固定化微生物与植物联合净化养殖废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水质与水产养殖系统持续、稳定、健康运行密切相关,养殖废水净化成为养殖过程(特别是闭合循环养殖系统)的一个重要环节。许多研究发现利用植物或微生物对养殖废水进行处理是一种经济有效的方法。本论文从水产养殖系统排污口筛选出脱氮效果较好的异养硝化菌,之后将筛选出的异养硝化菌固定化于陶粒或人工水草中,最后将固定化微生物分别与夏秋季蔬菜植物—水蕹菜(Ipomoea aquatica Forsk)和冬春季牧草—多花黑麦草(Lolium multiflorum Lam. )联合净化养殖废水,研究结果概况如下:
     1、通过富集、分离、初筛选和复筛选,从水产养殖闭合循环系统的排污口原位筛选出8株异养硝化菌,将这8株菌分别处理灭菌的水产养殖废水,从中挑选出脱氮效果较好的X1、X2、X3和X4菌株。24h内,X1、X2和X3对养殖废水中氨氮的去除率分别为80.01%、67.65%和66.49%,120h内,X4对氨氮的去除率也达到75.01%;96h内,X1、X2、X3和X4对TN的去除率分别为32.63%、31.77%、12.03%和21.48%,并且在处理过程中各处理组均无亚硝态氮和硝态氮积累现象。通过形态观察、生理生化试验和16S rDNA序列分析初步确定X1、X2、X3和X4分别为假单胞菌(Pseudomonas sp.)、巨大芽孢杆菌(Bacillus megaterium)、弯曲芽孢杆菌(Bacillus flexus)和中间苍白杆菌(Ochrobactrum intermedium)。
     2、在好氧条件下,以葡萄糖和硝酸钠为唯一碳源和氮源时,X1、X2和X3去除硝态氮的能力强,并且氨氮和亚硝态氮基本无积累,具有好氧反硝化能力,其中X1的能力最强;而X4不能生长,无去除硝态氮的能力,不具有好氧反硝化能力。在厌氧或兼性厌氧条件下,以葡萄糖和硝酸钠为唯一碳源和氮源时, X1、X2、X3和X4均不能生长,无去除硝态氮的能力,四株菌不具有厌氧反硝化能力。通过查阅大量资料发现只有X2(巨大芽孢杆菌)和X3(弯曲芽孢杆菌)是无致病性菌,可直接用于水产养殖废水的原位处理。在实验室条件下研究发现:在中性环境中,温度为30℃时,菌株X2的脱氮效果最佳;在中性偏碱性环境中,温度为30~37℃时,菌株X3的脱氮效果最佳。并且X2和X3混合菌对废水的脱氮效果好于X2或X3单种菌。
     3、以陶粒和人工水草为载体,采用吸附法对混合菌(X2、X3)进行固定化,比较了固定化时间(1、3、5、7、10d)对固定化效果的影响,以及在处理人工模拟废水时,固定化时间对固定化微生物陶粒和固定化微生物人工水草的氨氮去除和脱氮效果的影响。结果显示:固定化时间对固定化效果和固定化微生物的氨氮去除和脱氮效果有显著影响。固定化5d的陶粒的效果最好,并且固定化5d和7d的陶粒对废水的氨氮去除和脱氮效果最好;固定化时间对人工水草固定化效果影响较小,除了固定化时间为1d外,其他固定时间处理之间的固定化效果差异不明显,而且固定化3d和5d的人工水草对废水的氨氮去除和脱氮效果最好。
     固定化微生物陶粒和固定化微生物人工水草对废水中氨氮的去除率以及脱氮效果之间比较差异不明显。但由于陶粒孔隙的孔径比人工水草小,更容易滞留微生物;强度大,耐水力冲击;浮性大,好氧微生物易生长繁殖,因此固定化微生物陶粒更适合于水产养殖废水处理。
     固定化微生物陶粒与陶粒相比,固定化微生物陶粒对人工模拟废水的脱氮效果更好,固定化陶粒中的微生物可以利用废水中的有机物生长繁殖,再通过硝化反硝化作用进行脱氮。
     4、用固定化微生物与植物联合、游离微生物与植物联合、植物、固定化微生物、游离微生物以及对照组分别处理水产养殖废水,结果显示:
     ⑴较高温度条件下,水蕹菜与微生物联合以及水蕹菜或微生物单独处理养殖废水均有一定的净化效果。从对TN的去除效果分析,总体效果为固定化菌+水蕹菜(IB+I)>游离菌+水蕹菜(FB+I)>水蕹菜(I)>固定化菌(IB)>游离菌(FB),其中游离菌组净化效果与对照组(CK)没有显著差异。各处理组对氨氮、亚硝态氮、硝态氮和CODMn均有去除效果,对氨氮的去除效果最好。随着处理时间的延长,水蕹菜与微生物联合作用的效果更加明显;并且与游离微生物相比,固定化微生物的优势也不断显示出来。试验结束时,IB+I、FB+I、I、IB、FB和CK对TN的去除率分别为74.94%、59.78%、49.18%、17.91%、1.45%和1.21%,各处理组之间的差异显著(p<0.05)。
     ⑵在较低温度条件下,多花黑麦草与微生物联合以及多花黑麦草或微生物单独处理水产养殖废水也具有一定的效果,但效果不如高温条件下采用水蕹菜和微生物联合作用或者单独作用。从对TN的去除效果分析,总体效果为固定化菌+多花黑麦草(IB+L)=游离菌+多花黑麦草(FB+L)>多花黑麦草(L)>固定化菌(IB)>游离菌(FB),其中游离菌组净化效果与对照组(CK)没有显著差异。各处理组对氨氮的去除效果明显,去除速率最快;而从对亚硝态氮和硝态氮的去除效果上看,含有多花黑麦草的处理效果好,单独微生物处理组效果不明显。这可能是低温时,微生物的作用未正常发挥,植物的作用被凸显。
     ⑶从植物根际微生物数量动态变化分析发现:不论是高温还是低温,植物与微生物联合处理组的植物根际微生物的数量高于植物单独处理组,且高温时差异更明显。试验过程中,植物根际微生物的数量先升后降,从细菌平板上可观察到X2(巨大芽孢杆菌)和X3(弯曲芽孢杆菌)的优势性随处理时间的延长逐渐消失。
     ⑷通过相关性分析发现:同一时间段内,各处理组对TN、氨氮、亚硝态氮、硝态氮和CODMn的去除率与植物根际微生物总量之间成正相关,高温条件下,相关性显著;不论高温还是低温,植物对各氮素和CODMn的去除率与植物根际细菌总量之间的正相关性高于放线菌,且真菌的正相关性最小。
Purification of aquaculture wastewater is a key process for aquaculture process, in particular, circulation aquaculture systems, because water quality and aquaculture system sustained, stable and healthy operated are closely related. Many researches have found that the use of plants or microorganisms to treat aquaculture wastewater is a cost-effective method. So, in this thesis, some highly efficient heterotrophic nitrifiers were isolated from the sewage outfall of the circulation aquaculture system, and then, which were immobilized with ceramic and artificial plant. Finally, the immobilized microorganisms were integrated with the summer and autumn vegetables Ipomoea aquatica Forsk and the winter and spring forage grass Lolium multiflorum Lam. respectively. And the effect of purifying aquaculture wastewater by the integrated system was tested. The results summarized as follows:
     1. Eight strains of heterotrophic nitrifers were isolated from the sewage outfall of the circulation aquaculture system through the enrichment, separation, initial screening and re-screening. The sterile aquaculture wastewater was treated by these eight strains, and X1, X2, X3 and X4 strains were selected for the high removal rate of various forms of nitrogen. Within 24h, the removal rate of ammonia with X1, X2 and X3 strains were 80.01%, 67.65% and 66.49% in sterile aquaculture wastewater, and within 72h the removal rate of ammonia with X4 strain was 75.01%. Within 96h, the removal rate of TN by X1, X2, X3 and X4 strains were 32.63%, 31.77%, 12.03% and 21.48%, and in the process, the all treatments were without accumulation of nitrite and nitrate. By morphological, physiological and biochemical tests and 16S rDNA sequence analysis initially identified X1, X2, X3 and X4 strains were Pseudomonas sp., Bacillus megaterium, Bacillus flexus and Ochrobactrum intermedium respectively.
     2. Through the aerobic/anaerobic denitrification testing, it was found that under aerobic condition, glucose and sodium nitrate as the sole source of carbon and nitrogen source, X1, X2 and X3 strains, with aerobic denitrification capacity, had the high removal of nitrate, and without accumulation of ammonia and nitrite, and which the strongest of aerobic denitrification was X1 strain. But, under the same condition, the X4 strain could not grow, without the ability of aerobic denitrification, and was no removal of nitrate. Under anaerobic or facultative anaerobic condition, glucose and sodium nitrate as the sole source of carbon and nitrogen source, X1, X2, X3 and X4 strains, without the capacity of anaerobic denitrification, can not grow, and were disability to remove nitrate. Through refering to large amounts of material, I found that only X2 (B.megaterium) and X3 (B.flexus) are non-pathogenic strains, and can be directly used for in situ treatment of aquaculture wastewater. The effects of removing nitrogen by X2 and X3 were tested preliminary with different culture temperature and initial pH values in the laboratory condition. It was confirmed that the removal rate of TN by X2 strain was the highest, when the pH value was neutral, and the temperature was 30℃. The removal rate of TN by X3 strain was the highest, when the pH value was neutral and alkaline, and the temperature is 30~37℃. Comparing the effects of aquaculture wastewater treatment by the X2, X3 separated and the X2, X3 mixed, it was found that the TN removal in wastewater by the mixed bacteria was better than by a single species of bacteria.
     3. By adsorption the mixed microorganisms(X2 and X3) were immobilized used ceramic and artificial aquatic plants as carrier. Comparing the effect of immobilized microorganisms under the different immobilization time, and the removal rate of ammonia and TN by the ceramic and artificial plant immobilized microorganisms in 1d,3d,5d,7d,10d. It was found that the immobilization time had the remarkable influence to the immobilization effect and the removal rete of ammonia and TN. The effect of ceramic was the best by immobilized 5d, and the ammonia and TN removal of ceramic immobilized by 5d and 7d were the best in the artificial wastewater. The immobilization time has slight effect to the artificial plant. In addition to the immobilization time of 1d, the difference of the total number of bacteria was not obvious in artificial plant with the other immobilization time. Moreover, the ammonia and TN removal of the artificial plant immobilized with 3d and 5d was highest in the artificial wastewater.
     There was no significant difference between the removal of ammonia and TN by the ceramic and artificial plant immobilized microorganisms in the artificial wastewater. However, the ceramic was easier to stay microorganisms, on account of the pore diameter of the ceramic is smaller than artificial plant, and the ceramic can impact the great water power for its higher strength, and aerobic microbial more easily grow and reproduce for its floating is large, so immobilized ceramic was more suitable for aquaculture wastewater treatment.
     Compared with the immobilized microorganism ceramic(IM) and unimmobilized microorganism ceramic(UIM), IM was better for removing nitrogen in the artificial wastewater, because the microorganisms in the immobilized ceramic could use the organic matter included wastewater to grow and reproduce, and then removed nitrogen through the nitrification and denitrification.
     4. Comparing the immobilized microorganisms with plants, free microorganisms with plants, plants, immobilized microorganisms, free microorganisms, as well as the control group treating the aquaculture wastewater separately, the results showed:
     ⑴under the high temperature condition, the effects of purifying the aquaculture wastewater by the vegatale I.aquatica Forsks and microorganisms united or separated were tested. The effects of removing TN were immobilized microorganisms + I.aquatica(IB+I)>free microorganisms+ I.aquatica(FB+I) > I.aquatica(I) > immobilized microorganisms(IB) > free microorganisms(FB) , and the control group (CK) was not distinctly different with the FB. All treatment groups had the effect of removing ammonia, nitrite, nitrate and CODMn in the aquaculture wastewater, and the removal rate of ammonia was the highest. Along with the extension of treatment time, the combined effect of the I.aquatica and microorganisms was more obvious. Compared with free microorganisms, the superiority of immobilized microorganisms had been demonstrated unceasingly. When the experiment ended, the removal rate of TN by IB+I, FB+I, I, IB, FB and the CK treatment groups were respectively 74.94%, 59.78%, 49.18%, 17.91%, 1.45% and 1.21%, and the differences between various treatment groups were remarkable (p<0.05)
     ⑵under the low temperature condition, the effect of purifying the aquaculture wastewater by L.multiflorum Lam and microorganisms united or separated was tested, but the effect was inferior to use the I.aquatica Forsks and microorganism jointed or alone in the hot condition. The effects of removing TN were immobilized microorganisms + L.multiflorum Lam(IB+L) = free microorganisms+ L.multiflorum Lam(FB+L) > L.multiflorum Lam(L) > immobilized microorganisms(IB) > free microorganisms(FB), and the control group (CK) was not obviously different with the FB. The elimination effect of ammonia was remarkablely different among all treatment groups, and the removal rate of ammonia was the greatest by various treatment groups. The effect of removing nitrite and nitrate by the treatment groups included L.multiflorum Lam were better than the independent microorganism treatment groups. This may be due to low temperature, the function of microorganisms was normally displayed, and the role of plant been highlighted
     ⑶From the dynamic change of microorganism’s total quantity in the plant rhizosphere analysis, It is discovered that no matter is the high temperature or the low temperature, the total quantity of microorganism in the plant and microorganisms union treatment groups were higher than that in the plant independent treatments, moreover under the high temperature condition, the difference was more obvious among various treatment groups. During the experiment, the total number of microorganisms in the plant rhizosphere rose first, and then drops. Along with time extension, the advantages of X2(B.megaterium) and X3(B.flexus) gradually disappeared in all treatment groups
     ⑷I n the same period of time, the removal rate of TN, ammonia, nitrite, nitrate, CODMn was positive related with the total quantity of rhizosphere microorganism by the correlation analysis, and the correlation was more remarkable in high temperature condition. Either high or low temperature, the relevance between the removal rate of TN, ammonia, nitrite, nitrate, CODMn and the total number of rhizosphere bacteria was higher than the total number of rhizosphere actinomycetes. As well as, the relevance between the removal rate and rhizosphere fungus was the smallest.
引文
[1] ANDREAS P R, KOOPS H P. Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria [J]. Alicrobiological Research, 2005,160(1):27-35.
    [2] ARMIN G, SHEDLON T,MICHAL G, et al. Nitrification in a Biofilm at Low pH Values: Role of In Situ Microenvironments and Acid Tolerance[J].Applied and Environmental Microbiology, 2006, 72(6): 4283-4292.
    [3] ARTS P A M, ROBERTSON L A, KUENEN J G. Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures[J]. FEMS Microbiol Ecol, 1995, 18 (4) : 305-315.
    [4] BOLEYA, MULLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering, 2000, 22 (1): 75- 85.
    [5] BRIERLEY E D R, WOOD M. Heterotrophic nitrification in an acid forest soil: isolation and characterisation of a nitrifying bacterium[J]. Soil Biology and Biochemistry, 2001,33(10): 1403- 1409.
    [6] BRYCKI B, SEIFERT K, SZYMANSKA K, et al. The effect of oxidizing biocides on desulfurication and denitrification processes[J].Polish Journal of Environmental Studies,2000,9 (5), 363-367.
    [7] CAO G M, ZHAO Q X, SUN X B, et al. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removel by coimmobilized cells[J].Enzyme Microbial technology,2002,30:49-55.
    [8] CASTIGNETTI D, HOLLOCHER T C. Nitrogen redox metabolism of a heterotrophic nitrifying-denitrifying alcaligens sp. From soil[J]. Applied and Environmental Microbiology, 1982,44:923-928.
    [9] CHEN J C , CHENG S Y. Hemolymph oxygen content, oxyhemocyanin, protein level and ammonia excretion in the shrimp Penaeus monodon exposed to ambient nit rite[J]. Comp Physiol, 1995,164:530-535.
    [10] CHEN K C, LEE S C, CHIN S C, et al. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms[J]. Enzyme and Microbial Technology, 1998, 23:311–320.
    [11] CHEN S, LING J, BLANCHETON J P. Nitrification kinetics of biofilm as affected by water quality factors[J]. Aquacultural Engineering, 2006,34(1):179- 197.
    [12] CHOI Y S, HONG S W, KIM S J, et al. Development of a biological process for livestock wastewater treatment using a technique for predominant outgrowth of Bacillus species[J]. Water Science and Technology, 2000, 45:71-78.
    [13] CLARKE R, PHILLIPS M. Environmental impacts of salmon aquaculture[J]. AAC Bulletin,1989, 4:24-31.
    [14] DAUM M, ZIMMER W, PAPEN H, et al. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier pseudomonas putida[J]. Current Microbiology, 1998,17:281-288.
    [15] DUGGIN J A, VOIGT G K. Autotrophic and heterotrophic nitrification in response to clear cutting no rather hardwood forest[J].Soil Biology and Biochemistry,1991, 23(8):779-787.
    [16] GABRIELE S, BARBARA B, PETRA D, et al. The ammonia-oxidizing nitrifying population of the River Elbe estuary [J].FENS Microbiology Ecology, 1995,17(3):177-186.
    [17] GERAATS S G M, HOOIJMANS C M, VAN N. The use of a metabolically structured model in the study of growth, nitrification and denitrification by Thiosphaera pantotropha[J]. Biotechnol Bioeng, 1990, 36: 921-930.
    [18] GUPTA, A B. Thiosphaeern pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification[J]. Enzyme and microbial technology. 1997,21(8): 589-595.
    [19] HENNING P, KRISHTIE A D, MARY K F. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques [J] . Biogeochemistry ,1999 ,44 :135-150.
    [20] HISASHI N, TOMOHIRO K, MASANORI W. Simultaneous removal of chemical demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic acteria[J]. Biotechnology Letters, 2000, 22:1369-1374.
    [21] HONG M L ,CHEN L Q ,SUN X J ,et al. Metabolic and immune responses in Chinese mitten-handed crab ( Eriochei rsinensis) juveniles exposed to elevated ambient ammonia[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2007 ,145 (3) :363-369.
    [22] HOOPER A B , VANNELLI T, BERGMANN D J , et al . Enzymology of the oxidation of ammonia to nitrite by bacteria[J]. Antonie van Leeuwenhoek ,1997,71 : 59 - 67.
    [23] JAYASANKAR P, MUTHU M S. Toxicity of ammonia to larvae of Penaeus indicus H. Miline Edwards[J]. Indian Joural of Fisheries, 1983, 30(1): 1-12.
    [24] JETTEN M S M. Towards a more sustainable municipal wastewater treatment system [J].Water Sci Techi,1997, 35 (9) :171-180.
    [25] JEWELL E C, MASTER M L. On-site wastewater treatment using unsaturated absorbent bio- filters[J]. Envirortmental Quality, 1995, 24(2): 86-95.
    [26] JOHN G H, NOEL R, KRIEG, et al. Bergey's manual of determinative bacteriology (9th edition)[M]. Lippincott Williams&Wilkins. 1994.
    [27] JOO H S, HIRAI M, SHODA M. Nitrification and denitrification in high-strength ammonium by Alcaligenes faecalis[J]. Biotechnology Letters, 2005,27:773-778.
    [28] KILLHAM K. Heterotrophic nitrification. J I Prosser. Nitrification[J]. IRL Press, 1986. 117-126.
    [29] KIM J K, PARK K J, CHO K S, et al. Aerobic nitrification-denitrification by heterotrophicBacillus strains[J]. Bioresource Technology,2005,96 1897-1906.
    [30] KIM S K, KONG I, LEE B H, et al.Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier[J]. Aquacultural Engineering 2000,21:139–150.
    [31] KOCH C , RAINEY F A , STACKBRANDT E. 16S rDNA studies on members of Arthrobacter and Micrococcus:an aid for their future taxonomic restructuring[J]. FEMS Microbiol Letter, 1994,123:167-1721.
    [32] KUENEN J G, ROBERTSON L A. Combined nitrification-denitrification processes[J]. FEMS Microbiology Reviews, 1994, 15:109-117.
    [33] KYUNSU N, YONGWOON L, WANJIN L,et al. Characterization of PCB-Degrading Bacteria Immobilized in Polyurethane Foam[J]. Journal of Bioscience and Bioengineering, 2000, 90(4): 368-373.
    [34] LANG E, JAQNOW C. Fungi of a forest soil nitrifying at low pH values[J]. FEMS Microbiology Ecology, 1986,38:257-265.
    [35] LIN Y, HE Y L, KONG H N, et al. Isolation and characterization of heterotrophic nitrifying bacteria in MBR [J]. J Environ Sci ,2005 ,17(4) :589-592.
    [36] LIN Y, KONG H N , HE Y L , et al. Simultaneous nitrification and denitrification in a membrane bioreactor and isolation of heterotrophic nitrifying bacteria[J]. Japanese Journal of Water Treatment Biology, 2004,40(3):105-114.
    [37] LINPING K, VERSTRAETE W. Anunonium removal by the oxygen-limited autotrophic nitrification denitrifieation system [J].APPI.Envlron Miroliol,1998,64:4500-4504.
    [38] LIU L H, KOENING A. Use of limestone for pH control in autotrophic denitrification: batch experiments[J].Process Biochemistry, 2002, 37: 885-893.
    [39] LUDWIG W,MITTENHUBER G,FRIDRECH C G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans[J].Int.J.Syst.Bacterio1,1993,43:363-367.
    [40] MANJU N J, DEEPESH V, ACHUTHAN C, et al. Immobilization of nitrifying bacterial consortia on wood particles for bioaugmenting nitrification in shrimp culture systems[J]. Aquaculture,2009,294:65-75.
    [41] MIKE S M J, SUSANNE L, GERARD M, et a1. Novel principles in the microbial conversion of nitrogen compounds[J]. Antonic Van Leeuwenhoek.1997,71:75-93.
    [42] MULDER A, GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiology Ecology, 1995, 16: 177-184.
    [43] NAOHIRO H, MITSUYO H, TAKASHI A,et al. Antifungal effect of a heterotrophic nitrifier Alcaligenes faecalis[J]. Biotechnol Letter,1998, 20 (7): 703-705.
    [44] NISHIO T, YOSHIKURA T, MISHIMA H, et al. Conditions for Nitrification and Denitrification by an Immobilized Heterotrophic Nitrifying Bacterium Alcaligenes faecalis OKK17 [J]. Journal of Fermentation and Bioengineering, 1998, 86(4):351-356.
    [45] BORDJIBA O S, KADRI R, SEMADI M, et al. Removal of herbicides from liquid media byfungi isolated from a contaminated soil[J]. Eviron Qual., 2001, 30: 418-427.
    [46] PCHANA K, KELLER J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Wat. Sci. Tech. 1999,39(6): 61-68.
    [47] QIAO X L, ZHANG Z J, CHEN Q X, et al. Nitrification characteristics of PEG immobilized activated sludge at high ammonia and COD loading rates[J]. Desalination, 2008,222:340–347.
    [48] RAINEY F A, BURGHARDT J, KROPPENSTEDT R,et al.Polyphasie evidence for the transfer of Rhodococcus roseus to Rhodococcus rhodochrous[J]. Int J Syst Bacteriol,1995, 45:101-103.
    [49] REBERTSON L A,KUENEN J G. Heterotrophic nitrification in Thiosphaera pantotropha:Oxygen uptake and enzyme studies[J]. J.Gen.Microbiol.,1988,134:857-863.
    [50] RICHARDSON D J, WATMOUGH N J . Inorganic nitrogen metabolism in bacteria [J] . Current Opinion in Chemical Biology,1999, 3:207-219.
    [51] RICHARDSON D J, WEHRFRITZ J M, KEECH A , et al . The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification[J]. Biochem Soc Trans , 1998, 26(3):401-408.
    [52] ROBERTSON L A, KUENEN J G.Thiosphaera pantotropha gen.nov.sp.nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. J. Gen. Microbiol. 1983,129:2847-2855.
    [53] RUIMY R , RIEGEL P, BOIRON P, et al . Phylogeny of the genus Corynebacterium deduced from analyses of small subunit ribosomal DNA sequences[J] . Int J Syst Bacteriol,1995,45:740-746.
    [54] MISHRA S, JYOT J, KUHAD R C, et al. Evaluation addition to stimulate in situ bioremediation of oily-sludge-contaminated soil[J]. Appl Environ Microbiol, 2001, 67: 1675-1682.
    [55] SCHIMEL J P, FIRESTONE M K. Identification of heterotrophic nitrification in a sierran forest soil [J]. Applied and Environmental Microbiology, 1984, 48 (4): 802-806.
    [56] SEO J K, JUNG I H, KIM M R, et al. Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquarium system[J]. Aquacultural Engineering 2001,24:181–194.
    [57] SEO J K, JUNG I H, KIM M R, et al. Nitrification performance of nitrifiers immobilized in PVA for a marine recirculating aquarium system [J]. Aquacultural Engineering, 2001,24(3):181-194.
    [58] SHAN H, OBBARD J P. Ammonia removal from p rawn aquaculture water using immobilized nitrifying bacteria [J]. Appl Microbiol Biotechnol, 2001,57:791-798.
    [59] SMART R M, BARKO J W. Laboratory culture of subermesed fresherwater macrophyte on natural sediments[J]. Aquatic Botany, 1983, 21(5): 251-263.
    [60] STROO H F, HIEIN T M, ALEXANDER M. Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus[J]. Appl.Environ.Microbiol.1986,52:1107-1111.
    [61] STROUS M, KUENEN, JETTEN S M S. Key physiology of anaerobic ammonia oxidation [J]. Appl & Environ Microbiol, 1999,65(7):3248-3250
    [62] SU J J , YEH K S , TSENG P W. A Strain of Pseudomonas sp. Isolated from Piggery Wastewater Treatment Systems with Heterotrophic Nitrification Capability in Taiwan[J]. Current Microbiology,2006,53:77-81.
    [63] SULTAN S, HASNAIN S. Characterization of an Ochrobactrum intermedium strain STCr-5 manifesting high level Cr(VI) resistance and reduction potential [J]. Enzyme Microb Tech, 2006, 39:883-888.
    [64] SULTAN S, HASNAIN S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals [J]. Bioresour Technol, 2007, 98:340-344.
    [65] KIM S K, KONG I, LEE B H, et al. Removal of ammonium-N from a recirculation aquacultural system using an system using an immobilized nitrifier[J]. Aquacultural Engineering, 2000, 21:139-150.
    [66] TAKAYUKI N, TARO Y, HIROTSGHU M, et al. Conditions for Nitrification and Denitrification by an Immobilized Heterotrophic Nitrifying Bacterium Alcaligenes faecalis OKK 17[J]. Journal of Fermentation and Bioengineering,1998,86(4):351-356.
    [67] TWSKA A , ALM E , REGAN J M, et al . Evolutionary relationships among ammonia-and nitrite- oxidizing bacteria[J]. J Bacteriol, 1994,176:6623-6630.
    [68] TOYAMA T, YU N, KUNADAN H, et al.. Accelerated Aromatic Compounds Degradation in Aquatic Environment by Use of Interaction between Spirodela polyrrhiza and Bacteria in its Rhizophere[J]. Journal of Bioscience and Bioengineering, 2006, 101(4): 346-353.
    [69] WANG L, HUANG L J, YUN L J, et al. Removal of Nitrogen, Phosphorus, and Organic Pollutants From Water Using Seeding Type immobilized Microorganisms[J]. Biomendical and Environmental Sciences, 2008,21:150-126.
    [70] WANG Y, TIAN Y, HAN B, et al. Biodegradation of phenol by free and immobilized Acinetobacter sp.strain PD12[J]. Journal of Environmental Sciences 2007,19:222-225.
    [71] WHITE J P, Johnson, G T. Aflatoxin production correlated with nitrification in Aspergillus.flavus group species[J]. Mycologia. 1982. 74: 718-723
    [72]操家顺,李欲如,陈娟.水蕹菜对重污染河道净化及克藻功能[J].水资源保护,2006 ,22 (2) :36-41.
    [73]常会庆,杨肖娥,濮培民.伊乐藻和固定化细菌共同作用对富营养化水体中养分的影响[J].水土保持学报,2005,19(3): 11-117.
    [74]常会庆.水生植物和微生物联合修复富营养化水体试验效果及机理研究[D].杭州:浙江大学农业资源利用,2006.
    [75]陈荷生,宋祥甫,邹国燕.利用生态浮床技术治理污染水体[J].中国水利(水污染防治),2005,5:50-53.
    [76]陈子爱,邓良伟,陈会娟,等.废水脱氮与沼气脱硫耦联菌株的驯化和分离[J].环境科学,2008,29 (4):1099-1103.
    [77]程树培,丁树荣,胡忠明.利用人工基质无土栽培水蕹菜净化镙丝废水的研究[J].环境科学,1991 ,12 (4) :47-51.
    [78]戴全裕,蔡述伟,张秀英.多花黑麦草对黄金废水净化与富集的研究[J].环境科学学报,1998,18(5):553-556.
    [79]戴全裕,将兴昌,张珩,等.水蕹菜对啤酒及饮食废水净化与资源化研究[J].环境科学学报,1996 ,16 (2) :334-337.
    [80]丁学峰. EM菌(Effective Microorganisms)联合高等植物对富营养化水体的处理效果研究[D].杭州:浙江大学.2006.
    [81]丁学锋,蔡景波,等. EM菌与水生植物黄花水龙(Jussiaea stipulacea Ohwi)联合作用去除富营养化水体中氮磷的效应[J].农业环境科学学报,2006,25(5):1324-1327.
    [82]东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [83]杜睿.内蒙古典型草原土壤N2O产生的机理探讨[J].中国环境科学,2000,20(5): 387-391.
    [84]方苹,范伟平,沈珈琦.氨氮脱除的生物技术研究进展[J].南京工业大学学报,2003, 25(5):107-110.
    [85]高延耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化一反硝化现象[J].给水排水, 1998, 24(2):6-9.
    [86]郭立新.循环水培高等陆生植物系统对水产养殖废水的净化研究[D].杭州:浙江大学环境工程, 2004.
    [87]郭沛涌,朱荫湄,宋祥甫,等.陆生植物黑麦草(Lolium multiflorum)对富营养化水体修复的围隔实验研究—氨氮的净化效应及其动态过程[J].浙江大学学报(理学版),2007,34(1): 76-79.
    [88]韩西海,杨连生,陈长顺,等.塑料多孔球形填料应用于石化废水处理的研究[J].石油化工环境保护,1998,2:5-11.
    [89]何霞,赵彬,吕剑,等.异养硝化细菌Bacillus sp. LY脱氮性能研究[J].环境科学,2007,28(6):1404-1408.
    [90]何旭辉.微生物固定化技术在SBR工艺中的应用研究[M].兰州:兰州交通大学, 2006.
    [91]何义进.微生态制剂讲解养殖水体氨氮及亚硝酸盐的研究[M]南京:南京农业大学,2007.
    [92]洪美玲.水中亚硝酸盐和氨氮对中华绒毛蟹幼体的毒性效应及维生素E的营养调节[D].上海:华东师范大学,2007:1-151.
    [93]黄正,范玮,李谷,等.固定化硝化细菌除去养殖废水中氨氮的研究[J].华中科技大学学报,2002,31 (1):18-20.
    [94]江伟,江远清.生物转盘处理水产养殖废水的氨氮研究[J].北京水产,2002,3:12-13.
    [95]姜明娇.异养硝化细菌的分离鉴定及其硝化特性的研究[M].长沙:湖南农业大学水产养殖, 2008.
    [96]蒋战洪.污水处理用填料的种类、性能和发展趋势[J].环境污染与防治,1994,16 (4):13-16.
    [97]李阜棣.农业微生物学实验技术[M].北京:中国农业出版社,1996.
    [98]李海明.固定化微生物技术在苏州重污染河道治理中的应用研究[D].南京:河海大学市政工程,2007.
    [99]李洁,陈华红,赵国振,等.两株具有抗癌活性内生细菌的分离及分类[J].微生物学杂志.2007,27(1):1-4.
    [100]李先会.水生植物-微生物系统净化水质效应研究[D].无锡:江南大学环境工程,2008.
    [101]李雪梅,杨中艺,简曙光,等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报(自然科学版),2000,39(1):81-85.
    [102]李欲如,操家顺,徐峰,等.水蕹菜对苏州重污染水体净化功能的研究[J].环境污染与防治,2006 ,28 (1) :69-71.
    [103]李正魁,张晓姣,杨竹攸,等.基于固定化氮循环细菌技术的镇江金山湖生态工程效果研究[J].环境科学,2009,30(6):1626-1631.
    [104]林燕,孔海南,何义亮,等.异养硝化细菌的分离及其硝化特性实验研究[J].环境科学,2006,27(2):324-328.
    [105]刘双江,杨惠芳,周培谨,等.固定化光合细菌处理豆品废水产氢研究[J].环境科学,1994, 16(1):42-44.
    [106]刘鹰,王玲玲.集约化水产养殖污水处理技术及应用[J].淡水渔业,1999,29(10):22-24.
    [107]刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报, 2004,10(4):521-525.
    [108]罗勇胜,李卓佳,杨莺莺,等.光合细菌与芽孢杆菌协同净化养殖水体的研究[J].农业环境科学学报,2006,25(增刊):206-210.
    [109]马放,邱珊,冯奇,等.生物陶粒在水源水处理中的实验[J].黑龙江科技学院学报,2006,16(4): 205-208.
    [110]马勇,彭永臻,陈伦强,等.实际生活污水短程/全程硝化反硝化处理中试研究[J].环境科学,2006,27 (12):2477-2482.
    [111]牛晓音,葛滢,常杰,等.黑麦草在净化富营养化水的人工湿地生态工程中的作用[J].湿地科学,2004,2(3):202-207.
    [112]泮进明,邵志鹏,苗香雯,等. NFT培多花黑麦草净化罗非鱼养殖循环废水[J].农业环境科学学报,2004,23(1): 148-150.
    [113]齐素芳.壳聚糖海藻酸钠固定化硝化细菌去除水体中氨氮的研究[M].广州:广东工业大学, 2007
    [114]乔顺风.水体氨氮转化形式与调控利用的研究[J].饲料工业,2005,26(12):44-47.
    [115]王会平.免烧结粉煤灰生物陶粒滤料研制及在曝气生物滤池中的应用研究[M].南昌:南昌大学环境工程, 2007.
    [116]王琳,李季,张鹏岩.巨大芽孢杆菌对富营养化景观水体的净化效果[J].生态环境学报,2009, 18(1): 75-78.
    [117]王平,吴晓芙,李科林,等.应用有效微生物群(EM)处理富营养化源水试验研究[J].环境科学研究, 2004,17(3):38-43.
    [118]王玥.两种主要环境因子对罗氏沼虾免疫功能的影响[D].杭州:浙江大学海洋生物学,2004:1-55.
    [119]魏瑞霞,武会强,张锦瑞,等.植物浮床-微生物对污染水体的修复作用[J].生态环境学报, 2009,18(1):68-74.
    [120]魏态莉,余瑞兰,聂湘平,等.水中亚硝酸盐对彭泽娜血红蛋白及高铁血红蛋白的影响[J].大连水产学报. 2001.16(l):67-71.
    [121]温东辉,唐孝炎.异养硝化及其在污水脱氮中的作用[J].环境污染与防治,2003,25(5):283- 285.
    [122]吴光前,张齐生,周培国,等.固定化微生物竹炭对废水中主要污染物的降解效果[J].南京林业大学学报(自然科学版),2009,33(1):20-24.
    [123]吴中华,刘昌斌,刘存仁,等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J].华中师范大学学报:自然科学版,1999,33 (1) :119-122.
    [124]徐晓锋,杨林章,许海,等.黑麦草水培系统对化粪池粪污滤液中氮磷净化效果[J].应用生态学报,2006,17(10): 1815-1819.
    [125]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:103-110.
    [126]闫志英,廖银章,李旭东,等.新型废水生物脱氮的微生物学研究进展[J].应用与环境微生物学报,2006,12(2):292-296.
    [127]杨俊豪,胡学智.地衣芽孢杆菌A.40耐高α-淀粉酶的研究[J].微生物学报,1990,17(4): 286-289.
    [128]袁冬海,席北斗,魏自民,等.微生物-水生生物强化系统模拟处理富营养化水体的研究[J].农业环境科学学报:2007,26(1):19-23.
    [129]袁勇军. Ochrobactrum intermedium DN2烟碱降解途径及其在烟草中的应用研究[D].南京:南京农业大学生物工程, 2007.
    [130]运珞伽,李谷,刘志伟,等.稚鳖养殖水体中异养细菌及自养细菌的初步研究[J].同济医科大学学报, 2000,29(5):397-399.
    [131]张光亚,陈美慈,韩如旸,等.一株异养硝化细菌的分离及系统发育树分析[J].微生物学报,2003,43(2):156-161.
    [132]张建梅.植物修复技术在环境污染治理中的应用[J].环境科学与技术, 2003,26(6):55-57.
    [133]张景来,王剑波,常冠钦,等.环境生物技术及应用[M].北京:化学工业出版社, 2002.
    [134]张柯,宁德冈,卫东.枯草芽抱杆菌芽抱表而展小重组抗原疫苗研究进展[J]微生物学报, 2006,33(5):134-137.
    [135]赵斌,何绍.江微生物学实验[M].北京:科学出版社,2002.
    [136]赵诣.三株异养硝化细菌的分离、特征及其对水产养殖废水脱氮作用的研究[D].杭州:浙江大学微生物学, 2010.
    [137]周乐.多环芳烃降解菌的筛选、降解条件及其与玉米联合修复菲、芘污染土壤的研究[D].南京:南京农业大学微生物学, 2006.
    [138]朱晓宇,王世梅,梁剑茹,等.两株高效好氧反硝化细菌的分离鉴定及其脱氮效率[J].环境科学学报, 2009, 29(1): 111-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700