB, et al Quantitative Determination of Resveratroland Piceid in Polygonum cuspidatum Sieb.et Zucc.by HPLC. Chin J. Pharm Anal.2005;25:534–536.
    37. Romero-Pérez AI, Ibern-Gómez M, Lamuela-Raventós RM, et al. Piceid, the majorresveratrol derivative in grape juices. J Agric Food Chem.1999;47(4):1533-1536.
    38. Jang M, Cai L, Udeani GO et al. Cancer chemopreventive activity of resveratrol, anatural product derived from grapes. Science.1997;275(5297):218–220.
    39. Joe AK, Liu H, Suzui M et al. Resveratrol induces growth inhibition, S-phase arrest,apoptosis, and changes in biomarker expression in several human cancer cell lines.Clincal cancer reseach.2002;8(3):893-903.
    40. Rezk YA, Balulad SS, Keller RS et al. Use of Resveratrol to improve theeffectiveness of cisplatin and doxorubicin: Study in human gynecologic cancer celllines and in rodent heart. American Journal of Obstetrics and Gynecology2006;194(5): e23–e26
    41. Liu PL, Tsai JR, Charles AL et al. Resveratrol inhibits human lung adenocarcinomacell metastasis by suppressing heme oxygenase1-mediated nuclear factor-jBpathway and subsequently downregulating expression of matrix metalloproteinases.Mol Nutr Food Res.2010;54(suppl2): S196–S204.
    42. Shibata MA, Akao Y, Shibata E et al. Vaticanol C, a novel resveratrol tetramer,reduces lymph node and lung metastases of mouse mammary carcinoma carryingp53mutation. Cancer Chemother Pharmacol.2007;60(5):681–691.
    43. Liu HS, Pan CE, Yang W et al. Antitumor and immunomodulatory activity ofresveratrol on experimentally implanted tumor of H22in Balb/c mice. World JGastroenterol.2003;9(7):1474–1476.
    44. Zhou HB, Chen JJ, Wang WX et al. Anticancer activity of resveratrol on implantedhuman primary gastric carcinoma cells in nude mice. World J Gastroenterol.2005;11(2):280–284.
    45. Pan MH, Gao JH, Lai CS et al. Antitumor activity of3,5,4-trimethoxystilbene inCOLO205cells and xenografts in SCID mice. Mol Carcinog.2008;47(3):184–196.
    46. Li T, Fan GX, Wang W et al. Resveratrol induces apoptosis, influences IL-6andexerts immunomodulatory effect on mouse lymphocytic leukemia both in vitro andin vivo. Int Immunopharmacol.2007;7(9):1221–1231.
    47. Chen JC, Chen Y, Lin JH et al. Resveratrol suppresses angiogenesis in glioms:evaluation by color Doppler ultrasound. Anticancer Res.2006;26(2A):1237–45.
    48. Busquets S, Ametller E, Fuster G et al. Resveratrol, a natural diphenol, reducesmetastatic growth in an experimental cancer model. Cancer Lett.2007;245(1-2):144–148.
    49. Kim KH, Back JH, Zhu Y et al. Resveratrol targets transforming growth factor-β2signaling to block UV-induced tumor progression. J Invest Dermatol.2011,131(1):195-202.
    50.王佾先亢寿海张琴芬等.白藜芦醇苷的抗癌作用及对癌细胞周期的影响.浙江中西医结合杂志.2003,13:287-288.
    51. Kimura Y and Okuda H. Effects of naturally occurring stilbene glucosides frommedicinal plants and wine, on tumour growth and lung metastasis in Lewis lungcarcinoma-bearing mice. J Pharm Pharmacol.2000,52:1287–1295.
    52. Liu H, Zhao S, Zhang Y, Wu J, Peng H, Fan J, Liao J.Reactive oxygenspecies-mediated endoplasmic reticulum stress and mitochondrial dysfunctioncontribute to polydatin-induced apoptosis in human nasopharyngeal carcinomaCNE cells. J Cell Biochem.2011;112(12):3695-703.
    1. Ferlay J, Shin HR, Bray F et al.Estimates of worldwide burden of cancer in2008:GLOBOCAN2008. Int J Cancer.2010;127(12):2893-2917.
    2. Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery.Eur J Med Chem.2011;46(10):4769-807.
    3. Pharmacopoeia Commission of the People’s Republic of China,“Pharmacopoeiaofthe People’s Republic of China (2005), Part1,” ChemicalIndustry Press, Beijing,2005; pp.145—146.
    4. Hollman PC, de Vries JH, van Leeuwen SD, et al. Absorption of dietary quercetinglycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr.1995;62(6):1276-1282.
    5. Paganga G, Rice-Evans CA. The identification of flavonoidsas glycosides in humanplasma. FEBS Lett.1997;401(1):78-82.
    6. Regev-Shoshani G, Shoseyov O, Bilkis I et al. Glycosylation of resveratrol protectsit from enzymic oxidation Biochem. J.2003;374(Pt1):157–163.
    7. Krasnow MN, Murphy TM. Polyphenol glucosylating activity in cell suspensions ofgrape (Vitis vinifera). J Agric Food Chem.2004;52(11):3467-3472.
    8. Norbury C, Nurse P. Animal cell cycles and their control. Annu. Rev. Biochem.1992;61,441.
    9. Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review ofregulation, deregulation and therapeutic targets in cancer.Cell Prolif.2003;36(3):131-149.
    10. Grana X, Reddy P. Cell cycle control in mammalian cells: role of cyclins,cyclin-dependent kinases (CDKs), growth suppressor genes and cyclin-dependentkinase inhibitors (CDKIs). Oncogene.1995;11(2):211–219.
    11. Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of cdks,their cyclin activators, and CIP and INK4inhibitors. J Mol Biol.1999;287(5):821–828.
    12. Kim SO, Han J. Pan-caspase inhibitor zVAD enhances cell death in RAW264.7macrophages. J Endotoxin Res.2001;7:292-296
    13. Kawazoe N, Watabe M, Masuda Y et al. Tiamil is involved in the regulation ofbufalin-induced apoptosis in human leukemia cells. Oncogene.1999;18:2413-2421
    14. Hill PA, Tumber A, Meike MC. Multiple extracellular sigals promote osteoblastsurvival and apoptosis. Endocrinology.1997;138:3849-3858
    15. Mizukami S, Kikuchi K, Higuchi T. Imaging of caspase-3activation in hela cellsstimulated with etoposide using a novel fluorescent probe. FEBS Lett.1999;453:356-360.
    16. Johnstone RW, Ruefi AA, Lowe SW. Apoptosis: A link between cancer geneticsand chemotherapy. Cell.2002;108:153-164.
    17. Gougoen ML. Programmed cell death in HIV infection: dyseregulation of BCL-2and Fas pathway and contribution to AIDS. Psychoneuroendocrinology.1997;22:33-39.
    18. Debatin KM. Apoptosis pathways in cancer and cancer therapy. Cancer ImmunolImmunother.2004;53:153-197.
    19. Beauparlant P, Shore GC. Therapeutic activation of caspases in cancer: a question ofselectivity. Curr Opin Drug Discov Devel.2003;6:179-187.
    1. Shaywitz, A. J.; Greenberg, M. E. CREB: A stimulus-induced transcription factoractivated by a diverse array of extracellular signals. Annu. Rev. Biochem.1999;68:821-861.
    2. Vinson, C. R.; Sigler, P. B.; McKnight, S. L. Scissors-grip model for DNArecognition by a family of leucine zipper proteins. Science1989;246:911-916.
    3. Montminy, M. R.; Bilezikjian, L. M. Binding of a nuclear-protein to thecyclic-AMP response element of the somatostatin gene. Nature.1987;328:175-178.
    4. Montminy, M. R.; Sevarino, K. A.; Wagner, J. A.; Mandel, G.; Goodman, R. H.Identification of a cyclic-AMP-responsive element within the rat somatostatin gene.Proc. Natl. Acad. Sci. USA1986;83:6682-6686.
    5. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD&Vinson C. Adominant-negative inhibitor of CREB reveals that it is a general mediator ofstimulusdependent transcription of c-fos. Mol Cell Biol.1998;18:967–977.
    6. Desdouets C, Matesic G, Molina CA, Foulkes NS, Sassone-Corsi P, Brechot C&Sobczak-Thepot J. Cell cycle regulation of cyclin A gene expression by the cyclicAMP-responsive transcription factors CREB and CREM. Mol Cell Biol.1995;15:3301–3309.
    7. White PC, Shore AM, Clement M, McLaren J, Soeiro I, Lam EW&Brennan P.Regulation of cyclin D2and the cyclin D2promoter by protein kinase A andCREB in lymphocytes. Oncogene.2006;25:2170–2180.
    8. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM,McWeeney S, Dunn JJ, Mandel G&Goodman RH. Defining the CREB regulon: agenome-wide analysis of transcription factor regulatory regions. Cell.2004;119:1041–1054.
    9. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependentfactor CREB. Nat Rev Mol Cell Biol.2001;2:599–609.
    10. Z. Arany, W.R. Sellers, D.M. Livingston, R. Eckner, E1A-associated p300andCREB-associated CBP belong to a conserved family of coactivators, Cell.1994;77:799–800.
    11. Radhakrishnan, I.; PerezAlvarado, G. C.; Parker, D.; Dyson, H. J.; Montminy, M. R.;Wright, P. E. Solution structure of the KIX domain of CBP bound to thetransactivation domain of CREB: A model for activator:Coactivator interactions.Cell.1997;91:741-752.
    12. D.B. Shankar, J.C. Cheng, K. Kinjo, N. Federman, T.B. Moore, A. Gill, N.P. Rao,E.M. Landaw, K.M. Sakamoto, The role of CREB as a proto-oncogene inhematopoiesis and in acute myeloid leukemia, Cancer Cell.2005;7:351–362.
    13. H.N. Crans-Vargas, E.M. Landaw, S. Bhatia, G. Sandusky, T.B. Moore, K.M.Sakamoto, Expression of cyclic adenosine monophosphate response-elementbinding protein in acute leukemia, Blood.2002;99:2617–2619.
    14. Crans-Vargas HN, Landaw EM, Bhatia S et al. Expression of cyclic adenosinemonophosphate response-element binding protein in acute leukemia. Blood.2002;99:2619-2619.
    15. Pigazzi M, Ricotti E, Germano G et al. cAMP response element bindingprotein(CERB) overexpression CREB has been described as critical for leukemiaprogression. Haematologica.2007;92:1435-1437.
    16. Shanker DB, Cheng JC, Kinjo K et al. The role of CREB as a proto-oncogene inhematopoiesis and in acute myeloid leukemia. Cancer Cell.2005;7:351-362.
    17. Xie S, Price JE, Luca M et al. Dominant-negative CREB inhibits tumor growth andmetastasis of human melanoma cells, Oncogene.1997;15:2069–2075.
    18. Wu D, Zhau HE, Huang WC et al. cAMP-responsive element-binding proteinregulates vascular endothelial growth factor expression: implication in humanprostate cancer bone metastasis. Oncogene.2007;26:5070-50777.
    19. Linnerth NM, Greenaway JB, Petrik JJ et al. cAMP response element-bindingprotein is expressed at high levels in human ovarian adenocarcinoma and regulatesovarian tumor cell proliferation. Int J Gynecol Cancer.2008;18:1248-57.
    20. Seo HS, Liu DD, Bekele BN et al. Cyclic AMP response element-binding proteinoverexpression: a feature associated with negative prognosis in never smokers withnon-small cell lung cancer. Cancer Res.2008;68:6065–6073.
    21. Aggarwal S, Kim SW, Ryu SH et al. Growth suppression of lung cancer cells bytargeting cyclic AMP response element-binding protein. Cancer Res.2008;68:981–988.
    22. Chhabra A, Fernando H, Watkins G et al. Expression of transcription factor CREB1in human breast cancer and its correlation with prognosis. Oncol Rep.2007;18:953-958.
    23. Kim YM, Geiger TR, Egan DI et al. The HTLV-1tax protein cooperates withphosphorylated CREB, TORC2and p300to activate CRE-dependent cyclin D1transcription. Oncogene.2010;29(14):2142-2152.
    24. Kumar AP, Bhaskaran S, Ganapathy M et al.Akt/cAMP-responsive element bindingprotein/cyclin D1network: a novel target for prostate cancer inhibition intransgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, aPhellodendron amurense bark extract. Clin Cancer Res.2007;13(9):2784-2794.
    25. Fox KE, Colton LA, Erickson PF et al. Regulation of cyclin D1and Wnt10b geneexpression by cAMP-responsive element-binding protein during early adipogenesisinvolves differential promoter methylation. J Biol Chem.2008;283(50):35096-35105.
    26. Yang K, Hitomi M, Stacey DW. Variations in cyclin D1levels through the cellcycle dtermine the prolifertiv fate of a cell. Cell Div.2006;18;1:32.
    27. Gillett C, Smith P, Gregory W, Richards M, Millis R, Peters G, Barnes D. CyclinD1and prognosis in human breast cancer. Int J Cancer.1996;69(2):92-99.
    28. Hall M, Peters G.Genetic alterations of cyclins, cyclin-dependent kinases, and Cdkinhibitors in human cancer.Adv Cancer Res.1996;68:67-108.
    29. Molenaar JJ, Ebus ME, Koster J, van Sluis P, van Noesel CJ, Versteeg R, CaronHNCyclin D1and CDK4activity contribute to the undifferentiated phenotype inneuroblastoma. Cancer Res.2008;68(8):2599-2609.
    30. Betticher DC, Heighway J, Hasleton PS, Altermatt HJ, Ryder WD, Cerny T,Thatcher N. Prognostic significance of CCND1(cyclin D1) overexpression inprimary resected non-small-cell lung cancer.Br J Cancer.1996;73(3):294-300.
    31. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI,deFazio A, Watts CK, Musgrove EA, Sutherland RL. Expression and amplificationof cyclin genes in human breast cancer. Oncogene.1993;8(8):2127-2133.
    32. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB.Amplification andexpression of the human cyclin D gene in esophageal cancer. Cancer Res.1992;52(10):2980-2983.
    33. Büschges R, Weber RG, Actor B, Lichter P, Collins VP, ReifenbergerGAmplification and expression of cyclin D genes (CCND1, CCND2and CCND3)in human malignant gliomas. Brain Pathol.1999;9(3):435-442.
    34. Jeon YT, Kim JW, Song JH, Park NH, Song YS, Kang SB, Lee HP Cyclin D1G870A polymorphism and squamous cell carcinoma of the uterine cervix inKorean women. Cancer Lett.2005;223(2):259-263.
    35. Kong S, Amos CI, Luthra R, Lynch PM, Levin B, Frazier ML.Effects of cyclin D1polymorphism on age of onset of hereditary nonpolyposis colorectal cancer.CancerRes.2000;60(2):249-252.
    36. Jares P, Colomer D, Campo E.Genetic and molecular pathogenesis of mantle celllymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer.2007;7(10):750-762.
    37. Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome inpatients with head and neck squamous cell carcinoma. Int J Exp Pathol.2005;86(6):347-63. Review.
    38. Debatin KM. Apotosis pathway in cancer and cancer therapy. Cancer ImmunolImmunother.2004;53:153-197.
    39. Philchenkov A, Zavelevich M, Kroczak TJ et al. Caspases and cancer: mechanismsof inactivation and new treatment modalities. Exp Oncol.2004;26:82-97.
    40. Heiser D, Labi V, Erlacher M et al. The Bcl-2protein family and its role in thedevelopment of neoplastic disease. Exp Gerontol.2004;39:1125-1135.
    41. Zhang N, Hartig H, Dzhagalov I, Draper D, He YW.The role of apoptosis in thedevelopment and function of T lymphocytes. Cell Res.2005;15(10):749-769.
    42. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A,Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surfaceantigen Fas can mediate apoptosis. Cell.1991;66(2):233-243.
    43. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM. FADD, a novel deathdomain-containing protein, interacts with the death domain of Fas and initiatesapoptosis. Cell.1995;81(4):505-512.
    44. Slee EA, Adrain C, Martin SJ. Serial killers: ordering caspase activation events inapoptosis. Cell Death Differ.1999;6(11):1067-1074.
    45. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, GareauY, Griffin PR, Labelle M, Lazebnik YA, et al. Identification and inhibition of theICE/CED-3protease necessary for mammalian apoptosis. Nature.1995;376(6535):37-43.
    46. Stennicke HR, Jürgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q,Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, SalvesenGS. Pro-caspase-3is a major physiologic target of caspase-8. J Biol Chem.1998;273(42):27084-27090.
    47. Kroemer G, Petit P, Zamzami N, Vayssière JL, Mignotte B.The biochemistry ofprogrammed cell death. FASEB J.1995;9(13):1277-1287.
    48. Mit siades N, Mit siades CS, Poulak i V, et al. Intracellular regulat ion of tumornecrosis factor-relat ed apopt osis-inducing ligandinduced apoptosis in humanmult iple myeloma cells. Blood.2002;99(6):2162-2171.
    49. Mitsiades N, Poulaki V, Mit siades C, et al. Ewings sarcoma familytumors aresensitive to tumor necrosis fact or-relat ed apoptosis-inducing ligand and expressdeath recept or4and death recept or5. Cancer Res.2001;61(6):2704-2712.
    50. Petak I, Douglas L, T illman DM, et al. Pediatric rhabdomyosarcoma cell lines areresistant to Fas-induced apoptosis and highlysensitive to TRAIL-induced apoptosis.Clin Can cer Res,2000;6(10):4119-4127.
    51. Vousden KH, Prives C. P53and prognosis: new insights and further complexity.Cell.2005;120(1):7-10.
    52. Prives, C.&Hall, P.A. The p53pathway. J. Pathol.1999;187:112–126.
    53. Sionov, R.V.&Haupt, Y. Apoptosis by p53: mechanisms, regulation, and clinicalimplications. Oncogene.1999;18:6145–6157.
    54. Vousden, K.H.&Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer.2002;2:594–604.
    55. Galluzzi L, Morselli E, Kepp O, Tajeddine N, Kroemer G. Targeting p53tomitochondria for cancer therapy. Cell Cycle.2008;7(13):1949-1955.
    56. Vousden KH, Lane DP. p53in health and disease. Nat Rev Mol Cell Biol.2007;8(4):275-83.
    57. Vivanco I, Sawyers CL. The phosphatidylinositol3-Kinase AKT pathway in humancancer. Nat Rev Cancer.2002;2(7):489-501.
    58. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, Lynch HT, SmyrkTC. AKT proto-oncogene overexpression is an early event during sporadic coloncarcinogenesis. Carcinogenesis.2002;23(1):201-205.
    59. Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N, Dono K,Nakamori S, Umeshita K, Ito Y, Matsuura N, Monden M. Akt2expressioncorrelates with prognosis of human hepatocellular carcinoma.Oncol Rep.2004;11(1):25-32.
    60. Yamamoto S, Tomita Y, Hoshida Y, Morooka T, Nagano H, Dono K, Umeshita K,Sakon M, Ishikawa O, Ohigashi H, Nakamori S, Monden M, Aozasa K. Prognosticsignificance of activated Akt expression in pancreatic ductal adenocarcinoma. ClinCancer Res.2004;10(8):2846-2850.
    61. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME.Aktphosphorylation of BAD couples survival signals to the cell-intrinsic deathmachinery. Cell.1997;91(2):231-241.
    62. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA.Inhibition ofglycogen synthase kinase-3by insulin mediated by protein kinase B.Nature.1995;378(6559):785-789.
    63. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, FrischS, Reed JC. Regulation of cell death protease caspase-9by phosphorylation.Science.1998;282(5392):1318-1321.
    64. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase:Conservation of a three-kinase module from yeast to human. Physiol Rev1999;79:143-80.
    65. Fan M, Chambers TC. Role of mitogen-activated protein kinases in the response oftumor cells to chemotherapy. Drug Resist Updat2001;4:253-67.
    66. Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MT, Bassarova A,Kvalheim G, Nesland JM, Reich R. The mitogen-activated protein kinases (MAPK)p38and JNK are markers of tumor progression in breast carcinoma. GynecolOncol2006;102:453-61
    67. Hu X, Janssen WE, Moscinski LC, Bryington M, Dangsupa A, Rezai-Zadeh N,Babbin BA, Zuckerman KS. An IkappaBalpha inhibitor causes leukemia cell deaththrough a p38MAP kinase dependent, NF-kappaB-independent mechanism.Cancer Res2001;61:6290-6.
    68. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinaseand titration of p27Kip1regulated by mitogen-activated protein kinase kinase(MEK1). Proc Natl Acad Sci USA1998;95:1091-6.
    69. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1expressionis regulated positively by the p42/p44MAPK and negatively by thep38/HOGMAPK pathway. J Biol Chem1996;271:20608-16.
    70. Kawada M, Yamagoe S, Murakami Y, Suzuki K, Mizuno S, Uehara Y. Induction ofp27Kip1degradation and anchorage independence by Ras through the MAP kinasesignaling pathway. Oncogene1997;15:629-37.
    71. Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL. ErbB2/neu kinasemodulates cellular p27(Kip1) and cyclin D1through multiple signaling pathways.Cancer Res2001;61:6583-91.
    72. van den Brink MR, Kapeller R, Pratt JC, Chang JH, Burakoff SJ. The extracellularsignal-regulated kinase pathway is required for activation-induced cell death of Tcells. J Biol Chem1999;274:11178-85.
    73. Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R. BAD enables ceramide tosignal apoptosis via Ras and Raf-1. J Biol Chem1998;273:30419-26.
    74. Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS. A role for the p38mitogen-activated protein kinase pathway in the transcriptional activation of p53on genotoxic stress by chemotherapeutic agents. Cancer Res2000;60:2464-72.
    75. Deschesnes RG, Huot J, Valerie K, Landry J. Involvement of p38inapoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell2001;12:1569-82.
    76. Hu X, Janssen WE, Moscinski LC, Bryington M, Dangsupa A, Rezai-Zadeh N,Babbin BA, Zuckerman KS. An IkappaBalpha inhibitor causes leukemia cell deaththrough a p38MAP kinasedependent, NF-kappaB-independent mechanism. CancerRes2001;61:6290-6.
    77. Mandlekar S, Yu R, Tan TH, Kong AN. Activation of caspase-3and c-JunNH2-terminal kinase-1signaling pathways in tamoxifen-induced apoptosis ofhuman breast cancer cells. Cancer Res2000;60:5995-6000.
    78. Stadheim TA, Kucera GL. c-Jun N-terminal kinase/stress-activated protein kinase(JNK/SAPK) is required for mitoxantrone-and anisomycin-induced apoptosis inHL-60cells. Leuk Res2002;26:55-65.
    1. Ma L, Young J, Prabhala H et al. miR-9, a MYC/MYCN-activated microRNA,regulates E-cadherin and cancer metastasis. Nat Cell Biol.2010;12(3):247-56.
    2. Veronesi U, Goldhirsch A, Yarnold J. Breast cancer. In: M. Peckham, H. Pinedo,and Veronesi(eds.), Oxford Textbook of Oncology, pp.1243-1255. Oxford, UnitedKingdom: Oxford University Press,1995.
    3. Nemoto T, Vana J. Bedwani RN et al. Management and survival of female breastcancer. Results of a national surveyby the American College of Surgeons. Cancer(Phila.).1980;5:2917-2924.
    4. Fisher B. and Slack N. Number of lymph nodes examined and the prognosis ofbreast cancer. Surg. Gynecol. Obstet.1970;131:79-83.
    5. Fidler IJ, Critical determinants of metastasis. Semin Cancer Biol.2002;12:89-96.
    6. Liotta LA, Dickson RB, Lippman ME et al. Molecular oncology of breat cancer. In: BlandKI, Copeland EM Ⅲ, editors. The breast: comprehensive management of benign andmalignant disorders.3rded. Philadelphia: Saunders;2004;499-535.
    7. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells inmetastatic sites.Nat Rev Cancer.2002;2(8):563-572.
    8. Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. BreastCancer Res.2006;8(4):212.
    9. Goldberg DR, Butz T, Cardozo MG et al. Optimization of2-phenylaminoimidazo[4,5-h] isoquinolin-9-ones: orally active inhibitors of lck kinase. J Med Chem.2003;46(8):1337-1349.
    10. Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int. J.Biochem. Cell Biol.2009;41(2):349–69.
    11. Angst B, Marcozzi C, Magee A. The cadherin superfamily: diversity in form andfunction. J Cell Sci.2001;114(Pt4):629–41.
    12. Liu YN, Liu Y, Lee HJ, Hsu YH, Chen JH. Activated androgen receptordownregulates E-cadherin gene expression and promotes tumor metastasis. MolCell Biol.2008.28(23):7096-108.
    13. Soto E, Yanagisawa M, Marlow LA, Copland JA, Perez EA, Anastasiadis PZ. p120catenin induces opposing effects on tumor cell growth depending on E-cadherinexpression. J Cell Biol.2008.183(4):737-49.
    14. Yuan W, Chen Z, Wu S, et al. Expression of EphA2and E-cadherin in gastriccancer: correlated with tumor progression and lymphogenous metastasis. PatholOncol Res.2009.15(3):473-8.
    15. Miyata Y, Sagara Y, Kanda S, Hayashi T, Kanetake H. Phosphorylated hepatocytegrowth factor receptor/c-Met is associated with tumor growth and prognosis inpatients with bladder cancer: correlation with matrix metalloproteinase-2and-7and E-cadherin. Hum Pathol.2009.40(4):496-504.
    16. Hunt NCA, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M. Loss of E-cadexpression associated with lymph node metastases in small breast carcinomas.Virchows Arch.1997;430:285-289.
    17. Oka H, Shiozaki H, Kobajashi K et al. Expression of E-cadherin cell adhesionmolecules in human breast cancer tissues and its relationship to metastasis. CancerRes.1993;53:1696-1701.
    18. Siitonen SM, Kononen JT, Helin HJ, Rantala IS, Holli KA, Isola JJ. ReducedE-cadherin expression is associated with invasiveness and unfavourable prognosisin breast cancer. Am. J. Clin. Pathol.1996;105:394-401.
    19. Moll R, Mitze M, Frixen UH, Birchmeier W. Differential loss of Ecad expressionin infilltrating ductal and lobular breast carcinomas.Am. J. Pathol.1993;143:1731-1742.
    20. Gupta SK, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M, Mansel RE.E-cadherin (E-cad) expression in duct carcinoma in situ (DCIS) of the breast.Virchows Arch.1997;430:23-28.
    21. Bukholm IK, Nesland JM, Karesen R, Jacobsen U, Borresen Dale AL. E-cadherinand alpha-, beta-, and gamma-catenin protein expression in relation to metastasis inhuman breast carcinoma. J Pathol.1998;185:262–266.
    22. Shimoyama Y, Nagafuchi A, Fujita S, et al. Cadherin dysfunction in human cancercell lines: possible involvement of loss of-catenin expression in reduced cell–celladhesiveness. Cancer Res1992;52:5770–5774.
    23. Kawanishi J, Kato J, Sasaki K, Fujii S, Watanabe N, Niitsu Y. Loss ofE-cadherin-dependent cell–cell adhesion due to mutation of the cateningene in ahuman cancer cell line, HCS-39. Mol Cell Biol1995;15:1175–1181.
    24. Oyama T, Kanai Y, Ochiai A, et al. A truncated c atenin disrupts the interactionbetween E-cadherin and-catenin: a cause of loss of intercellular adhesiveness inhuman cancer cell lines. Cancer Res1994;54:6282–6287.
    25. Oda T, Kanai Y, Shimoyama Y, Nagafuchi A, Tsukita S, Hirohashi S. Cloning of thehuman -catenin cDNA and its aberrant mRNA in a human cancer cell line.Biochem Biophys Res Commun1993;193:897–904.
    26. Morton R, Ewing C, Nagafuchi A, Tsukita S, Isaacs W. Reduction of E-cadherinlevels and deletion of the-catenin gene in human prostate cancer cells. CancerRes1993;53:3585–4520.
    27. Matsuura K, Kawanishi J, Fujii S, et al. Altered expression of E-cadherin in gastriccancer tissues and carcinomatous fluid. Br J Cancer1992;66:1122–1130.
    28. Rimm D, Sinard J, Morrow J. Reduced catenin and E-cadherin expression inbreast cancer. Lab Invest1995;5:506–512. human cancers. Am J Pathol1996;148:39–46.
    29. Takayama T, Shiozaki H, Shibamoto S, et al. C atenin expression in human cancers.Am J Pathol1996;148:39–46.
    30. Takayama T, Shiozaki H, Inoue M. et al. Expression of E-cadherin and-cateninmolecules in human breast cancer tissues and association with clinicopathologicalfeatures. Int J Oncol1994;5:775–780.
    31. Kadowaki T, Shiozaki H, Inoue M, et al. E-cadherin and-catenin expression inhuman esophageal cancer. Cancer Res1994;54:291–296.
    32. Matsui S, Shiozaki H, Inoue M, et al. Immunohistochemical evaluation of-catenin expression in human gastric cancer. VirchowsArch1994;424:375–381.
    33. Shiozaki H, Iihara K, Oka H, et al. Immunohistochemical detection of-catenin expression inhuman cancers. Am J Pathol1994;14:667–674.
    34. De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, Van RoyF, Cornelisse CJ, Cleton-Jansen AM. Simultaneous loss of E-cadherin andcatenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol.1997;183(4):404-411.
    35. Bracke ME, Charlier C, Bruyneel EA, Labit C, Mareel MM, Castronovo VTamoxifen restores the E-cadherin function in human breast cancer MCF-7/6cellsand suppresses their invasive phenotype. Cancer Res.1994;54:4607–4609
    36. Cos S, Fernandez R, Guezmes A, Sanchez-Barcelo EJ. Influence of melatonin oninvasive and metastatic properties of MCF-7human breast cancer cells. CancerRes.1998;58:4383–4390
    37. Meng Q, Qi M, Chen DZ, Yuan R, Goldberg ID, Rosen EM, Auborn K, Fan S.Suppression of breast cancer invasion and migration by indole-3-carbinol:associated with up-regulation of BRCA1and E-cadherin/catenin complexes. J MolMed (Berl).2000;78(3):155-65.
    38. Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumorprogression. Ann N Y Acad Sci.2004;1014:155-63.
    39. Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, BussemakersMJ, Schalken JA. Cadherin switching in human prostate cancer progression.Cancer Res.2000;60(13):3650-3654.
    40. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotesmotility in human breast cancer cells regardless of their E-cadherin expression. JCell Biol.1999;147(3):631-44.
    41. Hazan RB, Kang L, Whooley BP et al. N-cadherin promotes adhesion betweeninvasive breast cancer cells and the stroma. CellAdhesion Commun.1997;4:399-411.
    42. Hazan RB, Phillips GR, Fang qiao R et al. Exogenous expression of N-cadherinin breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol.2000;148:779-790.
    43. Tran NL, Nagle RB, Cress AE et al. N-cadherin expression in human prostatecarcinoma cell lines. An epithelial-mesenchymal transformation mediatingadhesion with stromal cells. Am. J. Pathol.1999;155:787-798.
    44. Paredes J, Milanezi F, Viegas L et al. P-cadherin expression is associated withhigh-grade ductal carcinoma in situ of the breast. Virchows Arch.2002;440:16-21.
    45. Autio-Harmainen H,KarttunenT,et al.Expression of72Kda type IV collagenase inbenign and malignant ovarian tumors.Lab Invest,1993;69:312-321.
    46. Stearns M A,Wang M.Type IV collagenase expression in humane prostate:benignand malignant tissue.Cancer Res,1993;53:878-883.
    47. Davies B,Miles D W,Happerfield LC,et al.Activity of type IV colla-genases inbenign and malignant breast disease.Br J Cancer,1993;67:1126-1131.
    48. Derrico A,Garbisa S,et al.Augmentation of collagenase IV,laminin receptor andKi62proliferation antigen associated with human colon.Mod Pathol,1991;4:239-246.
    49. Tsunezuka Y, Kinoh H, et al.Expreasion od membrane-type matrixmetalloproteinase1in tumor cells enhances pulmonary metastasis in anexperimental metastasis assay.Cancer Res,1996,56:5678-5683.19David E,Kleiner William G.Stetler-Stevenson.Matrix metallopro-teinases andmetastasis.Cancer Chemother Pharmcol,1999;43:42-51.
    1. Jemal A, Siegel R, Xu J,Ward E. Cancer statistics. CA Cancer J Clin.2010;60:277-30.
    2. Glück S. The prevention and management of distant metastases in women withbreast cancer. Cancer Invest.2007;25(1):6-13.
    3. Zhang W, Ding W, Chen Y, Feng M, Ouyang Y, Yu Y, He Z. Up-regulation ofbreast cancer resistance protein plays a role in HER2-mediated chemoresistancethrough PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7breastcancer cells. Acta Biochim Biophys Sin (Shanghai).2011;43(8):647-653.
    4. Conte PF, Gennari A. Drugs.1997;54.
    5. Chien AJ, Moasser MM. Cellular mechanisms of resistance to anthracyclines andtaxanes in cancer: intrinsic and acAnthracyclines-paclitaxel combinations in thetreatment of breast cancer. Ann Oncol.1997;8(10):939-943.
    6. Hortobágyi GN.Anthracyclines in the treatment of cancer. An overview.quired.Semin Oncol.2008;35(2Suppl2):S1-S14.
    7. Fojo T, Bates S.Strategies for reversing drug resistance.Oncogene.2003;22(47):7512-7523.
    8. Gottesman MM, Fojo T, Bates SE.Multidrug resistance in cancer: role ofATP-dependent transporters.Nat Rev Cancer.2002;2(1):48-58.
    9. Harbottle A, Daly AK, Atherton K, Campbell FC. Role of glutathione S-transferaseP1, P-glycoprotein and multidrug resistance-associated protein1in acquireddoxorubicin resistance. Int J Cancer.2001;92(6):777-783.
    10. Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR, Hannon GJ, LoweSW, Hemann MT. Topoisomerase levels determine chemotherapy response in vitroand in vivo. Proc Natl Acad Sci U S A.2008;105(26):9053-8.
    11. Davis JM, Navolanic PM, Weinstein-Oppenheimer CR, Steelman LS, Hu W,Konopleva M, Blagosklonny MV, McCubrey JA. Raf-1and Bcl-2induce distinctand common pathways that contribute to breast cancer drug resistance. Clin CancerRes.2003;9(3):1161-1170.
    12. Kabore AF, Johnston JB, Gibson SB.Changes in the apoptotic and survivalsignaling in cancer cells and their potential therapeutic implications.Curr CancerDrug Targets.2004;4(2):147-63.
    13. Chekhun VF, Kulik GI, Yurchenko OV, Tryndyak VP, Todor IN, Luniv LS,Tregubova NA, Pryzimirska TV, Montgomery B, Rusetskaya NV, PogribnyIP.Role of DNA hypomethylation in the development of the resistancetodoxorubicin in human MCF-7breast adenocarcinoma cells. Cancer Lett.2006;231(1):87-93.
    14. Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC.Bcl-2and apoptosis inchronic lymphocytic leukemia.Curr Treat Options Oncol.2003;4(3):211-218.
    15. Oliver L, Cordel S, Barbieux I, LeCabellec MT, Meflah K, Grégoire M, Vallette FM.Resistance to apoptosis is increased during metastatic dissemination of coloncancer. Clin Exp Metastasis.2002;19(2):175-80.
    16. Chun E, Lee KY.Bcl-2and Bcl-xL are important for the induction of paclitaxelresistance in human hepatocellular carcinoma cells.Biochem Biophys ResCommun.2004;315(3):771
    17. Eytan GD. Mechanism of multidrug resistance in relation to passive membranepermeation. Biomed Pharmacother.2005;59:90–97.
    18. Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F. The functions and structureof ABC transporters: implications for the design of new inhibitors of Pgp andMRP1to control multidrug resistance (MDR). Curr Drug.2006; Targets7:893–909.
    19. Chekhun VF, Lukyanova NY, Yurchenko OV, Kulik GI. The role of expression ofthe components of proteome in the formation of molecular profile of humanovarian carcinoma A2780cells sensitive and resistant to cisplatin. Exp Oncol.2005;27:191–195.
    20. Chekhun VF, Ganina KP, Kulik GI, Solianik GI, Kunskaia LN, Gushchenko NN.Influence of tumor drug resistance phenotype on the dynamics of cisplatin-inducedchanges of rat peripheral lymphocyte chromatin structure in Guerin’scarcinoma.Tsitol Genet.2000;34:11–17.
    21. Kalish LH, Kwong RA, Cole IE, Gallagher RM, Sutherland RL and Musgrove EA:Deregulated cyclin D1expression is associated with decreased efficacy of theselective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib inhead and neck squamous cell carcinoma cell lines. Clin Cancer Res.2004;10:7764-7774.
    22. Stendahl M, Kronblad A, Ryden L, Emdin S, Bengtsson NO and Landberg G:Cyclin D1overexpression is a negative predictive factor for tamoxifen response inpostmenopausal breast cancer patients. Br J Cancer.2004;90:1942-1948.
    23. Noel EE, Yeste-Velasco M, Mao X, Perry J, Kudahetti SC, Li NF, Sharp S, ChaplinT, Xue L, McIntyre A, Shan L, Powles T, Oliver RT, Young BD, Shipley J,Berney DM, Joel SP and Lu YJ: The association of CCND1overexpression andcisplatin resistance in testicular germ cell tumors and other cancers. Am J Pathol.2010;176:2607-2615.
    24. Wang MB, Yip HT, Srivatsan ES. Antisense cyclin D1enhances sensitivity of headand neck cancer cells to cisplatin. Laryngoscope.2001;111:982-988.
    25. Shuai XM, Han GX, Wang GB and Chen JH. Cyclin D1antisenseoligodexoyneucleotides inhibits growth and enhances chemosensitivity in gastriccarcinoma cells. World J Gastroenterol.2006;12:1766-1769.
    26. Kothari V, Mulherkar R. Inhibition of cyclin D1by shRNA is associated withenhanced sensitivity to conventional therapies for head and neck squamous cellcarcinoma. Anticancer Res.2012;32(1):121-128.
    27. Yang K, Hitomi M, Stacey DW. Variations in cyclin D1levels through the cell cycledetermine the proliferative fate of a cell. Cell Div.2006;1:32.
    28. Alao JP. The regulation of cyclin D1degradation: roles in cancer development andthe potential for therapeutic invention. Mol Cancer.2007;6:24.
    29. Velpula KK, Dasari VR, Tsung AJ, Gondi CS, Klopfenstein JD, Mohanam S, RaoJS. Regulation of glioblastoma progression by cord blood stem cells is mediated bydownregulation of cyclin D1. PLoS One.2011;6(3):e18017.
    30. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature.2006;441(7092):431-6.
    31. Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog.2006;45(6):355-61。
    32. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat RevDrug Discov.2009;8(1):33-40.
    33. Liu Y, Lou G, Wu W, Zheng M, Shi Y, Zhao D, Chen Z. Involvement of the NF-κB pathwayin multidrug resistance induced by HBx in a hepatoma cell line. J Viral Hepat.2011;18(10):e439-46.
    34. Weldon CB, Burow ME, Rolfe KW, Clayton JL, Jaffe BM, Beckman BS.NF-kappaB-mediated chemoresistance in breast cancer cells. Surgery.2001;130(2):143-50.
    35. Zhang J, Lu M, Zhou F, Sun H, Hao G, Wu X, Wang G. Key role of nuclearfactor-κB in the cellular pharmacokinetics of adriamycin in MCF-7/Adr cells: thepotential mechanism for synergy with20(S)-ginsenoside Rh2. Drug Metab Dispos.2012;40(10):1900-8.
    36. Sun J, Yeung CA, Co NN, Tsang TY, Yau E, Luo K, Wu P, Wa JC, Fung KP,Kwok TT, Liu F. Clitocine reversal of P-glycoprotein associated multi-drugresistance through down-regulation of transcription factor NF-κB in R-HepG2cellline. PLoS One.2012;7(8):e40720.
    37. Zhang W, Ding W, Chen Y, Feng M, Ouyang Y, Yu Y, He Z. Up-regulation ofbreast cancer resistance protein plays a role in HER2-mediated chemoresistancethrough PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7breastcancer cells. Acta Biochim Biophys Sin (Shanghai).2011;43(8):647-53.
    1. RiedemannNC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest.2003;112:460-467.
    2. Angus DC, Linde-Zwirble WT, Lidicker J et al. Epidemiology of severe sepsis inthe United States: Analysis of incidence, outcome, and associated costs of care.Crit Care Med.2001;29(7):1303-1310.
    3. Dellinger RP, Levy MM, Carlet JM et al. Surviving Sepsis Campaign: internationalguidelines for management of severe sepsis and septic shock. Crit Care Med2008;36(1):296-327
    4. Ayala A, Song GY, Chung CS et al. Immune depression in polymicrobial sepsis: therole of necrotic (injured) tissue and endotoxin. Crit Care Med.2000;28:2949-2955.
    5. Dinapoli MR, Calderon CL, Lopez DM. The altered tumoricidal capacity ofmacrophages isolated from tumor-bearing mice is related to reduce expression ofthe inducible nitric oxide synthase gene. J Exp Med1996;183:1323-1329.
    6. Tracey KJ, Fong Y, Hesse DG et al. Anti-cachectin/TNF monoclonal antibodiesprevent septic shock during lethal bacteriaemia. Nature.1987;330:662-664.
    7. Dinarello CA and Thompson RC. Blocking IL-1: interleukin1receptor antagonist invivo and in vitro. Immunol Today.1991;12:404-410
    8. Heinzel FP. The role of IFN-gamma in the pathology of experimental endotoxemia.J Immunol.1990;145:2920-292.
    9. Calandra T, Echtenacher B, Roy DL et al. Protection from septic shock byneutralization of macrophage migration inhibitory factor. Nat Med.2000;6:164-170.
    10. Wang H, Bloom O, Zhan Ombrellino M et al. HMG-1as a late mediator ofendotoxin lethality in mice. Science.1999;285(5425):248-251.
    11. Rendon-Mitchell B, Ochani M, Li J et al. IFN-gamma Induces High Mobility GroupBox1Protein Release partly Through a TNF Dependent Mechanism. JImmunol.2003;170:3890–3897.
    12. Chen G, Li J, Ochani M, Rendon-Mitchell B, Qiang X et al.Bacterial endotoxinstimulates macrophages to release HMGB1partly through CD14-andTNF-dependent mechanisms. J Leukoc Biol.2004;76:994–1001.
    13. Tang D, Shi Y, Kang R, Li T, Xiao W et al. Hydrogen peroxide stimulatesmacrophages and monocytes to actively release HMGB1. J Leukoc Biol.2007;81:741–747.
    14. Yang H, Ochani M, Li J, Qiang X, Tanovic M et al. Reversing established sepsiswith antagonists of endogenous high-mobility group box1. Proc Natl Acad SciUSA.2004;101:296–301.
    15. Li W, Li J, Ashok M, Wu R, Chen D et al. A cardiovascular drug rescues micefrom lethal sepsis by selectively attenuating a late-acting proinflammatorymediator, high mobility group box1. J Immunol.2007;178:3856–3864.
    16. Wang H, Liao H, Ochani M, Justiniani M, Lin X et al. Cholinergic agonists inhibitHMGB1release and improve survival in experimental sepsis. Nat Med.2004;10:1216–1221.
    17. O’Connor KA, Hansen MK, Rachal PC, Deak MM, Biedenkapp JC et al.(Furthercharacterization of high mobility group box1(HMGB1) as a proinflammatorycytokine: central nervous system effects. Cytokine.2003;24:254–265.
    18. Agnello D, Wang H, Yang H, Tracey KJ, Ghezzi P. HMGB1, a DNA bindingprotein with cytokine activity, induces brain TNF and IL-6production, andmediates anorexia and taste aversion. Cytokine.2002;18:231–236.
    19. Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL et al. HMGB1B boxincreases the permeability of Caco-2enterocytic monolayers and impairs intestinalbarrier function in mice. Gastroenterology.2002;123:790–802.
    20. Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1as a mediator ofacute lung inflammation. J Immunol.2000;165:2950–2954.
    21. Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y et al. Contributions ofhigh mobility group box protein in experimental and clinical acute lung injury. AmJ Respir Crit Care Med.2004;170:1310–1316.
    22. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin DY et al. Ethyl pyruvate preventslethality in mice with established lethal sepsis and systemic inflammation. ProcNatl Acad Sci USA2002;99:12351–12356.
    23. Chen G, Li J, Qiang X, Czura CJ, Ochani M et al. Suppression of HMGB1releaseby stearoyl lysophosphatidylcholine:an additional mechanism for its therapeuticeffects in experimental sepsis. J Lipid Res.2005;46:623–627.
    24. Wang H, Li W, Li J, Rendon-Mitchell B, Ochani M et al. The Aqueous Extract of aPopular Herbal Nutrient Supplement, Angelica sinensis, Protects Mice againstLethal Endotoxemia and Sepsis. J Nutr.2006;136:360–365.
    25. Yang H, Ochani M, Li J, Qiang X, Tanovic M et al. Reversing established sepsiswith antagonists of endogenous high-mobility group box1. Proc Natl Acad SciUSA.2004;101(1):296–301.
    26. Wang H, Liao H, Ochani M, Justiniani M, Lin X et al. Cholinergic A6onists inhibitHMGB1release and improve survival in experimental sepsis. Nat Med.2004,10(11):1216–1221.
    27. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D et al.Glycyrrhizin binds to high-mobility group box1protein and inhibits its cytokineactivities. Chem. Biol.2007;14(4):431–441.
    28. Li W, Zhu S, Li J, Assa A, Jundoria A et al. EGCG stimulates autophagy andreduces cytoplasmic HMGB1levels in endotoxin-stimulated macrophages.Biochem Pharmacol.2011;81(9):1152-1163.
    29. Zhang Y, Li W, Zhu S, Jundoria A, Li J et al. Tanshinone IIA sodium sulfonatefacilitates endocytic HMGB1uptake. Biochem Pharmacol.2012;84(11):1492-1500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700