水平潜流人工湿地氮循环微生物效应及生态模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以水平潜流芦苇砾石床人工湿地系统为研究对象,以防治水污染为目的,开展了以下研究内容:水平潜流湿地氮去除速率及主控因素分析;水平潜流湿地氮形态分布及转化规律的研究;水平潜流湿地氮转化微生物沿程分布和种群分析;水平潜流人工湿地总细菌及氨氧化细菌多样性研究;特征脱氮菌种筛选、鉴定及生理生化特性分析;水平潜流湿地氮循环生态动力学模型研究。得出主要研究结论如下:
     (1)在平均水力停留时间3.85h的条件下,通过对水平潜流人工湿地氮素去除效率分析,水平潜流人工湿地系统表现出一定的除污能力,进水COD、NH_4~+-N、NO_3~--N、Org-N和TN浓度为分别7.8~12.7mg·L~(-1)、0.05~15.0mg·L~(-1)、1.3~5.2mg·L~(-1)、0.66~5.18mg·L~(-1)、2.2~20.0mg·L~(-1),芦苇砾石床系统的年平均去除率为25.8%、10.0%、42%、31.2%和18.9%。季节变化对污染组分的去除效率影响非常显著,在寒季系统对COD、NH_4~+-N、NO_3~--N、Org-N和TN的去除效率有所下降,各组分的平均去除率约为11.2%、6.5%、31.0%、20.5%和15%左右。
     (2)季节变化对温度和污染负荷率两个因子的影响显著。进水温度在0.9~24.8℃之间变化时,各形态氮素的体积去除速率常数K_v与温度呈正相关,NH_4~+-N、NO_3~--N、Org-N和TN的K_v值分别为0.01~0.2d~(-1)、0.03~0.3d~(-1)、0.07~0.3d~(-1)和0.02~0.15d~(-1);温度在20℃时的体积去除速率常数K_(v20)分别为0.0769、0.1673、0.1508和0.0732 d~(-1),说明该湿地系统对NO_3~--N、Org-N的消减速率较NH_4~+-N大。NH_4~+-N和Org-N的去除速率与负荷率呈对数正相关,当NH_4~+-N的负荷率为15gN·m~(-2)·d~(-1)时,其最大去除速率为1.02gN·m~(-2)·d~(-1);当Org-N的负荷率为3.2gN·m~(-2)·d~(-1)时,其最大去除速率可达到0.36gN·m~(-2)·d~(-1)。
     (3)通过对16项进出水理化指标的主因素分析,确立了5个主因素,主因素1与进出水温度呈负相关,关系相对最为密切;主因素2和3分别与湿地进水NO_3~--N和NH_4~+-N负荷呈正相关;主因素4和5分别与进水DO和ORP关系最为密切,且均呈负相关。在16项进出水指标的分析中主因素的排列顺序是:温度>NO_3~--N负荷>NH_4~+-N负荷>DO>ORP,与5项出水指标主因素分析排列顺序略有不同,其主要原因是人工湿地作为一个独立的生态系统,影响因素比较复杂、具有不确定性,但温度作为主要的影响因素地位明显高于其它因素。
     (4)比较了根际与非根际的硝化/反硝化强度及呼吸作用强度,研究发现根际效应显著强于非根际。通过对氨化细菌、亚硝化细菌、硝化细菌及反硝化细菌等四种脱氮种群的研究发现,氨化细菌的数量级在10~8~10~(10)cfu之间,其沿湿地空间位置(长度)数量分布无规律性变化;亚硝化细菌的数量级在10~3~10~7MPN之间,从湿地进水端至尾端亚硝化细菌的数量逐渐减少,尤其在暖季变化显著;硝化细菌的数量级在10~5~10~7MPN之间,其分布无显著变化,暖季时硝化细菌的数量是前端、中部高于尾端;反硝化细菌的数量级在10~4~10~7MPN之间,湿地系统尾端数量略高于前端。
     (5)运用PCR-DGGE技术,比较真实的反应了水平潜流人工湿地系统中微生物种群结构及分布特征。水平潜流人工湿地中微生物种群多样性随着水流方向呈现先逐渐减少的趋势。通过湿地系统沿程COD与Shannon指数相关性分析,发现芦苇砾石系统沿程COD变化与Shannon指数相关性较好,不同季节湿地系统中微生物多样性的空间分布特征对处理有机物效能存在差异。对氨氧化菌群落结构多样性的研究表明:不同季节水平潜流人工湿地中氨氧化菌的时空变化显著,并分析得出了湿地系统的优势氨氧化菌种,可为系统氨氮去除途径的分析提供微生物学标识。
     (6)筛选出9株反硝化细菌均具有一定的脱氮能力,脱氮反应主要发生在菌体生长的对数生长期,脱氮速率随着生物量的增加逐渐加快。脱氮能力对比结果显示菌株DF2和DF3脱氮效率最高,均能在72h内将90%的TN去除,最终脱氮率维持在95%左右。特别重点考察了菌株DF2的脱氮特性,利用16SrDNA技术对菌株DF2进行了鉴定,通过与参比菌株的比较,确定了该菌株的系统发育地位,结果表明该菌株位于德克斯氏菌属,至今未发现类似的报道。
     (7)水平潜流人工湿地系统硝化与反硝化作用是氮元素转化的主要途径之一,其速率分别达到了0.791gN·m~(-2)·d~(-1)和0.823gN·m~(-2)·d~(-1);其次植物对氮的吸收0.747 gN·m~(-2)·d~(-1);沉淀和再生速率也分别达到了0.514gN·m~(-2)·d~(-1)和0.446gN·m~(-2)·d~(-1);其它贡献的途径如植物腐败0.282gN·m~(-2)·d~(-1)和矿化0.0126gN·m~(-2)·d~(-1)。在整个系统氮转化和去除的主要途径递减顺序为反硝化、植物吸收、沉淀。其中,反硝化作用占总氮去除的60.7%、植物吸收占34.3%、沉淀作用占5.0%,模型在预测结果方面具有一定的准确性和合理性。
The performance and mechanisms of horizontal subsurface flow contructed wetlands reed/gravel bed system of Guanting Reservoir were studied for the preventive treatment of the pollution of potable water sources. The study includes:(1) The Nitrogen removal rate and main factor analysis of horizontal subsurface flow constructed wetlands;(2) The forms distribution and transformation rule;(3) The analysis of the frictional distribution and population of Nitrogen transformation microbes in the system;(4) The microbial diversity research in the system;(5) The featured denitrifiers were screened,the physiological and biochemical characteristics were analyzed and identified;(6) Modeling of nitrogen cycles in horizontal subsurface flow contructed wetlands.The major research findings are as follows:
     (1) On the condition that the average hydraulic stayed for 3.85 hours, through Nitrogen removal analysis of horizontal subsurface flow constructed wetlands. The system exhibits certain decontamination ability. The influent COD、NH_4~+-N、NO_3~--N、Org-N and TN are 7.8~12.7mg·L~(-1)、0.05~15.0mg·L~(-1)、1.3~5.2mg·L~(-1)、0.66~5.18mg·L~(-1)、2.2~20.0mg·L~(-1). The annual average removal rate of the gravel bed below the reed wetlands system are 25.8%、10.0%、42%、31.2% and 18.9%.Seasonal variation has a significant effect on the removal rate of the polluted elements. System removal rate has a little decrease in the elements of COD、NH_4~+-N、NO_3~--N、Org-N and TN in cold season. Removal rate of every elements are about 11.2%、6.5%、31.0%、20.5% and 15%.
     (2) Seasonal variation has a significant effect on the factors of temperature and pollutionload rate. If the influent temperature changes from 0.9℃to 24.8℃, a positive corelation is found between the removal rate of various forms of Nitrogen elements’volume and the temperature. The constants K_v of NH_4~+-N、NO_3~--N、Org-N and TN are 0.01~0.2d~(-1)、0.03~0.3d~(-1)、0.07~0.3d~(-1)and 0.02~0.15d~(-1). Meanwhile, the volume removal rate constants K_(v20) are 0.0769、0.1673、0.1508 and 0.0732 d~(-1) when the temperature is 20℃.It interprets that the wetlands have stronger capability to reduce NO_3~--N and Org-N than NH_4~+-N. The removal rate of NH_4~+-N and Org-N are logarithms related to load rate. When the load rate of NH_4~+-N is 15gN·m~(-2)·d~(-1) , its removal rate of 1.02 gN·m~(-2)·d~(-1) is the maximum. At the same time, when the load rate of Org-N is 3.2 gN·m~(-2)·d~(-1) , its removal rate of 0.36 gN·m~(-2)·d~(-1) is the maximum.
     (3) Five major factors were established by analyzing principal factors in five outlet water has a negative correlation with water temperature. The 2nd and 3rd have a positive correlation with wetland fill NO_3~--N and NH_4~+-N load. The 4th and 5th factors have closest relations and negative correlation with influent DO and ORP. The sort order of the major factors in the sixteen indicators are: temperature> NO_3~--N load > NH_4~+-N load > DO > ORP. The sequence is slightly different from the five outlet indicators.As an independent eco-system, the effect factors in artificial marshland are more complex and unceratin ; however, temperature is still the major element among all elements.
     (4) Having compared the nitrification/denitrification strength and respiration intensity of rhizosphere and non- rhizosphere, the researcher finds rhizosphere worked significantly better than non- rhizosphere. The study on denitrification groups such as ammonifying bacteria, nitrite bacteria, nitrifying bacteria and denitrifying bacteria shows the order of magnitude of ammoniation bacteria is 10~8~ 10~(10)cfu and its distribution regularity change is not found. And it did not necessarily linked wetlands spatial position (length); When the order of magnitude of nitrification bacteria is 10~3~10~7MPN, Bacterial nitrification is reducing at the wetland fill end, especially in warm days. The distribution did not significantly change when the magnitude of nitrifying bacteria is 10~5 ~ 10~7MPN.In warm season, the number of nitrifying bacteria is at the front end and the middle is higher than the tail end. The tail end is slightly higher than the front end of wetlands when the number of denitrifying bacteria level is in 10~4~10~7MPN.
     (5) The use of PCR-DGGE technique reflects the real level of the microbial population structure and distribution in subsurface flow constructed wetland system. Microbial diversity in horizontal subsurface flow constructed wetland decreases along the waterflow direction first. Through the correlation analysis between frictional COD in the wetland system and the Shannon index, we found frictional COD change and Shannon index correlated well in the reed-gravel system , and different spatial distribution of microbial diversity have different effectiveness of disposing organic matter in different seasons.
     (6) Nine selected denitrifying bacteria showed some ability of denitrification, and the denitrification reation occurs mainly in the logarithmic phase of cell growth, and the reaction rate speeds up gradually with the biomass increases. The comparison of denitrification capacity shows that bacterial strain DF2 and DF3 have the highest deni trification efficiency; they can remove 90% TN in 72h, and the final removal rate remains at about 95%. We focus on the removal characteristics of strain DF2 by using 16SrDNA to identify strain DF2; compared with reference strains,we determined the phylogenetic position of the strain, and the results show that the strain belongs to the Dexter's genus, no similar reports were available until now.
     (7) Nitrification and denitrification in horizontal subsurface flow constructed wetland are the main methods to transform nitrogen, the rates respectively reach 0.791gN·m~(-2)·d~(-1) and 0.823gN·m~(-2)·d~(-1); Secondly, plants’absorption of nitrogen is 0.747gN·m~(-2)·d~(-1); precipitation and regeneration rates have reached 0.514gN·m~(-2)·d~(-1) and 0.446gN·m~(-2)·d~(-1); other contributory means are plant-corruption 0.282gN·m~(-2)·d~(-1) and mineralization 0.0126 gN·m~(-2)·d~(-1). The main influencing factors in conversion and removal of nitrogen in the system in decreasing order are denitrification, plant intake and sedimentation. Denitrification takes up 60.7% of the total nitrogen removal, plant uptake accounts for 34.3%, and 5.0% in precipitation, the modelachieved certain accuracy and rationality in predicting the results.
引文
1魏文飞.水库水质富营养化趋势分析[J].环境与开发,1998,13(4):29-30
    2江涛,刘祖发,陈晓宏等.广东省水库富营养化评价[J].湖泊科学,2005,17(4):378-382
    3刘玉生,唐宗武,韩海等.滇池富营养化生态动力学模型及应用[J].环境科学研究,1991,4(6):1-8
    4李锦秀,廖文根.富营养化综合防治调控指标探讨[J].水资源保护,2002(2):4-5
    5 Sundareshwar P.V.,Morris J.T.,Koepfler E.K.,et al.Phosphorus limitation of coastal ecosystem processes[J]. Science,2003,299:533-565
    6刘冬燕,赵建夫,张亚雷等.富营养化水体生物修复中浮游植物的群落特征[J].水生生物学报,2005,29(2):177-183
    7尹振娟,杨扬,卢建等.生物法-人工湿地组合工艺对小城镇混合污水氮素去除效果研究[J].生态环境学报,2010,19(5):1044-1049
    8张明,胡瑞林,刘长礼等.利用北调江水回渗地下的除氮实验研究怕[J].工程勘察,2008(07):32-35
    9朱明石,周少奇,秦玉洁.高浓度含氮废水生物脱氮新工艺研究[J].环境保护科学,2008,34(1):4-8
    10焦平金,许迪,程先军.外加碳源对污水灌溉系统氮素迁移转化影响的实验研究[J].水利学报,2008,39(3):380-384
    11范兴建.人工快速渗滤系统微生物特征及氮素去除机理研究[D].西南交通大学(硕士学位论文),2009,05
    12王爱萍,周琪.人工湿地处理污水的研究[J].四川环境,2005,24(2):76-80
    13 Bahlo,K and Wach,G.Naturnhe Abw asserreinigung,Planung und Bau von Pflanzenk laranlagen.2.Auflage,Okobuch Staufen bei Freiburg.,1993:137
    14 Brix,H.Functions of macrophytes in constructed wetlands[J].Wat.Sci.Tech,1994, 29(4):71-78
    15马井泉.人工湿地脱氮关键过程的作用机理研究[D],中国水利水电科学研究院(硕士学位论文),2006,02
    16刘育,夏北成.不同植物构成的人工湿地对生活污水中氮的去除效应[J].植物资源与环境学报,2005,14(4):46-48
    17赵建刚,杨琼等.几种湿地植物根系生物量的研究[J].中国环境科学,2003,23(3):290-294
    18袁东海,任全进等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,12(12):2337-2341
    19吴振斌,任明讯,付贵萍等.垂直流人工湿地水力学特点对污水净化效果的影响[J].环境科学,2001,22(5):45-49
    20冯爱坤.潜流型人工湿地脱氮功能的研究[D].广东工业大学(硕士学位论文),2007,05
    21 GERSBEG R M,ELKINS B V,LYON S R,et al.Role of aquaticplants in wastewater treatment by artificial wetlands[J].Water Research,1986,20(3):363-368
    22 TANNER C C.Plants as ecosystem engineers in subsurface-flow treatment wetlands[J]. Water Science&Technology,2001,44(11).67-82
    23 TANNER C C.Growth and nutrient dynamics of soft-stem bulrush inconstructed wetlands treating nutrient-rich wastewater[J]. Wetland Ecology and Management,2001,9:49-73
    24 TANNER C C,CLAYTON J S,UPSDELL M P.Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlandsⅡ:Removal of nitrogen and phosphorous[J]. Water Research,1995,29:27-34
    25 VAN OOSTROM A J,COOPER R N.Meat processing effluent treatment in surface-flow and gravel-bed constructed wastewater wetlands[A]. Constructed wetlands in water pollution control[C].Oxford:Pergmon Press,1990:321-332.
    26 HILEY P D.The reality of sewage treatment using wetlands[J]. Water Science&Technology, 1995,32(3):329-338.
    27李剑波.强化垂直流-水平潜流组合人工湿地处理生活污水研究[D].同济大学(博士学位论文),2008,03
    28 Jos T.A.Verhoeven et al.Wetlands for wastewater treatment:Opportunities and limitations[J]. Ecological Engineering,1999(12):5-12
    29聂发辉.系统评价天然蛭石吸附氨氮的效果[J].四川环境,2004,23(4):15-19
    30肖举强.沸石去除污水中氨氮的研究[J].兰州铁道学院学报,2002,21(1):87-89
    31崔理华,朱夕珍等.煤渣草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报,2003,14(4):597-600.
    32 Crites,R.W.Design criteria and practice for constructed wetlands[J]. Water Science and Technology,1994,29(4):1-6.
    33 Hoppe H.G.et al.Microbial decomposition in aquatic environments:combined processes of extracellular activity and substrate uptake[J]. Applied Environmental Microbiology, 1988,54(2):784-790
    34 Madigan M.T.et al.Brock biology of microorganisms[M] 8thed.Prentice Hall.Upper Saddle River,NJ.1997
    35 KadlecRH,Knight RL,Vymazal J,et al.Constructed wetlands for pollution control: processes,performance design and operation [M]. Seientifie and Technical Report No.8. London,UK:IWAPublishing.2000
    36 Portier R.J.,Palmer S. J.Wetlands microbiology:form,function,Proeesses. Constructed Wetlands for Wastewater Treatment,MunieiPal[J], Industrial and Agricultural.D.A.Hanuner. Chelsea.Lewis Publishers,1989:89-106
    37 FirestoneM.K.Biologieal Denitrifieation.Nitrogenin Agrieultural Soils[J], Agronomv Monograph No.22.Madison,1982 WI:290-326
    38 Knowles R.Denitrification[J] .Mierobiological Reviews,1982,46(l):43-70
    39 Knowles R. Denitrification.Terrestrial Nitrogen Cyeles[J]. F.E.a.R.Clark,T. Stockholm, Swe -den.1981,315-329
    40 Brock T.D.,Madigan M.T.Biology of Microorganisms.Englewood Cliffs[R], N.J.,Prentice Hall,1991
    41田晓燕,李丽萍.人工湿地污泥处理系统微生物组成的分离与鉴定[J].吉林建筑工程学院学报.2008,25(4):14-17
    42李辉,徐新阳,李培军等.人工湿地中氨化细菌去除有机氮的效果[J].环境工程学报,2008,2(8):1044-1047
    43 Takaya N,Maria A B,Yasushi S,et al.Aerobic denitrifyingbacteria that produce low levels of nitrous oxide[J].Appl EnvironMicrobiol,2003,69(6):3152-3157
    44 Su J J,Liu B Y,Liu C Y.Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the active sludge of a piggery wastewater treatment system[J]. J Appl Microbiol,2001,90(3):457-462
    45 Joo H S,Hirai M,Shoda M.Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4[J].J Biosci Bioeng,2005,100(2):184-191
    46 Shwu L P,Chong N M,Chen C H.Potential applications of aerobic denitrifying bacteria as bioagents inwastewater treatment[J]. Biores Technol,1999,68(2):179-185
    47 Patureau D,Zumstein E,Delgenes J P,et al.Aerobic denitrifiers isolated from diverse natural and managed ecosystems[J]. Microbial Ecol,2000,39(2):145-152
    48 Robertson L A,Kuenen J G.Thiospaera pantotropha gen nov sp nov a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. JGen Microbiol, 1983,129(8):2847-2855
    49 Joong K K,Kyoung J P,Kyoung S C,et al.Aerobic nitrification/denitrification by heterotrophic Bacillus strains[J]. Biores Technol,2005,96(17):1897-1906
    50杨希,刘德立,邓灵福等.蜡状芽孢杆菌好氧反硝化特性研究[J].环境科学研究, 2008,21(3):155-159
    51张甲耀,夏盛林,邱克明.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报.1999,19(03):323-327
    52贺锋,吴振斌,陶菁等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50
    53雒维国.潜流型人工湿地对氮污染物的去除效果研究[D].东南大学(博士学位论文),2005,08
    54 Hoppe H. G., Emerick L. C., Gocke K. Microbial de-composition in aquatic environments: Combined processesof extra cellular activity and substrate uptake[J]. Applied Environmental Microbiology,1988,54:784-790
    55 SavinM. C., AmadorL. A. Biodegradation ofnorflurazonin a bog soil[J].Soil Biology and Biochemistry,1998,30:275-284
    56 Martin C. D., MoshiriG. A. Nutrient reduction in an in series constructed wetland system treating landfill leachate[J].Water Science and Technology,1994, 29(4):267-272
    57 StottmeisterU,WieBner A,Kuschk P,et al.Effects of Plants and microoganisms in wet- lands for wastewater treatment[J]. BioteehnologyAdvances,2003,22:93-117
    58付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究,2005,18(6):44-49
    59周巧红,吴振斌,付贵萍等.人工湿地基质中酶活性和细菌生理群的时空动态特征[J].环境科学,2005,26(2):108-112
    60吴振斌,梁威,邱东茹,等.复合垂直流构建湿地基质酶活性与污水净化效果[J].生态学报,2002,22(7):1012-1017
    61 DeJournett T. D., Arnold W. A., LaPara T. M. Thecharacterization and quantification ofmethanotrophic bac-terial populations in constructed wetland sediments usingPCR targeting 16S rRNA gene fragments[J]. Applied SoilE-cology,2007,35(3):648-659
    62 Nicomrat D., DickW. A., Tuovinen O. H. Assessmentof the microbial community in a constructed wetland thatreceives acid coal mine drainage[J]. Microbia.l Ecology,2006, 51(1):83-89
    63 Muyzer G, Waal E C D, UitterlindenAG. Profilingof complexmicrobial populationsby denaturinggradientgel electrophoresis analysisof polymerase chainreaction-ampli- fied genes coding for 16S Rrna[J]. Appl. Environ. Microbiol., 1993,59:695-700
    64 Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Curr. Opin. Microbiol.,1999,2:317-322
    65 Chong S,Garelick H,Revitt DM.The microbiology associated the glycol removal inConstructed wetlands[J].Water Science and Technology,1999,40(3):99-107
    66 BaPtista JDC,Donnelly T,Rayne D,et al.Microbial mechanisms of carbon removal in Subsurface flow wetlands[J].Water Science and Technology,2003,48(5):127 -134
    67 Ibekwe AM,Catherine MQ,Stephen RL,.Characterization of microbial eonununities and Compesition in constructed dairy wetland wastewater effluent[J]. Applied and Environmental Microbiology,2003,69(9):5060-5069
    68黄德锋,李田,陆斌.复合垂直流人工湿地污染物去除及微生物群落结构的PCR-DGGE分析[J].环境科学研究.2007,20(6):137-141
    69闻岳.周琪,蒋玲燕等.水平潜流人工湿地对污水中有机物的讲解特性[J].中国环境科学,2007,(27)4:508-512
    70周巧红.复合垂直流构建湿地微生物类群多样性及其活性研究[D].中国科学院(博士学位论文),湖北武汉,2005,06
    71凌云,林静,徐亚同.景观人工湿地微生物群落结构的季节变化[J].城市环境与城市生态,2009,22(4):8-10
    72 Marsili-Libelli S, ChecchiN. 2005. Identification of dynamic models for horizontal subsurface constructed wetlands[J].EcologicalModelling,187: 201-218
    73 Kadlec RH,Knight RL,Vymazal J,et al.Constructed wetlands for pollution control:Processes, performance,design and operation[M]. London,UK: IWAPublishing.2000,55-78
    74张军,周琪,何蓉.人工湿地污染物去除的数学模型[J].韶关学院学报(自然科学版),2003, 24(12):63-67
    75 Breen P.F.,A mass balance method for assessing the potential of artificial wetlands for wastewater treatment[J] .Water Res,1990,24(6):689-697
    76 IWA.Constructed wetlands for pollution control:Processes,performance,design and operation. Scientific and Technical Report NO.8[R].IWA Publishing, London,UK,2000
    77 Kadlec RH,Knight RL.Treatment Wetlands[M]. Boca Raton FL:CRC Press. 1996
    78史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水,2002, 33(6):12-15
    79 Kadlec RH. The inadequacy of first-order treatment wetland models[J].Ecological Engineering,2000(15):105-119
    80 Drizo A,Frost CA,Grace J,et al. Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate[J].Water Research,2000,34:2483-2490
    81 Grlsmer ME.Simulation evaluation of the effects of non-uniform flow and degradation parameter uncertainty on subsurface flow constructed wetland performance[J].Water Environment Research,2001,77:3047-3053
    82 Grismer ME,Tausendschoen M,Shepherd HL.Hydraulic characteristics of a subsurface flow constructed wetland for winery effluent treatment[J]. Water Environment Research, 2001,73:466-477
    83 Marsili-Libeli S,Checehi N.Identification of dynamic models for horizontal subsurface constructed wetlands[J]. Ecological Modelling,2005,l87:201-218
    84 Shepherd HL,Tchobanoglous G,Grismer ME.Time-dependent retardation model for chemical oxygen demand removal in a subsurface flow constructed wet1and for winery wastewater treatment[J]. Water Environment Research,2001,73:597-606
    85 Kadlec RH. Overview:Surface flow constructed wetlands[J]. Water Science and Technology, 1995,32(3):1-12
    86 Mitchel C,MeNevin D.Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics[J]. Water Research, 2001,35:1295-1303
    87肖艳,叶旌,杨音攻.Monod模型在潜流式人工湿地中的应用探讨[J].环境技术,2003,2: 21-25
    88 Theresa Maria Wynn,Sarah K. Liehr.Development of a constructed subsurface flow wetland simulation model[J]. Ecological Engineering,2001,16:519-536
    89 Liu W X.Subsuface flow constructed wetlands performance evaluation,modeling,and statistical analysis[D]. Lincoln:University of Nebraska,2002
    90 A.W. Mayo,T. Bigambo. Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development[J]. Physics and Chemistry of the Earth, 2005(30):658-667
    91 Yanhua Wang, Jixiang Zhang, Hainan Kong,etc.A simulation model of nitrogen transformation in reed constructed wetlands[J]. Desalination,2009,235:93-101
    92闻岳.水平潜流人工湿地净化污染水体研究[D].同济大学(博士学位论文),2007,01
    93姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006
    94中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985
    95邓辅唐,孙珮石.人工湿地净化滇池入湖河道污水的示范工程研究[J].环境工程,2005, 23(3):29-31
    96凌玉梅,白云庆.人工湿地在温榆河生态治污中的实践与应用[J].北京水务,2006,4:20-22
    97赵建.人工湿地对污染河水的净化效果及机理研究[D].河海大学(硕士学位论文),2006,06
    98 Shuh-Ren Jing, Ying-Feng Lin. Seasonal effect on ammonia nitrogen removal by con- structed wetlands treating polluted river water in southern Taiwan[J]. Environ- mental Pollution 127(2004)291-301
    99 Jing, S.R., Lin, Y.F., Wang, T.W., Lee, D.Y. Microcosm wetlands for wastewater treat- ment with different hydraulic loading rates and macrophytes[J].J.Environ. Qual., 2002,31,690-696
    100 Huang, J., Reneau Jr., R.B., Hagedorn, C. Nitrogen removal in constructed wetlands employed to treat domestic wastewater[J].Wat.Res,2000,34(9):2582-2588
    101 IWA Special Group on Use of Macrophytes in Water Pollution Control Constructed Wet- lands for Pollutant Control[R].Scientific and Technical Report No 8.IWA Publishing,London,England,2000
    102 Reed, S.C., Crites, R.W., Middlebrooks, E.J.Natural Systems for Waste Management and Treatment[R],second ed.McGraw-Hill,Inc,New York,1995
    103 Kadlec, R.H. Deterministic and stochastic aspects of constructed wetland performance and design[J].Water Sci.Technol.,1997,35(5):149-156
    104王保进.多变量分析—统计软件与数据分析[M].北京:北京大学出版社,2007,61-87
    105 A.W.Mayo,T.Bigambo.Nitrogen transformation in horizontal subsurface flow constructed wetlands I:Model development[J].Physics and Chemistry of the Earth ,2005, (30):658-667
    106梁威,吴振斌.人工湿地对污水中氮磷的去除机制研究进展[J].环境科学动态,2000,(3): 32-37
    107杨晓忠.人工湿地脱氮除磷研究进展[J].现代农业科技,2007,(4):128-129
    108韩耀宗.不同水力条件下水平潜流人工湿地脱氮效果研究[D].东华大学(硕士学位论文), 2010,01
    109邓春光,蔡明凯.人工湿地脱氮性能优化分析及研究建议[J].节水灌溉,2007,4:10-12
    110尹军,崔玉波等.潜流人工湿地对污染物的降解特征[J].中国给水排水,2004,10(6):47-49
    111李科德,胡正嘉.芦苇床系统净化污水的机理明[J].中国环境科学,1995,15(2):140-144
    112鄢露,王世和,雒维国等.运行条件下潜流型人工湿地溶氧状态研究[J].环境科学,2006, 27(10):2009-2013
    113何连生,刘鸿亮,席北斗等.人工湿地氮转化与氧关系研究[J].环境科学,2006, 27(6):1083-1087
    114叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006
    115 Guan s y(关松荫).Soil Enzymes and Its Methodogy[M].Beijing:agricultural Press.1986
    116 Shackle V J, FreemanC.Carbon supply and the regulation of enzymatic Activity in construeted wetlands[J].Soil Biology and Biochemistry,2000,32:1935-1940
    117 Shackle V J,Freeman C,Reynoids B. Exogenous enzyme supplements to Promote treatmen efficiency in constructed wetlands[J]. Seience of Total Enviroment, 2006,361(1-3): 18-24
    118金卫红,付融冰,顾国维.人工湿地中植物生长特性及其对TN和TP的吸收[J].环境科学研究,2007,20(3):75-81
    119 Roger K.,et al.Denitrification Microbial Rev[J].1982,15(6):43-70
    120吴振斌,梁威,邱东茹等.复合垂直流构建湿地基质酶活性与污水净化效果[J].生态学报,2000,22(7):1012-1017
    121岳春雷,常杰等.人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性[J].科技通报,2004,20(2):112-115
    122成水平,夏宜峥.香蒲、灯芯草人工湿地的研究II—净化污水的空间[J].湖泊科学,1998,10(1):62-66
    123 V.J.Shackle.Carbon supply and the energy regulation of enzyme activity in con- structed wetlands[J].Soil and Biology&Biochemistry,2000,25(3):1935-1940
    124吴振斌,梁威.复合垂直流构建湿地净化污水机制研究I微生物类群和基质酶[J].长江流域资源与环境,2002,11(2):180-183
    125许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:251-291
    126 Chu H Y, Lin X G, Fujii T, Morimoto S, Yagi K, Hu J L, Zhang J B.Soil microbial bio- mass, dehydrogenase activity, bacterial community structure in response to long term fertilizer management[J].Soil Biology and Biochemistry,2007,39:2971-2976
    127 Carreira J A, Vinegla B, Garcia-Ruiz R, Ochoa V,Hinojosa M B.Recovery of biochemi- cal functionality in polluted flood-plain soils: the role of microhabitat differentiation through revegetation and rehabilitation of theriver dynamics[J]. Soil Biology and Biochemistry,2008,40:2088-2097
    128 Rogers B F, TateⅢR L.Temporal analysis of the soil microbial community along a toposequence in Pineland soils[J].Soil Biology and Biochemistry, 2001,33(10):1389- 1401
    129 Huang Daizhong , Xiao Wenjuan , Liun Yunbing , Liu Jingyuan , Zhou Yiyong. Deter- mination of dehydrogenase activity in sediment of shallow lakes and its ecological significance[J].Journal of Lake Science,2009,21(3):345-350
    130王晟,徐祖信,李怀正.潜流湿地处理不同有机污水的差异分析[J].环境科学, 2006, 27 (11): 2194-2200
    131刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003, 24(l):80-83
    132黄娟,王世和,鄢璐等.潜流型人工湿地硝化和反硝化作用强度研究[J].环境科学,2007,28(9):1965-1969
    133 Jan Vymazal, BrixH, Cooper P F,et al. Constructed wetlands for wastewater treatment in Europe[M]. Leiden: Backhuys Publishers,1998:17-66
    134张光亚,陈培钦.好氧反硝化菌的分离鉴定及特性研究明[J].微生物学杂志,2005,25(6):23-26
    135陈朋.反硝化细菌的筛选,鉴定及强化处理硝酸盐废水的研究[D].山东大学(硕士学位论文),2009,05
    136王莹,周巧红,梁威.人工湿地高效好氧反硝化细菌的分离鉴定及反硝化特性研究[J].农业环境科学学报,2010,29(6):1193-1198
    137 Her J.J,Huang J.S.Influences of carbon source and C/N ratio on nitrate/nitratedenitrification and carbon breakthrough[J],Bioresource Technology, 1995,54:45-51
    138 Gupta A B.Thiosphaeera Pantotropha a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification [J].Enzyme Microb Technol, 1997,21(8):589-595
    139 Timmermans P,Van H A.Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp[J].Water Res,1983,17(10):1249-1255
    140孔庆鑫,李君文,王新为,金敏,古长庆.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J].应用与环境生物学报,2005,11(2):222-225
    141 Bell L C,Page M D,Berks B C,et al.Insertion of transposon Tn5 into a structural gene of the membrane-bound over expression of periplasmic nitratereductase activity[J].Gen Microbiol,1993,39:3205-3214
    142 Metcalf and Eddy,Inc. Wastewater Engineering Treatment[R],Disposal and Reuse. McGraw-Hill Ltd.,New Delhi.,1995
    143 Senzia, M.A.,Mashauri, D.A.,Mayo, A.W.,2003. Suitability of constructed wetlands and waste stabilization pond in waste treatment: nitrogen transformation and removal[J].Physics and Chemistry of the Earth 28 (20-27):1117-1124
    144 Polprasert,C.,Agarwalla, B.K.. A facultative pond model Incorporating biofilm activity [J]. Water Environment Research,1994,66 (5):725-732
    145 Downing,A.L.. Population dynamics in biological systems[R].In:Proc. 3rd Int. Conf. Water Pollution Research,WPCF, Munich, Germany, Series 2,1966:117-137
    146 Bacca,R.G.,Arnett,R.C.. A Limnological Model for Eutrophic Lakes and Impoundment [R]. Battele Inc.,Pacific Northwest Laboratories,Richland.1976
    147 Jorgensen,S.E.,Nielsen,S.N.,Jorgensen, L.A..Handbook of Ecological Parameters and Ecotoxi -cology[M].Elsevier,Amsterdam,1991
    148 Ferrara,R.A.,Hermann,D.P.F..Dynamic nutrient cycle model for waste stabilisation ponds[J].J. Environ. Eng. Div.,ASCE ,1980,106 (1):37-55
    149尹军,崔玉波.人工湿地污水处理技术[M].化学工业出版社,2006:76-77
    150 Charley,R.C.,Hooper,D.G.,Mclee,A.G.. Nitrification kinetics in activated sludge at various t em peratures and dissolved oxygen concentrations[J].Water Research, 1980, 14:1387-1396
    151 Polprasert,C., Khatiwada, N.R.. An integrated kinetic model for water hyacinth ponds used for wastewater treatment[J]. Water Research,1998,32(1):179-185
    152 O_Melia,C.R.,Hahn,M.W.,Chen, C.T..Some effects of particle size in separation processes involving colloids[J].Water Science and Technology, 1997,36(4):119-126
    153 Martin,J.F., Reddy,K.R.. Interaction and spatial distribution of wetland nitrogen processes[J]. Ecological Model,1997,105:1-21
    154 Rittman,B.E.,McCarty,P.L..Evaluation of Steady State Biofilm Kinetics[J]. Biotechnol. Bio-eng ,1980,22:23-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700