MUCT工艺缺氧吸磷性能强化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体“富营养化”问题的日渐突出,污水排放标准不断提高,污水处理技术逐渐从以单一去除有机物为目的的阶段进入既要去除有机物又要脱氮除磷的深度处理阶段,以控制富营养化为目的的脱氮除磷己成为当今污水处理领域的研究热点之一。反硝化聚磷脱氮是近年来颇受关注的污水生物处理新技术,在污水同步脱氮除磷工艺中实现并强化反硝化除磷既可大幅度节省需氧量又能减少有机碳源、剩余污泥量和反应器的有效容积,这对于提高城市污水尤其是低C/N比值城市污水脱氮除磷的可行性具有重要意义。
     为促进MUCT工艺的研究发展与实践应用,尤其是充分发挥其适于处理低C/N比污水的优势,本课题以模拟生活污水为处理对象,全面系统地研究了MUCT工艺的缺氧吸磷性能,考察了内循环比与工艺缺氧吸磷效果、缺氧吸磷性能与碳源节省量的关系,并开发利用第二缺氧段硝酸盐氮浓度作为MUCT工艺强化缺氧吸磷性能和优化工艺运行的参数,且研究了该参数与进水C/N比的关系。首次研究了MUCT工艺各反应段DO、pH值以及ORP的沿程典型变化规律,并对ORP能否作为强化MUCT工艺缺氧吸磷性能和优化工艺运行的参数进行了探讨。深入研究了厌氧段和第二缺氧段采用完全混合反应器串联运行的反应器型式分别对MUCT工艺厌氧释磷量、缺氧吸磷量的影响,确定最佳的串联反应器级数。
     MUCT工艺中去除的大部分COD在厌氧段被聚磷菌转化成PHA,转化率受混合液内循环比γ影响。厌氧段释磷量受混合液内循环比γ的影响,当γ为1.5时,总释磷量最高,为6.89g/d。MUCT工艺的吸磷过程发生在第二缺氧段和好氧段,其中缺氧吸磷量与α密切相关,缺氧吸磷质量分数在α=4时最高,为0.44。经计算可知,MUCT工艺缺氧吸磷与好氧吸磷存在6.8%的差别,且强化缺氧吸磷作用可节省外碳源,当α和γ分别为3和1.5时碳源节省量最高,可节省24.29%的碳源。
     第二缺氧段硝酸盐氮浓度可作为MUCT工艺优化缺氧吸磷性能的控制参数。该值受进水C/N比的影响,当进水C/N比为5、5.45、6、6.67、7.5、8.57、10、12的条件下,最佳SNO3值分别为2.75、2.5、2.25、2、1.75、1.5、1.25、1,此时缺氧吸磷质量分数可分别达到0.467、0.455、0.44.、0.410、0.365、0.300、0.210、0.100。
     第二缺氧段ORP与硝酸盐氮浓度之间存在很好的线性相关关系,因此,可用ORP代替最佳硝酸盐氮浓度作为MUCT工艺优化缺氧吸磷性能的控制参数。该参数同样受进水C/N比的影响。当进水C/N比为5、5.45、6、6.67、7.5、8.57、10、12时,最佳ORP分别为-71、-83、-90、-94、-101、-113、-117、-124mV。
     MUCT工艺厌氧段串联反应器级数越多,厌氧释磷量越多,缺氧吸磷质量分数也随之增加。理论分析和试验结果还表明,当厌氧段串联反应器级数从单级增加至2级(总停留时间相同)时,厌氧段COD去除量及消耗速率、TP释放量及释磷速率等明显增加。所以在本试验条件下,厌氧段串联反应器级数推荐为2级。第二缺氧段串联反应器级数越多,第二缺氧段出水TP浓度越低,缺氧吸磷质量分数越高。在本试验条件下,第二缺氧段串联反应器推荐级数为2级。
     根据氨氮和硝酸盐氮的物料平衡计算结果,证明了在MUCT工艺中发生着明显的同步硝化反硝化现象。这对于MUCT工艺的实际应用具有很重要的意义。
Sewage discharge standard is rising with eutrophication gradually becoming a prominent problem. Sewage disposal technology must remove not only organics but also nitrogen and phosphorus. Nitrogen and phosphorus removal aiming at eutrophication control is a hot problem in the sewage disposal. Denitrifying phosphorus removal has been a new and noticeable biological technology in recent years. It can save oxygen consumption, and reduce original carbon, excess sludge and effective volume of reactors. Hence it plays an important role in increasing the nitrogen and phosphorus removal feasibility of domestic sewage, especially domestic sewage with low C/N ratio.
     In order to promote the research development and practical application of MUCT process, especially to exert full advantage of domestic sewage with low C/N ratio, the relation between recirculation ratio and anoxic phosphorus uptake were investigated by using simulative domestic sewage in this project. The concentration of NO3--N in the second anoxic zone was settled as a parameter strengthening the anoxic phosphorus uptake capability and optimizing the process, and the relation between the concentration of NO3--N in the second anoxic zone and C/N ratio of influent was also studied. Typical variation rule of DO, pH and ORP in each stage was investigated for the first time. The feasibility of ORP settling as a parameter strengthening the anoxic phosphorus uptake capability and optimizing the process was discussed. The effects of both the anaerobic zones and the second anoxic zone running as a succession of CSTRs on the anaerobic phosphorus release and the anoxic phosphorus uptake were studied respectively. Optimal number of CSTRs in series was determined.
     Most COD was change into PHA by PAO in anaerobic zones in MUCT process, and the transformation ratio is affected by mixed-liquor return ratio (γ). The anaerobic phosphorus release was influenced byγ. The anaerobic phosphorus release reached the highest level of 6.89g/d whenγwas 1.5. Phosphorus uptake occurred in the second anoxic zone and aerobic zones in MUCT process. The anoxic phosphorus uptake was closely related to reflux ratio of nitrification (α). The anaerobic phosphorus uptake mass fraction reached the maximum of 0.44 whenα was 4. The difference between anoxic phosphorus uptake and aerobic phosphorus uptake was 6.8% after calculation. Additional carbon source could be saved when anoxic phosphorus uptake was strengthened. Whenαwas 3 andγwas 1.5, the maximum of carbon source saving was 24.29%.
     NO3--N concentration in the second anoxic zone, which was influence by the C/N ratio of influent, could be settled as controls parameter of anoxic phosphorus uptake performance in MUCT process. When C/N ratio were 5, 5.45, 6, 6.67, 7.5, 8.57, 10 and 12, the optimal NO3--N concentration in the second anoxic zone (SNO3) were 2.75, 2.5, 2.25, 2, 1.75, 1.5, 1.25 and 1, respectively, with the anoxic phosphorus uptake mass fraction of 0.467, 0.455, 0.44, 0.410, 0.365, 0.300, 0.210 and 0.100, respectively.
     There was a linear correlation between ORP and the concentration of NO3--N in the second anoxic zone. Hence ORP, which was also influence by the C/N ratio of influent, could be settled as controls parameter of anoxic phosphorus uptake performance instead of NO3--N concentration in MUCT process. When C/N ratio were 5, 5.45, 6, 6.67, 7.5, 8.57, 10 and 12, the optimal ORP were -71, -83, -90, -94, -101, -113, -117, -124mV, respectively.
     The more CSTRs in series of the anaerobic zones was, the more the anaerobic phosphorus released, thus the anaerobic phosphorus uptake mass fraction was also increasing in MUCT process. The results showed that COD removal and consumption speed, TP release and phosphorus release speed were increased obviously when the number of CSTRs in series increased from 1 to 2 under the same total HRT. The recommended number of CSTRs in series of the anaerobic zones was 2 under the conditions of this experiment. The more CSTRs in series of the second anoxic zone was, the lower TP concentration in effluent of the second anoxic zone was, thus the anoxic phosphorus uptake mass fraction was also increasing evidently. The recommended number of CSTRs in series of the second anoxic zone was 2 under the conditions of this experiment.
     The mass balance computing results of NH4+-N and NO3--N proved a distinct Simultaneous Nitrification and Denitrification (SND) phenomenon in MUCT process, which played an important role in practical application of MUCT process.
引文
1. T. George , F. L. Burton , H. D. Stensel. Wastewater Engineering : Treatment Disposal and Reuse. Fourth edition. Metcalf and Eddy ,Inc.McGraw-Hill,2000:287-290
    2.建设部科技司.中国2000年水工业可持续发展战略-水工业科技产业化.给水排水.1995,(5):31-35
    3.《中国环境年鉴》编委会.中国环境年鉴.中国环境年鉴出版社, 2007:27-29
    4. M.Vocks ,C.Adam, B.Lesjean, R.Gnirss, M.Kraume. Enhanced post-denitrification without addition of anexternal carbon source in membrane bioreactors. Water Research. 2005, 39:3360-3368
    5. H. D. Park, D. R.Noguera. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research. 2004, 38:3275-3286
    6.华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水.2000, 26 (12):1-4
    7. J. L .Wang, Y. Zh. Peng, Sh. Y. Wang, Y. Q. Gao. Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor. Chinese Journal of Chemical Engineering. 2008,16(5):778-784
    8. M.W. Beutel, N.R.Burley, S. R.Dent. Nitrate uptake rate in anoxic profundal sediments from a eutrophic reservoir. Hydrobiologia.2008, 610:297-306
    9. T.Kuba, M .C .M. VanLoosdrecht et al .Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Nitrificationina Two-sludge system . Wat.Res.1996,42 (12):1702-1710
    10. G.Bortone, S. Marsili, A.Tilche, et al. Anoxic Phosphate Uptake in the Dephanox Process. Wat.Sci.Tech.1999,40 (4~5):177-181
    11. T. Kuba,M C M.VanLoosdrecht ,F. A. Brandse,et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants[J].Wal.Res,1997,31(41):777-786.
    12. A.S.???g?n, K.?zlem, O.Derin. Effect of high nitrate concentration on PHBstorage in sequencing batch reactor under anoxic conditions. Bioresource Technology. 2009,100:1376-1382
    13.张自杰主编.排水工程(下册),中国建筑工业出版社,2002
    14. T Osaka,K Shirotani,S Yoshie,S Tsuneda. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water research. 2008, 42:3709-3718
    15. B.Virdis, ,K. Rabaey, Zh G Yuan,J. Keller. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water research. 2008, 42:3013-3024
    16. B.Katarzyna, W.B. Irena, D. Adriana. Denitrification with endogenous carbon source at lowC/N and its e?ecton P(3HB) accumulation. Bioresource Technology. 2008. 99,2410-2418
    17. S.M.Souza,O.Q.F.Araújo, M.A.Z.Coelho. Model-based optimization of a sequencing batch reactor for biological nitrogen removal. Bioresource Technology. 2008. 99,3213-3223
    18. W Zeng, Y Zh Peng, Sh Y Wang, Ch Y Peng. Process control of an alternating aerobic-anoxic sequencing batch reactor for nitrogen removal via nitrite. Chem.Eng.Technol. 2008, 31(4):582-587
    19. G.W. Fuhs and M.Chen. Microbiological Basis of Phosphate Removal in the Activated Sludge Processf or the Treatment of Wastewater.Microbial ,Ecol.1975,2( 2):119-138
    20. L. Buchan. Possible Biological Mechanism of Phosphorus Removal.Wat.Sci.Tech.1983,15(34):87-103
    21. L.H.Lotter. The Role of Bacterial Phosphate Metabolism in Enhanced Phosphorus Removal from the Activated Sludge Process.Wat.Sci ,Tech.1985,17 :127-138
    22. T .E. Cloete, P .L. S. Bucham, L.A.naut. Ecological Study of Acinetobacter in Activated Sludge.Wat.Sci.Tech.1985,17:139-146
    23. R .C.Bayly, A.Dunnean, J .W.Mayreper et aL. Microbiological and genetic aspects of the synthesis of polyphosphate by species of acinctobacter.Wat.Sci.Tech.1990,23:747-754
    24. A.M.Beacham, R.J.Seviour, K.C. Lindrea and I. Livingston Genospecies diversity of acinetobacter isolates obtained from abiological nutrient removal pilot plan to famodified UCT configuration.Wat.Res.24 :23-29
    25. K.E.U. Brodisch and S.J.Joyner. The Role of microorganisms in biologicalphosp hate removal.Wat.Sci.Tech.1989,15:117-125
    26. A.Hiraishi, K. Masamune and H.Kiatamura. Characterization of the bacterial population structurein anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles.App.Micro.1984,55:897-901
    27. M .Wagner, R .Erhart, W.Manz, R. Amann , H.Lemmer, D. Wedi and K.H.Schleifer. Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacterandits application for in situ monitoringin activated sludge.Appl.Environ.Microbio1.1994,60(3):792-800
    28. P. Bond, J. Keller and L. Blackall. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludge from sequencing batch reactor.Appl.Envrion.Microbia1.1995,61:1910-1916
    29. S.Imade, H. Satoh,T. Mino and T.Matsuo. In Situ Identification with 16rRNA targeted probe and respiratory quinone profile of enhanced biological and non-enhanced biological phosphorus removal sludge. 19th IAWQ Biennial Confrence Vancouver accepted for oral presentation.1998
    30.朱怀兰,史家裸,徐亚同.SBR除磷系统中的积磷细菌.上海环境科学. 1994,13(4):16-18
    31. D.T.Sponz, H.Atalay. Simultaneous phosphorus, nitrogen and dinitrotoluene removals in batch anaerobic/anoxic/aerobic sequentials. Process Biochemistry.2005, 40:25-34
    32.郭劲松,黄天寅,龙腾锐生物脱氮除磷工艺中的微生物及其相互关系.环境污染治理技术与设备.2000,1(1):8-16
    33. H.P.Shi, C.M.Lee. Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removing bacteria. International Biodeterioration & Biodegradation. 2006,57:121-128
    34. T. Saitoa, , D. Brdjanovicb, M.C.M. vanLoosdrechtc. Effect of nitrite on phosphate uptake by phosphate accumulatingorg anisms. Water Research. 2004,38:3760-3768
    35.田淑媛,王景峰,杨睿等.厌氧下的PHB和聚磷酸盐及其生化机理研究.中国给水排水.1999,15(3):20-21
    36.刘瑾,高廷耀.生物除磷机理的研究.同济大学学报.1995,23(4):387-392
    37.林东恩,张逸传,郭世骚,沈家瑞.活性污泥好氧/厌氧合成聚-3-轻基丁酸酷.华南理工大学学报〔自然科学版)2002,30(9):100-104
    38. J.F.M.Vlekke, Y. Comeau and W.K.Oldham. Biological phosphorus removalfrom wastewater with oxygen or nitratein sequencing batch reactor.Envir on .Technol.Let.1998,9 :791-796
    39. E.Murnleitem, T. kuba, M.C.M, venLoosdrecht, J.J.Heijnen. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.Biotechnology and Bioengineering.1997,54 (5),434-450
    40.田淑媛,杨睿,王景峰等.生物除磷及其生化机理研究.中国给水排水. 2001 ,1( 17):717
    41. M .C.Hascoet and M.Florentz. Infuence of nitrates on biological phosphorus removal nutrient wastewater.Wat.SA.1985,11(1):23-26
    42. Y .Comeau, W.K.Oldham, K.J.Hall. Dynamics of carbon reserves in biological dephos phatation of wastewater,in biological phosphate removal from wastewaters. Pergamon Press.Oxford,1987:39-55
    43. A.Gerber, R.E. Villiers , E.S. Mostert, C.J.J.Ri, et. The Phenomenon of simultaneous phosphate uptake and release and its importance in biological nutrient removal in biological phosphate removal from wastewaters. Pergam on Press,Oxford.1987:123-134
    44. L. Polac. Enhanced biological phosphorus removal from wastewater. M.Sc.Thesis.Prague In statute of Chemical Technology,1991
    45. J.Wanner, J.S.Cech and M. Kos. New process design for biological nutrient removal.Wat.Sci.Tech.1992,25( 4-5):445-448
    46. T. Kuba, M .C.M Van Loosdrecht, et.Phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor.Wat.Sci.Tech.1993,27(5~6):241-252
    47. G. M. Vlekke, Y. Comeau and W.K.Oldham. Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactors.Environ mental Technology Letters.1988,9:791-796
    48. A. Patel, A.Gohil and G. Nakhla. Parametric study of the factors influencing simultaneous denitrification and enhanced biological phosphorus removal. Journal of Chemical Technology and Biotechnology. 2006,81:636-647.
    49. J.Y.Hu., S.L.Ong.W.J.Ng., F.Lu, X.J.Fan.A. New method for characterizing denitrifying phosphorus removal bacteria by using three diferent types of electron acceptors.Wat.Res.2003,37:3463-3471
    50. T Kuba, M. C.M. VanLoosdrecht, et al. Biological dephosphatation by activated sludge under denitrifying conditions:pH influence and occurrence ofdenitrifying dephosphatationin a full-scale wastewater treatment plant. Wat. Sci.Tech.1999,36(12):75-82
    51. X. Jiang, X.C.Jin, Y. Yao, L. Li, F. Ch. Wu. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition. Environmental Pollution. 2006,141:482-487
    52.陈坚.硝酸盐在除磷脱氮中的作用.食品与生物技术2002,21(1):10-14
    53. X. L. Wang, Y. Zh. Peng, Sh. Y Wang. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process. Bioprocess Biosyst Eng. 2006,28: 397-404
    54. A. Pala, ?. B?lükbas. Evaluation of kinetic parameters for biological CNP removal from a municipal wastewater through batch tests. Process Biochemistry 2005,40:629-635
    55. X. Jiang, X.C.Jin, Y. Yao, L. Li, F. Ch. Wu. Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment–water interface. Science of the Total Environment. 2006, 357:231- 236
    56.邹华,阮文权,陈坚.硝酸盐作为生物除磷电子受体的研究.环境科学研究2002.15(3):38-41
    57.李勇智,彭永臻,王淑莹等.强化生物除磷体系中的反硝化除磷.中国环境科学.2003,23(5):543-546
    58. T.Mino, W.Liu, F. K. Matsuo. Modeling glycogen storage and denitrification capability of microorganismsin enhanced biological phosphate removal processess.Wat.Sci.Tech.1995,31(2):25-34
    59. T.Kuba, E.Murnleitner, M.C.M.VanLoosdrecht and J.J. Heijnen. A metabolic model for the biological phosphorus removal by denitrifying organisms.Biotechnology and Bioengineering.1996,52:685-695
    60. E.Mumleitner, T.Kuba, M.C.M.VanLoosdrecht and J.J. Heijnen. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.Biotechnology and Bioengineering.1997,54(5 ):434-450
    61. H.Mogens, G.Willi, T.Mino, et al. Activated sludge model NO .2 D, ASM2D. Wat.Sci.Tech.1999,39(1):165-182
    62. T. L. Hu, K. T. Kung. Study of heterotrophic nitrifying bacteria from wastewater treatment systems treating acrylonitrile. Butadiene and Styrene Resin Wastewater. Wat. Sci. Tech. 2000,42(3~4):315-322
    63. Y.Zh. Peng, X. L. Wang, W. M. Wu, J. Li and J. Fan. Optimisation ofanaerobic/anoxic/oxic process to improve performance and reduce operating costs. Journal of Chemical Technology and Biotechnology. 2006,81:1391-1397
    64. L. A. Robertson, T. Dalsgaar, N. P. Revsbech, J. G. Kuenen. Confirmation of 'aerobic denitrification' in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol. Ecol. 1995,18:113-120
    65. E. Scholten, T. Lukow, G. Auling, R. M. Kroppenstedt, F. A. Rainey, H. Dielmann. Thaurea mecharnichensis sp. nov., an Aerobic Denitrifier from a Leachate Treatment Plant. Int. J. Sys. Bacteriol. 1999,49:1045-1051
    66. D. Castignetti, H. B. Gunner. Nitrite and nitrate synthesis from pyruvic oxime by an alcaligenes sp. Curr. Microbiol. 1981,5:379-384
    67. J .Wanner, J .S.Cech and M.Kos. New process design for biological nutrient removal.Wat.Sci.Tech.1992,25( 4-5):445-448
    68. G. M.Bortone, S.Libelli, A. Tilche, et al. Anoxic phosphate uptakein the dephanox process.Wat.Sci.Tech.1999,40 (4~5):177-181
    69. M.Merzouki, N. Bemet,et al. Biologicald enitrifying Phosphorus Removalin SBR: efect of added nitrate concentration and sludge retention time.Wat Sci.Tech.2001,3 (43):191-194
    70. W. J. Ng, S.L. Ong and J. Y. Hu. Denitrifying phosphorus removal by an aerobic/anoxic sequencing batch reactor.Wat.Sci.Tech.2001,3 (43):139-146
    71.罗固源,罗宁,吉芳英等.新型双泥生物反硝化除磷脱氮工艺.中国给水排水. 2002,18(9):47
    72.罗固源,吉芳英,罗宁等.硝酸盐电子受体反硝化同时除磷试验分析.环境工程2004,22 (1):32-35
    73.罗宁,罗固源,吉方英等.新型双泥生物反硝化除磷脱氮系统中微生物的组成.给水排水2003,29(8):33-35
    74. J.K.Lee, C. K. Choi, K.H.Lee, S.B.Yim. Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system. Bioresource Technology. 2008, 99:7788-7796
    75. K.Jorgensen, S. Pauli, Anneli S. L. Polyphosphate accumulation among denitrifying bacteriain activated sludge. Anaerobe.1995,1(3):161-168
    76. C. Falkentoft, P. Harremoes, et al. Combined denitrification and phosphorus removalina biofilter.Wat.Sci.Tech.2000,4 1(45):493-501
    77. C. Falkentoft, P. Harrenoes. H.Mosbak and P.Wilderer. Stability of a Lab-scalebiofilm for simultaneous removal of phosphorus and nitrate.Wat.Sci.Tech.2001 ,43 (1):335-342
    78. C. Falkentoft. The Significance of zonation in a denitrifying phosphorus removing biofilm.Wat.Res.1999,33 :3303-3310
    79. Sh. H. Chuang, C. F. Ouyang and Y.Wang. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition. Wat. Res.1996, 30(12):2961-2968.
    80.史忠义,史京华,刘希曾等.废水工程处理及回用.北京:化学工业出版社.2004.585-588.
    81.张锡辉,刘勇弟.废水生物处理.北京:化学工业出版社.2003.585
    82. R.X.Hung, D. Li, X. K. Li, L. L. Bao, A. X. Jiang and J.Zhang. Positive role of nitrite as electron acceptor on anoxic denitrifying phosphorus removal process. Chinese Science Bulletin. 2007,52(16): 2179-2183
    83. H .Henlness and H .Gegaard. Biological phosphorus and nitrogen removalina sequencing batch moving bed biofilm reactor. Wat.Sci.Tech.2001,43(1):233-240
    84. J.Mcinhold, C.D.Filipem, G.T. Daigger and S.Isaacs. Characterization of the denitrifying fraction of phosphate accumulation organisms in biological phosphate removal process.Wat.Sci.Tech.1999,39 (1):31-42
    85.祝贵兵,彭永臻.生物除磷设计与运行手册.北京:中国建筑工业出版社.2005.105-109
    86. H. M. Zhang, X. L. Wang, J. N. Xiao, F. L. Yang, J. Zhang. Enhanced biological nutrient removal using MUCT-MBR system. Bioresource Technology. 2009, 100:1048-1054
    87. J.Peter, K. Jespersen, M. Henze. Biological phosphorus uptake under anoxic and aerobic conditions.Wat.Res.1994,5( 28):1253-1255
    88. X.D.Hao, M. C. M. VanLoosdrecht, S. C. F. Meijei, et al. Model based evaluation of two BNR process UCT and A2N.Wat.Res.2000,35(12):2851-2860
    89. T .Kuba, A. Wachameister, M .C .M .VanL oosdrechtand, J. HeijnenJ. Efect of nitrate on phosphorus release in biological phosphorus removal system.Wat.Sci.Tech.1994,30(6):263-269
    90. J.Francisco, J. Fernndez, and R.Lourdes. Effect of the internal recycles on the phosphorus removal efficiency of a WWTP. Ind. Eng. Chem. Res. 2007, 46, 7300-7307
    91. Z. R. Hu, M.C.Wentzel, G.A.Ekama. Anoxic growth of phosphate-accumulating organisms(PAOs)in biological nutrient removal activated sludge systems[J].Water Research,2002,36:4927-4737.
    92. Z. R. Hu, M.C.Wentzel, G.A.Ekama. External nitrification in biological nutrient removal activated sludge systemo. Research Report W108, Department of Civil Engineering, University of Cape Town, Rondebosch 7701, South Africa, 2001.
    93.高大文.SBR法短程硝化反硝化及其实时控制的基础研究.哈尔滨工业大学工学博士学位论文.2003:16-17
    94. S.Puig, L.Corominas, M. T. Vives, M. D. Balaguer,el. Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points. Industrtal & Engineesring Chemlstry Research. 2005, 44, 3367-3373
    95.陈韬.A/O工艺实时控制与短程脱氮的基础研究.哈尔滨工业大学工学博士学位论文.2003:11
    96. Y Zh.Peng, J.F.Gao, S.Y.Wang and M.H.Sui. Use pH and ORP as fuzzyc ontrol parameters of denitrification in SBR process. Wat. Sci.Tech.2002,46(4-5):131-137
    97.高景峰.SBR法去除有机物和脱氮除磷在线模糊控制的基础研究.哈尔滨工业大学工学博士学位论文. 2001:137-140
    98. H.Hillebr, P. Frost, A. Liess. Ecological stoichiometry of indirect grazere Vects on periphyton nutrient content. Oecologia. 2008, 155:619-630
    99. L.L.Bao, D. Li. X. K. Li, R. X. Huang, J. Zh, Y. Lv, G. Q. Xia. Phosphorus accumulation by bacteria isolated from a continuous-flow two-sludge system. Journal of Environmental Sciences.2007, 19:391-395
    100.曾微.两段SBR法去除有机物和脱氮除磷在线模糊控制的基础研究.哈尔滨工业大学工学博士学位论文.2002:23
    101. T.Sriwiriyarat, C.W.Randall. Performance of IFAS wastewater treatment processes for biological phosphorus removal. Water Research. 2005, 39: 3873-3884
    102. E.Vaiopoulou, A. Aivasidis. A modified UCT method for biological nutrient removal :Configuration and performance. Chemosphere. 2008, 72:1062-1068
    103. S. Okunuki, M. Kawaharasaki, H. Tanaka, T.Kanagawab. Changesin phosphorus removing per for mance and bacterial community structure in an enhanced biological phosphorus removal reactor. Water Research. 2004,38:2433-2439
    104. L. E. Bashan,J. P. Hernandez, T. Morey,Y. Bashan. Microalgae growth-promoting bacteriaas‘‘helpers’’for microalgae: anovel approach for removing ammonium and phosphorus from municipal wastewater. Water Research. 2004, 38:466-474
    105. L. E.de-Bashan, Y. Bashan. Recent advances in removing phosphorus from wastewater and its future use as fertilizer(1997-2003). Water Research. 2004, 38:4222-4246
    106. Y G Chen, A.A.Randall, T. McCue. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionicacid. Water Research. 2004, 3827-3836
    107. M.L.V.Carlos, M.H.Christine, B.Damir, J.G.Huub, C.M. Mark. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal(EBPR) wastewater treatment plants in the netherlands. Water Research. 2008, 42: 2349-2360
    108. K.G.Song , J. Cho, K. H. Ahn. Effects of internal recycling time mode and hydraulic retention time on biological nitrogen and phosphorus removal in a sequencing anoxic/anaerobic membrane bioreactor process. Bioprocess Biosyst Eng. 2009, 32:135-142
    109.彭永臻,王宝贞,王淑莹.活性污泥法的多边量最优控制:I.基础理论与DO浓度对运行费用的影响环境科学学报,1998,18 (1):11-19
    110.曾薇,王淑莹,高景峰等. SBR法处理啤酒废水COD与DO的相关关系.给水排水,2000,26 (5):28-30
    111. G.Sch?n, S.Geywitz and F.Mertens. lnfuence of dissolved oxygen and oxidation-reduction potentialon phosphorus release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal.Wat.Res.1993,27 (3):349-354.
    112. Z.G Yuan, Linda L. Blackall. Sludge population optimisation: a new dimension for thecontrol of biological wastewater treatment systems. Water Research.2002 36:482-490
    113. C .H .Chang and O.J. Hao. Sequencing batchr eactor system for nutrientrem oval: ORP and pH profiles. J. Chem.Tech.Biotechnol.1996,67(1):27-38
    114. A.Spagni, J.Buday, P.Ratini and G.Bortone. Experiment consideration on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen andphosphorus biological removal processes.Wat.Sci.Tech.2001,43(11):197-204
    115. F. A. Koch, W. K. Oldham. Oxidation-reduction potential-a tool for Monitoring, control and optimization of biological nutrient removal systems. Wat.Sci.Tech.,1985,17:259-281
    116. J.harpentier, M. F lorentz, G . David. Oxidation-reduction potential(ORP) regulation:a way to optimize pollution removal and energy savingsin the low load activated sludge process.Wat.Sci.Tech.,1987,19:645-655
    117. A. Charpentier, H. Godart, et al. Oxidation-reduction potential (ORP) regulationasa way to optimize aeration and C,N and P removal: experimental basis and various full-scale examples.Wat. Sci.T ech.,1989, 21:1209-1223
    118. C.Peddie Craig, S.Mavinic Donald, J. J. Christopher. Use of ORP for monitoring and control of aerobic sludge digestion. Journal of Environmental Engineering,1990,116(3):461-471
    119. G. W. David, J. H. Kenneth, S.M. Donald. Real-time control of aerobic-anoxic sludge digestion using ORP. Journal of Environmental Engineering, 1993,119(1):120-136
    120. D. G.Wareham, J. H. Kenneth and S. M. Donald. Real-time control of wastewater treatment system using ORP.Wat. Sci.Tech.,1993, (11-12):273-282
    121. D. G. Wareham, S. M.Donald, J. H. Kenneth. Sludge digestion using ORP-regulated aerobic-Anoxic cycles. Wat. Res., 1994, 28 (2) : 373-384
    122. F. Lefevre, J. M. Audic, B. Bujon. Automatic regulation of activated sludge aeration-single-tank nitrification-denitrification.Wat.Sci.Tech. 1993, 28 (10):289-298
    123. K. W. Wasiak, A. Heduit, et al. Real-Time control of nitrogen removal at full-scale using oxidation reduction potential.Wat.Sci.Tech.,1994, 30 (4):207-210
    124. D.E .Thomberg,et al .Nitrogen removal by computer control of a simple activated sludge plant.Wat.Sup,1988,6: 361-369
    125. D. G. Wentzel, G. A. Ekama, G. V. R. Marais. Processes and modelling of nitrification denitrification biological excess phosphorus removal systems-a review.Wat.Sci.Tech.1992,25 (6):59-82
    126. C.Demuynck,P.Vanrolleghen, et al. NDBEPR process optimization in SBRs:reduction of external carbon-source and oxygen supply.Wat.Sci. Tech .,1994,30(4):169-179
    127. C. K. Lo, C. W. Yu, et al. Enhanced nutrient removal by oxidation-reductionpotential(ORP) controlled aerationin a laboratory scale extended aeration treatment system. Wat. Res. 1994, 28(10):2487-2094
    128.邵剑英.间歇式活性污泥法自动控制的理论研究.哈尔滨建筑大学工学硕士学位论文,1996:65-75
    129.姜慧勇. SBR法计算机自动控制理论的基础研究。哈尔滨建筑大学工学硕士学位论文,1996:55-68
    130.彭永臻,周利,邵剑英.利用ORP作为SBR反应时间的计算机控制参数.中国给水排水,1997,13(6):6-9
    131. Y. Zh Peng, J. Ch. Huang, M. Kuroda, L. Zhou. Use of ORP for controlling SBR aeration cycle. WEFTEC Asia Singapore 98,1998 :379-386
    132. J.Shapiro, G. V. Levin and G. Zea. Anoxically induced release of phosphorusin waste water treatment. J.Wat.Pollut.Control Fed.1967,39:1810-1818
    133. V. Gjfm, Y. Comeau, W.K.Oldham. Biological phosphorus removalform wastewater with oxygen and nitrate in sequencing batch reactor. Envioron Technol Lett. 1988,9:791-796.
    134.魏深.浅议影响污水生物除磷的因素.重庆环境科学,2002,24 (2):85-87
    135.汪惠贞,F.A.Koch.氧化还原电位作为生物脱氮除磷过程控制参数.中国给水排水. 1988,4(3):15-18
    136.刘瑾,高廷耀.生物除磷机理的研究.同济大学学报.1995,23(4):387-392
    137. C.Joseph., M.Guy, W.Herve, G. Pierre. ORP regulation and activated aludge:15 years of experience.Wat.Sci.Tech.1998,38 (3) :197-208
    138. L.S.Serfim, P.C.Lemos, et al. Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J. Micro. Meth. 2002, 51:1-18
    139. Z. Ahmed, B. R.Lim, J. Cho. K. H. Ahn. Effects of the internal recycling rate on biological nutrient removal and microbial community structure in a sequential anoxic/anaerobic membrane bioreactor. Bioprocess Biosyst Eng. 2007, 30:61-69
    140. J. Liu, M. Yang, R. Qi, W. An, J. Zh. Comparative study of protozoan communities in full-scale MWTPs in Beijing related to treatment processes. Water Research. 2008, 42:1907-1918
    141. S.Chakraborty, H.Veeramani. Effect of HRT and recycle ratio on removal of cyanide ,phenol, thiocyanate and ammonia in ananaerobic-anoxic-aerobic continuous system. Process Biochemistry. 2006, 41:96-105
    142. A.Spagni, J.Buday, P.Ratini and G.Bortone. Experiment Consideration on Monitoring ORP,pH,Conductivity and Dissolved Oxygen in Nitrogen and Phosphorus Biological Removal Processes.Wat.Sci.Tech.2001,4 3(11):197-204
    143. G. B. Zhu, Y. Z. Peng, Sh. Y. Wang. Hydraulic method of controlling solids retention time in step feed biological nitrogen removal process[J]. Environmental Engineering Science, 2007, 24(8): 1111-1120
    144. K. Soejima, S. Matsumoto,S. Ohgushi, K. Naraki, A.Terada,S. Tsuneda, A.Hirata. Modeling and experimental study on the anaerobic/aerobic/anoxic process for simultaneous nitrogen and phosphorus removal: The effect of acetate addition. Process Biochemistry. 2008, 43:605-614
    145. M.Merzouki, N.Bernet, J.P.Delgenès, M.Benlemlih. E?ect of prefermentation on denitrifying phosphorus removal in slaughterhou sewastewater. Bioresource Technology. 2005, 96:1317-1322
    146. Y. Comeau, K.J. Hall, R.E.W. Hancock, W.K. Oldham. Biochemical model for enhanced biologicalphosphor us removal. Water Res 1986;20(12):1511-1521
    147. T. Kuba, G.J.F.Smolders, M.C.M. vanLoosdrecht, J.J.Heijnen. Biological phosphorus removal from wastewater by anaerobic-aerobic sequencing batch reactor. Water Sci Technol. 1993,27(5/6 ):241-252
    148. H.U.Nam, J.H.Lee, C.W.Kim and T. J.Papk. Enhanced biological nutrients removal using the combined fixed-film reactor with bypass flow. Wat. Res.2000, 34(5):1570-1576
    149.彭永臻,马勇,王洪臣等. A/O脱氮工艺中内循环控制策略的建立与研究.北京工业大学学报.2004,30(2):201-206
    150. D. H. Eikelboom, A. Andreadakis, K. Andreasen. Survey of filamentous populations in nutrient removal plants in four European countries. Wat. Sci. Tech. 1998, 37(4-5): 281-289
    151. S. Rossetti, M. C. Tomei, C. Levantesi, R. Ramadori, V. Tandoi.“Microthrix parvicella”: a new approach for kinetic and physiological characterization. Wat. Sci Tech. 2002, 46(1-2): 65-72
    152. K. Andreasen, P. H.Nielsen. In situ characterisation of substrate uptake by Microthrix parvicella using micro-autoradiography. Wat. Sci. Tech. 1998, 37(4-5): 19-26
    153. T. Connery, A. S. Thompson, S. Patrick, M. J. Larkin. Studies of Microthrix parvicella in situ and in laboratory culture: production and use of specificantibodies. Wat. Sci Tech. 2002, 46(1-2): 115-118
    154. V. Tandoi, S. Rossetti, L. L. Blackall, M.Majonc. Some physiological properties of an Italian isolate of“Microthrix parvicella”. Wat. Sci Tech.1998, 37(4-5):1-8
    155. M.António, P. Martins, K. Pagilla, J.Joseph. Heijnen, Mark C.M.van Loosdrecht. Filamentous bulking sludge-a critical review. Wat. Res. 2004, 38: 793-817
    156.郝晓地,朱景义,曹秀琴.污泥膨胀形成机理及控制措施研究现状和进展.环境污染治理技术与设备.2006, 7(5):1-9
    157. C. E. Scruggs, C. W. Randall. Evaluation of filamentous microganism growth factors in an industrial wastewater activated sludge system. Wat. Sci Tech. 2005 37(4-5): 262-270
    158. S. Knoop, S. Kvnst. Influence of temperature and sludge loading on activated sludge settling expecially on Microthrix parvicella. Wat. Sci. Tech., 1998, 4:27-35
    159. F. X. Wang, T.R. Long, J.S.Guo. Study on factors affecting the activated sludge bulking and its control. Journal of Chongqing Jianzhu University, 2007, 29(1):117-121
    160. D. Jenkins, M. G. Richard, G. T. Daigger. Manual on the causes and control of activated sludge bulking and foaming and other solids separation problems. Florida: CRC Press LLC, 2004: 133-137
    161. B. Xie, X.C. Dai, Y.T. Xu. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella-A case study in triple oxidation ditch at a wastewater treatment plant. Journal of Hazardous Materials, 2007, 143: 184-191
    162. Y. Hwang, T. Tanaka. Control of Microthrix parvicella foaming in activated sludge. Wst. Ses.1998, 32(5):1678-1686
    163. D. H.Eikelboom. The Microthrix parvicella puzzle, in: proceedings of the IAWQ first international specialized conference on microorganisms in activated sludge and biofilm process. Paris, 1993:267-275
    164. D.Mulkerrins, A.D.W.Dobsona, E.Colleran. Parameters affecting biological phosphate removal from wastewaters. Environment International. 2004, 30:249-259
    165. P. Llabres, P.Pavan, P. Battistion, M, F. Cecch and J. Mata-akvarez. The use of organic fraction of municipal solid waste hydrolysis products for biological nutrient removal in wastewater treatment plants. Wat. Res. 1999, 33(1): 214-222
    166. L.Rieger, G.Koch, M.Kühni, W.Gujer and H.Siegrist. The ewag bio-Pmodule for activated sludge model No.3. Wat.Res. 2001,35(16):3887-3903
    167. Zh. R. Hu, M.C.Wentzel, G.A.Ekama. A general kinetic modes for biological nutrient removal activated sludge systems: model evaluation. Biogechnology bioengineering. 2007,98(6):1259-1275
    168. A.J.Schuler and D. Jerkins. Effect of pH on enhanced biological phosphorus removal metabolism.Wat.Sci and Tech.2002,46 (45):171-178
    169. Zh. Y. Han, W. X. Wu, J. Zhu, Y. X. Chen. Oxidization-reduction potential and pH for optimization of nitrogen removal in a twice-fed sequencing batch reactor treating pig slurry. Bios stems Engineering. 2008, 99:273-281
    170. Ch. H. Zhao, Y. Zh. Peng, Sh. Y. Wang and A. Takigawa. Effects of influent C/N ratio, C/P ratio and volumetric exchange ratio on biological phosphorus removal in UniFed SBR process. Journal of Chemical Technology and Biotechnology. 2008, 83:1587–1595
    171.马勇,彭永臻.城市污水处理系统运行及过程控制.科学出版社.2007,259-263
    172.王之晖. AO法污水处理系统过程控制与外碳源投加仿真.北京工业大学工学博士学位论文. 2004:119-122
    173.郑平,金仁村,卢刚.短程硝化反应器过程动力学特性研究.浙江大学学报(农业与生命科学版) . ,2006,32 (1) : 14-20
    174.黄梅,周少奇.同时硝化反硝化脱氮机理及影响因素分析.环境卫生工程.2006, 14(5):22-29
    175. Y. Zh. Peng, X. L. Wang, B.K. Li. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination. 2006, 189:155-164
    176.杨基先,高珊珊,马放等.一株好氧反硝化细菌的分离鉴定及反硝化能力.环境科学学报. 2008, 28(7):1302-1307
    177.苏俊峰,马放,高珊珊等.异养型同步硝化反硝化处理氨氮废水及群落结构分析.浙江大学学报(农业与生命科学版). 2007, 33(6):685-690
    178. S. Wyffels, K. Pynaert, P. Boeckx, W. Verstraete, C. O. Van. Identification and Quantification of Nitrogen Removal in a Rotating Biological Contactor by 15N Tracer Techniques. Wat. Res. 2003,37:1252-1259
    179.周丹丹,马放,董双石等.溶解氧和有机碳源对同步硝化反硝化的影响.环境工程学报. 2007, 1(4):25-28
    180. H. Satoh, Y. Nakamura, H. Ono, S. Okabe. Effect of Oxygen Concentration on Nitrification and Denitrification in Single Activated Sludge Flocs. Biotechnol. Bioeng. 2003,83:604-607
    181.李绍峰,崔崇威,黄君礼等. DO和HRT对MBR同步硝化反硝化影响研究.哈尔滨工业大学学报.2007, 39(6):887-890
    182. E. V. Munch, P. Lant, J. Keller. Simultaneous Nitrification and Denitrification in Benchscale Sequencing Batch Reactors. Water Res. 1996,30(2):277-284
    183. M.G Mason, P. Nicholls, M.T.Wilson and C .E .Cooper. Nitric oxidein hibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome coxidase.PNAS.2006,103(3):708-713
    184. T.Hagen, C. T. Taylor, F. Lam, S. Moncada. redistribution of intracellular oxygenin hypoxiaby nitric oxide:effecton HIF1.Science.2003,302:1975-1978
    185. A. Matsumoto, K.E. Comatas, L. Liu, J. S. Stamler. Screening for nitric oxide -dependent protein-protein interactions. Science.2003,301:657-661

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700