氨氧化细菌强化倒置反硝化生物滤池深度处理城市污水中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展和城市化进程的加快,城市用水供需矛盾日益加大。进一步开发城市污水,实现污水资源化和中水回用,对于保障城市安全供水和环境资源的可持续利用具有重大的战略意义。近年来,曝气生物滤池(Biological aerated filter,BAF)技术在污水处理领域得到了广泛的应用,但作为三级单元深度处理城市污水,BAF技术仍然存在硝化细菌生长缓慢、脱氮性能不稳定等问题。生物强化技术通过向生物处理系统中引入具有特定功能优势微生物能够起到快速增加细菌数量并提高系统对目标污染物去除效率的作用。研究利用生物强化来改善和提高BAF技术对低浓度污水深度处理的性能具有重大的现实意义和工程应用价值。
     本文结合我国城市污水处理厂出水的实际水质特征,采用由好氧硝化滤池和缺氧反硝化滤池串联组成的BAF工艺(即倒置反硝化曝气生物滤池工艺,O/ABAF)进行污水深度处理,并从南四湖湿地植物根际和活性污泥中筛选高效氨氧化细菌构建优势菌群对O/A BAF工艺进行强化,重点研究了强化前后O/A BAF工艺运行特性的变化特征以及工况条件的改变对生物强化后O/A BAF工艺性能的影响。在注重工程实际应用的同时,从理论上阐述了采用高效氨氧化细菌强化O/A BAF工艺对低底物浓度废水的脱氮性能的可行性。在此基础上,采用臭氧技术对O/A BAF工艺出水做进一步脱色强化处理,探讨了工艺参数。主要工作如下:
     1.对生物强化前O/A BAF工艺深度处理城市污水二级出水的运行特征进行了研究,包括工艺的挂膜启动方法和在低曝气量条件下的硝化反硝化特性。
     (1)在传统闷曝挂膜方法的基础上,增加了单池内循环回流工序,维持硝化滤池在低曝气量条件下(0.3m3/h)进行挂膜培养。25天后,O/A BAF工艺正式启动。此时,硝化滤池最大亚硝酸盐积累率为60%,对应着反硝化滤池13mg/L的甲醇投加量,O/A BAF工艺对总氮的最大去除率为30%。
     (2)对于进水氨氮负荷为0.04-0.26kgNH4-N/m3.day,有机负荷为0.21-0.65kgCOD/m3·day,控制硝化滤池在低曝气量条件下运行能够维持O/A BAF工艺的短程硝化反硝化特性。当曝气量为0.4m3/h时,硝化滤池实现最大亚硝酸盐积累率(66.9%)。此时硝化滤池中对应的平均溶解氧浓度为1.5mg/L,氨氮去除率为37.2%。
     (3)硝化滤池在低曝气量条件下(0.3-0.5m3/h)表现出一定的同步硝化反硝化特性。反硝化滤池对总氮的去除与硝化出水中氧化态氮的浓度和甲醇投加量有关。对于曝气量为0.4m3/h的硝化出水,当甲醇投加量为20mg/L时,反硝化滤池出水总氮平均浓度为14.1mg/L,可以满足《城市污水再生利用-景观环境用水水质标准GB/T 18921-2002》的要求,但出水水质不稳定,部分时段出水总氮浓度超标。
     2.优势氨氧化细菌的分离、筛选及特性研究。
     (1)从活性污泥和南四湖湿地植物芦竹、三棱草、柳絮等根际土壤中共筛选获得4株高效氨氧化细菌,其中,活性污泥2株(YH-1,YH-2);芦竹1株(YL-1);三棱草1株(YS-2)。四株细菌的格兰仕染色结果均呈阴性。通过透射电镜检测确定YL-1为椭球菌、YS-2为短杆菌、YH-1为螺菌、YH-2为长杆菌。
     (2)四株优势氨氧化细菌在较高的pH值(8.5)和游离氨浓度(18.2mg/L)下均表现出良好的氨氮去除特性,但对高负荷氨氮的去除受氧浓度条件的抑制。
     3.维持硝化滤池在曝气量为0.4m3/h条件下运行,利用筛选获得的四株高效氨氧化菌株构建优势菌群并投加至硝化滤池,重点研究了优势菌群的投加对O/A BAF工艺短程硝化和脱氮性能的影响。
     (1)采用人工投加的方式快速提高了硝化滤池中氨氧化化细菌的数量。
     (2)高效氨氧化细菌的投加提高了硝化滤池对氨氮的去除率和亚硝酸盐积累率,而硝化滤池硝化性能得到改善的同时也提高了O/A BAF工艺整体对总氮的去除效率。
     (3)在进水流量为2.0m3/h,硝化滤池曝气量为0.4m3/h,反硝化滤池甲醇投加量为20mg/L的条件下,对应着投加前后26.5%的氨氧化细菌增加率,硝化滤池对氨氮的去除率和亚硝酸盐的积累率分别提高了12.1和13.3%,O/A BAF工艺整体对总氮的去除率提高了9.2%。此时,O/A BAF工艺出水总氮平均浓度为11.9mg/L,能够稳定达到《城市污水再生利用-景观环境用水水质标准GB/T18921-2002》的要求。
     4.研究了曝气强度、甲醇投加量和温度等因素对生物强化后O/A BAF工艺硝化和脱氮性能的影响。
     (1)生物强化后,O/A BAF工艺对氨氮的去除效率随着硝化滤池曝气量的增加得到明显提高,但短程硝化特性遭到破坏。研究发现,当曝气量为0.6m3/h时,硝化滤池内仍有局部短程硝化现象发生,但当曝气量提高至1.0m3/h时,短程硝化完全消失。曝气量的增加在提高工艺氨氮去除效率的同时,也增强了工艺硝化性能的稳定性。
     (2)在甲醇投加量受限的条件下,硝化滤池曝气量的提高对反硝化滤池的脱氮性能有明显的抑制。对于进水流量为2.0m3/h,当反硝化滤池甲醇投加量为20mg/L时,控制硝化滤池曝气量在1.0m3/h,O/A BAF工艺可以同时取得较为理想的硝化和脱氮效果。此时,O/A BAF工艺出水氨氮和总氮平均浓度分别为0.79mg/L和13.2mg/L。完全满足《城市污水再生利用-景观环境用水水质标准GB/T18921-2002》的要求。
     (3)曝气量的增加改变了硝化滤池中氨氧化细菌在固着生物膜和悬浮生物体上的空间分布格局,促使更多的氨氧化细菌集中在具有固定生长优势的生物膜上生长,而固着态生物膜能够凭借其独特的结构特征和庞大的食物链系统,有效地保护氨氧化细菌免予被原生动物捕食和反冲流失,从而维持其高效生长。这也是导致生物强化后,O/A BAF工艺硝化性能稳定性随曝气量的增加而提高的主要原因。
     (4)生物强化提高了O/A BAF工艺对低温环境的承受力。工艺冬季运行结果表明,在进水流量为2.0m3/h,曝气量为1.0m3/h,甲醇投加量为20mg/L条件下,对于最低温度范围(水温6.4-11.9℃),O/A BAF工艺出水氨氮和总氮平均浓度分别为4.4mg/L和13.8mg/L,能够满足《城市污水再生利用-景观环境用水水质标准GB/T 18921-2002》的要求。
     5.考察了臭氧对O/A BAF工艺出水的脱色作用
     (1)在臭氧投加量为2.0mg/L,汽水接触时间为18min的条件下,O/A BAF工艺出水中10-18倍的色度可以降至1倍以下。
     (2)臭氧在对O/A BAF工艺出水进行脱色的同时,对水中的有机物和氨氮也具有一定的去除作用。
     本研究的主要创新点:
     (1)建立的生物强化O/A BAF+O3组合工艺,解决了BAF在三级处理中硝化细菌增长缓慢,脱氮性能不稳定的问题,确保出水稳定达到《城市污水再生利用-景观环境用水水质标准GB/T 18921-2002》,为城市污水深度处理与污水资源化提供了一种新的工艺模式。
     (2)提出了单池内循环回流+闷曝组合方式进行O/A BAF工艺挂膜启动的新方法,不仅省却了传统循环挂膜方法中单独设立的污泥外流池,而且解决了闷曝挂膜过程中出现的污泥沉积问题,为需要在不同氧条件下运行的滤池工艺的快速启动提供了新的技术途径。
     (3)筛选并培养了优势氨氧化菌,提高了BAF中生物膜的氨氧化菌的浓度及活性,强化了O/A BAF工艺对总氮的去除效率,阐明了优势氨氧化菌强化短程硝化与脱氮的作用机制。
     (4)研究了氨氧化细菌在悬浮生物体和固着生物膜上的生长特性和空间分布特征,从微生物学的角度揭示了曝气对生物强化O/A BAF工艺硝化性能的影响机理。
With the rapid development of economy and urbanization, the contradiction between water supply and demand becomes more serious. Therefore, further exploit municipal sewage and realize resources recycling are of great important to the security of water supply and the sustainable utilization of environment resources. Recently, the technology of biological aerated filter (BAF) has been wildly applied in wastewater treatment. However, as the tertiary treatment unit of municipal sewage, BAF shows the characteristics of slow growth rate of nitrifying bacteria, and unstable performance of nitrogen removal. Since biological enhancement technology could achieve the goals including to rapid increase bacteria amount and improve the removal efficiency of the target pollutants by introducing the dominant microbe with special functions to systems, it is of great significance and application value to study and adopt biological enhancement technology to improve the performance of BAF for treating municipal sewage with low substrate concentration.
     According to the actual characteristics of the effluent of Jinan wastewater treatment plant, this paper adopted oxic/anoxic BAF process (O/A BAF) to conduct tertiary treatment of municipal sewage. The dominant ammonia oxidizing bacteria (AOB) isolated from activated sludge and the rizhosphere of Nansi lake wetland plant were employed to enhance the performance of O/A BAF. The variation characteristic of O/A BAF performance before and after enhancement, as well as the effects of operation conditions on the enhanced O/A BAF performance was studied. On the basis of paying attention to the actual engineering application, the feasibility of adopting dominant AOB to enhance the performance of nitrification and denitrification of O/A BAF was elaborated theoretically. Finally, the effluent of O/A BAF was further decolorized by ozone, and the operation parameters of ozone process were discussed. The main works of this study were as follows:
     1. The operation character of O/A BAF before biological enhancement was studied, which includes the method of culture and startup, and the nitrification and denitrificaiton performance of O/A BAF under the conditions of low aeration rate.
     (1) On the basis of aeration, liquid recirculation was added to each filter. Nitrifying biofilter was cultivated at low aeration rate condition (0.3m3/h). After 25 days, O/A BAF achieved startup. This time, the maximum nitrite accumulation rate of nitrifying biofilter reached 60%, the highest removal rate of total nitrogen of denitrifying biofilter at the dosage of 20mg/L for methanol was 30%.
     (2) For the influent ammonia loadings of 0.04-0.26kgNH4-N/m3·-day and organic loadings of 0.21-0.65kgCOD/m3·day, it's possible to maintain the performance of partial nitrification and denitrification of O/A BAF by operating nitrifying bio-filter at low aeration rate level. When the aeration rate was 0.4m3/h, nitrifying biofilter achieved the maximum nitrite accumulation rate of 66.9%. In this case, the corresponding dissolved oxygen concentration and ammonia removal efficiency of nitrifying biofilter was 1.5 mg/L and 37.2%, respectively.
     (3) Nitrifying biofilter showed the characteristics of simultaneous nitrification and denitrification (SND) at the low aeration rates (0.3-0.5m3/h). The performance of denitrifying filter on the removal of total nitrogen (TN) was mainly related with the concentration of nitrogen oxide (NOx) and the dosage of methanol. For the effluent of nitrifying biofilter at aeration rate of 0.4m3/h, as the dosage of methanol was 20mg/L, the average concentration of TN in the effluent of denitrifying biofilter was 14.1 mg/L This could meet the requirement of landscape and environmental water quality standards (GB/T 18921-2002). Despite of it, the concentration of TN in the effluent of denitrifying biofilter was unstable, it was out of limits sometimes.
     2. The isolation, selection, and performance study of dominant AOB
     (1) Four strains of dominant AOB were isolated from activated sludge and the rizhosphere of Nansi lake wetland plants, which including one strains of Arundo donax (YL-1), one strains of Herb of rice galingale (YS-2),and 2 strains of activated sludge (YH-1, YH-2). The results of Glanz staining of four dominant AOB strains all show negative. By the observation of transmission electron microscopy (TEM), it can be determined that, the strains of YL-1, YS-2, YH-1 and YH-2 was coccoid, brevibacterium, spirillum and bacillus, respectively.
     (2) Four dominant AOB strains all showed excellent ammonia removal performance under the conditions of high pH value (8.5) and free ammonia concentrations (18.2 mg/L). Despite of it, their performance on the removal of high ammonia loading was limited by the concentration of oxygen.
     3. Micro-flora constituted by the four dominant AOB strains was added to the nitrifying filter which operated at aeration rate of 0.4m3/h,, and the effects of micro-flora on the nitrification and de-nitrification of O/A BAF was studied emphasizely
     (1) The amount of AOB in nitrifying filter increased rapidly after the micro-flora being added.
     (2) The introduction of micro-flora improved ammonia removal efficiencies and nitrite accumulation rate of nitrifying biofilter at the low aeration rate of 0.4m3/h. The improvement of nitrification performance of nitrifying filter enhanced the denitrifying efficiency of O/A BAF simultaneously.
     (3) As the inflow rate was 2.0 m3/h, aeration rate was 0.4m3/h, and the dosage of methanol to denitrifying biofilter was 20 mg/L, corresponding to the 26.5% increase of AOB amount in nitrifying biofilter, the ammonia remove efficiency and nitrite accumulation rate of nitrifying biofilter increased by 12.1% and 13.3%, respectively, and the TN removal efficiency of the O/A BAF increased by 9.2%. The concentration of TN in the effluent of O/A BAF process was 11.9 mg/L, which could meet the requirement of landscape and environmental water quality standards (GB/T 18921-2002).
     4. The effects of aeration rate, methanol dosage and temperature on the nitrification and denitrification performance of enhanced O/A BAF.
     (1) After the biological enhancement, the ammonia remove efficiency of nitrifying biofilter improved significantly with the rise of aeration rate, while its partial nitrification performance was undermined. As aeration rate was 0.6m3/h, there was local partial nitrification occurred in nitrifying biofilter, nevertheless, as aeration rate being raised to 1.0m3/h, the accumulation of nitrite disappeared in nitrifying biofilter. The increase of aeration rate could improve not only the efficiency but also the stability of ammonia removal of nitrifying biofilter.
     (2) As the dosage of methanol was limit, the increase of aeration rate in nitrifying biofilter inhibit the TN removal performance of denitrifying biofilter. For the inflow rate of 2,0m3/h, as the dosage of methanol was 20 mg/L, satisfactory removal efficiencies of both ammonia and TN could be achieved by O/A BAF simultaneously when the aeration rate of nitrifying biofilter was controlled at 1.0m3/h. In this case, the concentrations of ammonia and TN in the final effluent of O/A BAF were 0.79 mg/L and 13.2 mg/L, respectively. This could meet the requirement of landscape and environmental water quality standards (GB/T 18921-2002) completely.
     (3) The buildup of aeration intensity changed the space distribution of AOB between attached biofilm and suspended biosolids in nitrifying biofilter, and induced much more AOB to grow on attached biofilm. The special structure and complicated food chain of attached bio-film could protect AOB from being washout by backwash or predated by predator, and ensure their stable growth rate. This is also the main reason why the stability of nitrification performance of nitrifying biofilter improved with the rise of aeration rate.
     (4) Biological enhancement improved the shock resistance capacity of O/A BAF to the low temperature. The operation results of winter showed that, as the inflow rate was 2.0m3/h, aeration rate was 1.0m3/h and methanol dosage was 20mg/L, for the lowest temperature conditions (water temperature 6.4-11.9℃), the concentration of ammonia and TN in the effluent of O/A BAF was 4.4 mg/L and 13.8 mg/L, respectively. These concentrations could meet the requirement of landscape and environmental water quality standards (GB/T 18921-2002).
     5. The decolorization effects of ozone on the effluent of O/A BAF
     (1) As the dosage of ozone was 2.0mg/L, and the contact time between gas and liquid was 18 min, about 10-18 folds of chroma in the final effluent of O/A BAF could be reduced to smaller than one fold. This could meet the requirement of landscape and environmental water quality standards (GB/T 18921-2002).( chroma<30 folds).
     (2) Ozone also showed a certain removal performance of organic substance and ammonia to the effluent of O/A BAF when carried out the decolorization.
     The main innovation of the study was as follows:
     1. Aimed at the characteristics of poor organic substrate and low C/N ratio to the secondary effluent of municipal sewage, biological enhancement technology was introduced to O/A BAF for tertiary treatment of municipal sewage. This technology resolved the problems of O/A BAF about slow growth rate of nitrifying bacteria and unstable performance of TN removal aroused from the poor substrate conditions, and ensure the final effluent of O/A BAFs meet the requirement of landscape and environmental water quality standards (GB/T 18921-2002).This work provided a new process pattern for the application of BAF technology in wastewater treatment.
     2. Proposed a new culture method that aeration and liquid recirculation carried out simultaneously in a single reactor. This method could not only save the extra-designed sludge tank in traditional recalculating culture method, but also resolved the problem of sludge deposition in the aeration culture method. This method provided a new technical approach to the anoxic and facultative aerobic biofiltration process for achieve rapid culture and start.
     3. Selected and cultivated dominant AOB to increase the activity and quantity of AOB on attached biofilm, and thus enhance the removal of total nitrogen, Elucidated the mechanism of dominant AOB to the nitrification and denitrification performance of O/A BAF.
     4. By compared the growth properties and space distribution character of AOB on attached bio-film and suspended bio-solids, the affecting mechanism of aeration on nitrification performance of enhanced O/A BAF was revealed from the perspective of microbiology.
引文
[1]张耀国.建筑节水浅谈.山西建筑,2008,34(15):167.
    [2]曹风华.山东省节水灌溉现状与发展对策探讨.地下水,2009,31(5):109-111.
    [3]徐庆光.山东水资源可持续利用问题研究.山东经济,2002,109(2):56-59
    [4]中华人民共和国国家统计局.中国环境统计年鉴.中国统计出版社,2009.
    [5]林文波,李慧秋,王圣杰.城镇污水处理厂达国家一级排放标准的工艺选择实例.水工业市场,2009,(11):63-66.
    [6]刘云平,麦继婷,林联泉,孟东平.曝气生物滤池理论及应用研究.西南给排水,2010,32(3):6-8.
    [7]Wang XJ, Chen SL, Gu XY, Wang KY, Qian YZ. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment. Water Science and Technology,2008,58(4):919-923
    [8]Chang WS, Tran HT, Park DH, Zhang RH, Ahn DH. Ammonium nitrogen removal characteristics of zeolite media in a Biological Aerated Filter (BAF) for the treatment of textile wastewater. Journal of industrial and engineering chemistry,2009,15(4):524-528.
    [9]孙扬平,董京.文昌污水处理厂曝气生物滤池工艺研究.环境科学与管理,2007,32(7):77-79.
    [10]Liu YX, Yang TO, Yuan DX, W XY, Study of municipal wastewater treatment with oyster shell as biological aerated filter medium. Desalination,2010, 254(1-3):149-153
    [11]陈志伟,汪晓军.高浓度食品添加剂废水中试研究.环境科学与技术,2010,33(1):174-177.
    [12]张文存,段宝民,杨鸿鹰.BAF+絮凝沉淀+过滤法处理炼油污水.应用化工,2008,37(12):1429-1431.
    [13]朱乐辉,魏善彪,邵莉.混凝沉淀-曝气生物滤池-纳米材料复合膜技术在印染废水回用处理中的应用.水处理技术,2007,32(7):58-60.
    [14]杨兴华,董海燕,崔超,陈祥宏,蹇兴超.曝气生物滤池的设计、施工和运行情 况调研.中国给水排水,2006,22(12):92-95.
    [15]张欣,吴浩汀,谢凯娜.前置反硝化BAF工艺处理生活污水的脱氮试验研究.安全与环境工程,2008,15(1):58-61.
    [16]白慧玲,杨云龙.前置反硝化曝气生物滤池处理生活污水的研究.山西建筑,2010,36(16):154-155.
    [17]陈媛,成炜.前置反硝化UBAF在城镇污水处理厂的应用.工业水处理.2010,30(6):75-77.
    [18]伊学农,高玉琼,李晨光,谭学军.前置反硝化BAF工艺处理景观水体.中国给水排水,2010,26(5):69-72.
    [19]李微,傅金祥,刘守勇,和娟娟,焦杨.后置反硝化曝气生物滤池处理生活污水的研究.中国给水排水,2009,25(19):45-47.
    [20]伦琳,郑正,张继彪,梁越敢.改进型曝气生物滤池对生活污水氮去除的影响.环境工程学报,2010,4(5):1017-1022.
    [21]蔡军,安立超,黄荣富,陈勇.曝气生物滤池硝化脱氮的研究.环境科学与技术,2006,29(12):22-24.
    [22]郝晓地,魏丽,仇付国.内循环强化曝气生物滤池脱氮性能的研究.中国给水排水,2008,24(19):20-24.
    [23]侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响.中国给水排水,2005,21(12):19-23.
    [24]Guo JH, Wang SY, Huang HJ, Peng YZ, Ge SJ, Wu CY, Sun ZR. Efficient and integrated start-up strategy for partial nitrification to nitrite treating low C/N domestic wastewater. Water Science and Technology,2009,60(12):3243-3251
    [25]金吴云,沈耀良.影响曝气生物滤池硝化性能的因素.环境科学与管理.2008,133(11):76-79.
    [26]李思敏,刘强,秦卫峰,张志军.上向流曝气生物滤池去除氨氮效果及影响因素分析.中国给水排水,2009,25(3):102-108.
    [27]邱兆富,周琪,杨殿海,江建权.低碳氮比城市污水短程生物脱氮试验研究.工业水处理,2006,26(11):35-38.
    [28]姚晓园,陆天友,魏琛.低C/N城市污水亚硝酸型硝化试验研究.地球与环 境,2008,36(2):188-192.
    [29]胡学斌,杨柳,吉芳英,习劲,万小军,胥池,何强.低碳源城市污水的低氧同步脱氮除磷研究.中国给水排水,2009,25(13):16-19.
    [30]解英丽,池福强,龙韬.亚硝酸盐反硝化与硝酸盐反硝化对比研究.工业安全与环保,2009,35(2):11-13.
    [31]Yoo K, Ahn KH, Lee HJ, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Research,1999,33(1):145-154.
    [32]胡婷,黄少斌,邓康.碳源类型和温度对BAF脱氮性能影响研究.工业用水与废水,2009,40(6):22-27.
    [33]袁敏,周琪,杨殿海.甲醇为碳源时生物滤池去除二级出水中氮、磷的研究.中国给水排水,2007,23(11):36-38.
    [34]Tschui M, Boller M, Gujer W, et al. Tertiary nitrification in aerated pilot biofilters. Water Science and Technology.1994,29(10-11):53-60.
    [35]Chen SK, Cheng SS. Enhancement of nitrification by indirect aeration and kinetic control in a submerged biofilm reactor. Water Science and Technology,1994,30 (Compendex):79-79.
    [36]Chui PC, Terashima Y, Tay JH, et al. Performance of a partly aerated biofilter in theremoval of nitrogen. Water Science and Technology,1996,34(1-2):187-194.
    [37]Peladan JG, Lemmel H, Pujol R. High nitrification rate with upflow biofiltration. Water Science and Technology,1996,34(1-2):347-353.
    [38]Liu F, Zhao CC, Zhao DF, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations. Journal of Hazardous Materials, 2008,160(1):161-167.
    [39]Horn H, Hempel DC. Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system. Water Science and Technology,1995,32(8): 199-204.
    [40]Garrido JM, van Benthum WAJ, van Loosdrecht MCM, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering,1997,53(2):168-178.
    [41]赵冰怡,陈英文,沈树宝.C/N比和曝气量影响MBR同步硝化反硝化的研究.环境工程学报,2009,3(3):400-404.
    [42]荣宏伟,彭永臻,张朝升,方茜.序批式生物膜反应器的同步硝化反硝化研究.工业水处理,2008,28(11):9-12.
    [43]王学江,夏四清,陈玲,赵建夫.DO对MBBR同步硝化反硝化生物脱氮影响研究.同济大学学报(自然科学版),2006,34(4):400-404.
    [44]傅金祥,陈东宁,李微,李智,徐昊.水力负荷对A/O生物滤池处理生活污水的影响.沈阳建筑大学学报(自然科学版),2008,124(3):447-450.
    [45]崔康平,彭书传,周元祥.上流式曝气生物滤池脱氮性能研究.合肥工业大学学报(自然科学版),2005,28(4):374-378.
    [46]王立立,胡勇有.曝气生物滤池去除有机物及硝化氨氮的影响因素研.环境污染与防治,2006,28(4):257-260.
    [47]仇付国,郝晓地,陈新华.曝气生物滤池处理效果影响因素试验研究.环境科学与管理,2008,133(112):81-84.
    [48]刘灿灿,金吴云,沈耀良,袁煦.陶粒曝气生物滤池处理生活污水影响因素的研究.苏州科技学院学报(工程技术版),2008,21(3):27-32.
    [49]卜静,陆平,徐国勋,吴晓坤,陈超,鲁剑.气水比对高分子填料BAF脱氮效能的影响[J].中国给水排水,2010,26(5):127-130.
    [50]徐亚明,吴汀浩.UBAF同步硝化反硝化工艺去除污染物的机理研究.环境污染与防治,2004,26(6):409-411.
    [51]Hellinga C, Schellen AAJC, Mulder JW, et al. The sharon process:An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology,1998,37(9):135-142.
    [52]Knowles G, Downing AL, Barrett MJ. Determination of Kinetic Constants for Nitrifying Bacteria in Mixed Culture, with the Aid of an Electronic Computer. Journal of General Microbiology,1965,38(2):263-278.
    [53]Wiesmann U. Biological nitrogen removal from wastewater. Advances in biochemical engineering,1994,51:113-154.
    [54]杨庆,彭永臻,王淑莹,杨岸明,李凌云.SBR法低温短程硝化实现与稳定的中试研究.化工学报,2007,58(11):2901-2905.
    [55]Qiao S, Matsumoto N, Shinohara T, et al. High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures. Bioresource Technology,2010,101(1):111-117.
    [56]周钱刚,李林宝.A/O MBR工艺低温下缺氧段反硝化效果影响因素研究.中国资源综合利用,2008,26(10):10-12.
    [57]余健,付国楷,曾光明,欧阳雄文,侯文俊.膜生物反应器去除城市污水中有机物和氮的研究.中国给水排水,2008,24(5):105-108.
    [58]荣宏伟,张朝升,彭永臻,张可方.DO对SBBR工艺同步硝化反硝化的影响研究.环境科学与技术,2009,32(8):16-19.
    [59]张可方,凌忠勇,荣宏伟,张立秋.SBBR中DO对亚硝酸型同步硝化反硝化的影响.广州大学学报(自然科学版),2008,7(6):54-58.
    [60]章胜红,陈季华,孙志国.曝气生物滤池废水深度处理同步硝化反硝化机理及影响因素.东华大学学报,2007,33(1):125-129.
    [61]张红晶,龙腾锐,何强,曹艳晓.侧向流曝气生物滤池的同步硝化反硝化研究.中国给水排水,2006,22(9):34-37.
    [62]刘硕,吕鑑,黄赟芳,申颖洁.曝气生物滤池内同步硝化反硝化的研究进展.北京水务,2010,(3):23-27.
    [63]Robertson LA,et al. Nitrogen removal from water and waste In:Microbial control of pollution,Cambridge University press, Cambridge,1992:227-267
    [64]Scholten, E., Lukow, T., Auling, G., Thauera mecheruichensi.s. Spuov:an aerohic denitrifier from a leachate treatment plant. Int J Syst Bacteriol. 1999,49:1045-1051.
    [65]Huang HK, Tseng SK. Nitrate reduction by citrobacter diversus under aerobic environment. Applied microbiology and biotechnology,2001,55(1):90-94.
    [66]周丹丹,马放,王弘宇.关于好氧反硝化菌筛选方法的研究.微生物学报,2004,44(6):837-839.
    [67]Abeling U, Seyfried CF. Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite. Water Science and Technology, 1992,26(5-6):1007-1015.
    [68]邱立平.曝气生物滤池的短程硝化反硝化机理研究.中国给水排水,2002,18(11):1-4.
    [69]孟繁丽,李亚峰,贾新军.曝气生物滤池内的短程硝化研究.工业安全与环保,2008,34(9):19-22.
    [70]Mulder A, van de Graaf A, Robertson L, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995,16(3):177-184.
    [71]Strous M, Van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research,1997,31(8):1955-1962.
    [72]胡宏博,韩洪军,张凌瀚,王煨冬.BIOFOR生物滤池的反硝化/厌氧氨氧化协同脱氮研究.中国给水排水,2009,25(11):12-14.
    [73]王树涛,马军,田海,张海洋.臭氧预氧化/曝气生物滤池污水深度处理特性研究.现代化工,2006,26(11):32-36.
    [74]王建芳,赵庆良,林佶侃,金文标.生物强化技术及其在废水生物处理中的应用.环境工程学报,2007,1(9):40-45.
    [75]Yu Z, Mohn WW. Bioaugmentation with resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Water Research,2001,35(4):883-890.
    [76]Yu Z, Mohn WW. Bioaugmentation with the resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Research,2002,36(11):2793-2801.
    [77]Saravanane R, Murthy DVS, Krishnaiah K. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system. Bioresource Technology,2001,76(3):279-281.
    [78]梁威,胡洪营.印染废水生物强化处理技术研究进展.环境污染治理技术与设备,2004,5(1):8-11.
    [79]Nicolella C, Zolezzi M, Rabino M, et al. Development of particle-based biofilms for degradation of xenobiotic organic compounds. Water Research,2005,39(12): 2495-2504.
    [80]Jianlong W, Xiangchun Q, Libo W, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochemistry,2002,38(5):777-781.
    [81]Quan XC, Shi HC, Liu H, et al. Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation. Process Biochemistry, 2004,39(11):1701-1707.
    [82]Satoh H, Okabe S, Yamaguchi Y, et al. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Research,2003,37(9):2206-2216.
    [83]姚宏,马放,田盛,李圭白.臭氧-固定化生物活性炭滤池深度处理石化废水的试验研究.环境工程学报,2005,6(5):83-86.
    [84]李平,吴锦华,韦朝海.生物流化床处理垃圾渗滤液的硝化强化实验研究.环境工程学报,2005,6(4):14-17.
    [85]Head MA, Oleszkiewicz JA. Bioaugmentation for nitrification at cold temperatures. Water Research,2004,38(3):523-530.
    [86]吴立波,王建龙.自固定化高效菌种强化处理焦化废水研究.中国给水排水,1999,15(5):1-4
    [87]Li HY, Yang M, Zhang Y, et al. Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. Journal of Biotechnology,2006,123(1):60-70.
    [88]Villaverde S, Fdz-Polanco F, Lacalle ML, et al. Influence of the suspended and attached biomass on the nitrification in a two submerged biofilters in series system. Water Science and Technology,2000,41(4-5):169-176.
    [89]Ciudad G, Werner A, Bornhardt C, et al. Differential kinetics of ammonia-and nitrite-oxidizing bacteria:A simple kinetic study based on oxygen affinity and proton release during nitrification. Process Biochemistry,2006,41(8):1764-1772.
    [90]Zhang ML, Sheng GP, Yu HQ. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method. Water Research,2008,42(13):3464-3472.
    [91]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72(1-2):248-254.
    [92]闫立龙,李娟,张宝杰.曝气生物滤池中氨氮去除影响因素试验分析.城市环境与城市生态,2006,19(3):41-45.
    [93]Horn H, Hempel DC. Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system. Water Science and Technology,1995,32(8): 199-204.
    [94]Garrido JM, van Benthum WAJ, van Loosdrecht MCM, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering,1997,53(2):168-178.
    [95]Grady C P L, Lim H C. Biological wastewater treatment. In:Theory and Applications. New York:Marcel Dekker Press.1980
    [96]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.北京,化学工业出版社,2005
    [97]杜月,陈胜,孙德智.移动床生物膜反应器对垃圾渗滤液短程硝化研究.环境科学,2007,28(5):1039-1043.
    [98]Antileo C, Werner A, Ciudad G, et al. Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor. Biochemical Engineering Journal,2006,32(2):69-78.
    [99]Bernet N, Dangcong P, Delgenes JP, et al. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering-Asce, 2001,127(3):266-271.
    [100]Botrous AEF, Dahab MF, Mihaltz P. Nitrification of high-strength ammonium wastewater by a fluidized-bed reactor. Water Science and Technology, 2004,49(5-6):65-71.
    [101]Ciudad G, Rubilar O, Munoz P, et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. Process Biochemistry,2005,40(5):1715-1719.
    [102]Joo S-H, Kim D-J, Yoo I-K, et al. Partial nitrification in an upflow biological aerated filter by O2 limitation. Biotechnology Letters,2000,22(11):937-940.
    [103]Anthonisen AC, Loehr RC, Prakasam TBS, et al. Inhibition of Nitrification by Ammonia and Nitrous Acid. Journal (Water Pollution Control Federation), 1976,48(5):835-852.
    [104]蒋燕,陶冠红.膜生物反应器短程硝化脱氮处理生活污水的研究.环境科学与技术,2007,30(11):95-97.
    [105]张立秋,张可方,张朝升,方茜,李淑更,凌忠勇.DO对亚硝酸型SND的影响.水处理技术,2008,34(8):29-33.
    [106]范寅,罗固源,张园.DO浓度对OGO系统同步硝化反硝化脱氮的影响.三峡环境与生态,2010,(3):1-4.
    [107]张可方,杜馨,张朝升,方茜.DO和C/N对同步硝化反硝化影响的试验研究.环境科学与技术,2007,30(6):3-5.
    [108]范建华,张朝升,方茜,张可方.COD/N对亚硝酸盐型同步硝化反硝化脱氮的影响.广州大学学报(自然科学版),2007,6(5):55-59.
    [109]Puznava N, Payraudeau M, Thornberg D. Simultaneous nitrification and denitrification in biofilters with real time aeration control. Water Science and Technology,2001,43(1):269-276.
    [110]Ohashi A, Viraj de Silva DG, Mobarry B, et al. Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Science and Technology,1995,32(8):75-84.
    [111]Fdz-Polanco F, Mendez E, Uruena MA, et al. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification. Water Research, 2000,34(16):4081-4089.
    [112]Michaud L, Blancheton JP, Bruni V, et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacultural Engineering,2006,34(3):224-233.
    [113]Lindahl V. Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival. Journal of Microbiological Methods,1996,25(3):279-286.
    [114]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册.中国环境科学出版社.北京,1990.
    [115]Turk 0, Mavinic DS. Stability of Nitrite Build-Up in an Activated Sludge System. Journal (Water Pollution Control Federation),1989,61(8):1440-1448.
    [116]Peng YZ, Zhu GB. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006,73(1):15-26.
    [117]Lee KM, Stensel HD. Aeration and Substrate Utilization in a Sparged Packed-Bed Biofilm Reactor. Journal (Water Pollution Control Federation),1986,58(11): 1066-1072.
    [118]Mann AT, Stephenson T. Modelling biological aerated filters for wastewater treatment. Water Research,1997,31(10):2443-2448.
    [119]Laudelout H, Simonart PC, van Droogenbroeck R. Calorimetric measurement of free energy utilization by Nitrosomonas and Nitrobacter. Arch Mikrobiol, 1968,63(3):256-277.
    [120]Farabegoli G, Chiavola A, Rolle E. The Biological Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance. J Hazard Mater,2009,171(1-3):1126-1132.
    [121]Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Research, 1990,24(3):297-302.
    [122]Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation,2001,12(5):359-366.
    [123]Cech JS, Chudoba J; Grau P. Determination of kinetic constants of activated sludge microorganisms. Water science and technology,1985,17(2-3):259-72.
    [124]Chudoba P, Capdeville B, Chudoba J. Explanation of biological meaning of the S(o)/X(o) ratio in batch cultivation. Water Science and Technology. 1992,26(3-4):743-751.
    [125]Van Loosdrecht MCM, Henze M. Maintenance, endogeneous respiration, lysis, decay and predation. Water Science and Technology,1999,39(1):107-117.
    [126]Martinage V, Paul E. Effect of environmental parameters on autotrophic decay rate (b(A)). Environmental Technology,2000,21(1):31-41.
    [127]Moussa MS, Hooijmans CM, Lubberding HJ, et al. Modelling nitrification, heterotrophic growth and predation in activated sludge. Water Research, 2005,39(20):5080-5098.
    [128]Lee NM, Welander T. Influence of predators on nitrification in aerobic biofilm processes. Water Science and Technology,1994,29(7):355-363.
    [129]Griffith P, The rate of death and predation in activated sludge systems incorporating anoxic zones. Proc. BNR3 85-93 IAWQ Brisbane,1997.
    [130]Salem S, Moussa MS, van Loosdrecht MCM. Determination of the decay rate of nitrifying bacteria. Biotechnology and Bioengineering,2006,94(2):252-262.
    [131]Moussa MS, Hooijmans CM, Lubberding HJ, et al. Modelling nitrification, heterotrophic growth and predation in activated sludge. Water Research, 2005,39(20):5080-5098.
    [132]Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Applied and Environmental Microbiology,2004,70(3):1641-1650.
    [133]Nogueira R, Elenter D, Brito A, et al. Evaluating heterotrophic growth in a nitrifying biofilm reactor using fluorescence in situ hybridization and mathematical modeling. Water Science and Technology,2005,52(7):135-141.
    [134]Jokela JPY, Kettunen RH, Sormunen KM, et al. Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Research,2002,36(16):4079-4087.
    [135]Kim D-J, Lee D-I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology,2006,97(3): 459-46.
    [1]State Statistic Bureau, Ministry of Environmental Protection, PRC (2009), China environment statistical yearbook, China Statistics Press. Beijing.
    [2]A.J. Smith, P.J. Hady, High-rate sewage treatment using biological aerated filters, J. Inst. Wat. Environ Management.6(1992)179-193.
    [3]M. Rebecca, Q. Joanne, S. Tom, The effects of media size on the performance of biological aerated Filters, Water Res.10(2001)2514-2522.
    [4]M.K. Lee, H.D. Stenesl, Aeration and substrate utilization in a sparged packed-bed biofilm Reactor, J. Wat. Pollut. Control Fed.58(1986)165-172.
    [5]A.T. Mann, T. Stephenson, Modelling biological aerated filters for wastewater treatment, Water Res.31(1997)2443-2448.
    [6]J.Garrido, W.A.J van Benthum, M.C.M van Loosdrecht, J.J. Heijnen, Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor, Biotechnol Bioeng.53(1997)168-178.
    [7]U. Wiesmann, Biological nitrogen removal from waste water, Adv Biochem Eng, 51(1994)113-154.
    [8]H.S. Joo, D.J. Kim, I.K Yoo, K. Park, G.C. Cha, Partial nitrification in an upflow biological aerated filter by O2 limitation, Biotechnol Lett.22 (2000)937-940.
    [9]N. Bernet, P. Dangcong, J.P. Delgenes, R. Moletta, Nitrification at low oxygen concentration in biofilm reactor, J. Environ. Eng. ASCE 127(2001)266-271.
    [10]S. Wyffels, S.V. Hulle, P. Boeckx, E.I.P.Volcke, O.C. Van, P.A.V. Anrolleghem, W. Verstraete, Modeling and simulation of oxygen-limited partial nitritation in a membrane bioreactor (MBR), Biotechnol. Bioeng.86(2004)531-542.
    [11]C. Antileo, A. Werner, G. Ciudad, C.Muz, Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor, J. Biochemical. Eng.32(2006)69-78.
    [12]H. Horn, D.C. Hempel, Mass transfer coefficients for an autotrophic and a heterotrophic biofilm System, Water Sci. Technol.32(1996)199-204.
    [13]M. Tschui, M. Boller, W. Gujer, J. Eugster, C. Mer, C. Stengel, Tertiary nitrification in aerated pilot biofilters, Water Sci. Technol.29(1994)53-60.
    [14]S.K. Chen, S.S. Cheng. The enhancement of nitrification by indirect aeration and kinetic control in a submerged biofilm reactor, Water Sci. Technol.30(1995)79-90.
    [15]P.C. Chui, Y. Terashima, J.H. Tay, H. Ozaki, Performance of a partly aerated biofilter in the removal of nitrogen, Water Sci. Technol.34(1996)187-194.
    [16]J.G. Peladan, H. Lemmel, R. Pujol, High nitrification rate with upflow biofiltration, Water Sci. Technol.34(1996)347-353.
    [17]F. Liu, C.C.Zhao, D.F. Zhao, G.H. Liu, Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations, Journal of Hazardous Materials.160(2008)161-167.
    [18]O. Lahav, E. Artzi, S. Tarre, M. Green, Ammonium removal using a novel unsaturated flow biological filter with passive aeration, Water Res.35(2001)397-404.
    [19]G. Farabegoli, A. Chiavola, E. Rolle, The Biological Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance, Journal of Hazardous Materials. 117(2009)1126-1132.
    [20]S. Villaverde, F. Fdz-Polanco, M.L. Lacalle, P.A. Garc, Influence of the suspended and attached biomass on the nitrification in a two submerged bio-filters in series system. Water Sci. Technol.41(2000)169-176.
    [21]S. Salem, M.S. Moussa, M.C.M. Van Loosdrecht, Determination of the decay rate of nitrifying Bacteria, Biotechnol and Bioeng.94(2006)252-262.
    [22]R. Manser, W. Gujer, H. Siegrist, Decay processes of nitrifying bacteria in biological wastewater treatment systems, Water Res.40(2006)2416-2426.
    [23]A. Jang, P.L. Bishop, S. Okabe, S.G. Lee, I.S. Kim, Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes, Water Sci. Technol.47(2001)49-57.
    [24]H.J. Yun, D.J. Kim. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor, J Chem Technol Biotechnol.78(2003)377-383.
    [25]J.J. Park, I.G. Byun, J.C. Yu, S.R. Park, D.J. Ju, S.H. Hur, T.J. Park, Analysis of nitrifying bacterial communities in aerobic biofilm reactors with different DO conditions using molecular techniques, Water Sci. Technol.57(2008)1889-1899.
    [26]H. Laudelout, P.C. Simonart, R. Van Droogenbroeck, Calorimetric measurement of free energy utilization by nitrosomonas and nitrobacter, Arch. Mikrobiol.63(1968)256-277.
    [27]P.M. Sutton, T.R. Bridle, W.K. Bedford, J. Arnold, Nitrification and denitrification of an industrial wastewater, J.Water Pollut. Control Fed.53(1981)176-184.
    [28]APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater,19th Am. Public Health Assoc. Washington, D.C. (1995).
    [29]G. Ciudad, A. Werner, C. Bornhardt, C. Munoz, C. Antileo, Differential kinetics of ammonia-and nitrite-oxidizing bacteria:A simple kinetic study based on oxygen affinity and proton release during nitrification, Process Biochem.41(2006)1764-1772.
    [30]J.S. Cech, J. Chudoba, P. Grau, Determination of kinetic constants of activated sludge Microorganisms, Water Sci. Technol.17(1984)229-232.
    [31]P. Chudoba, B. Capdeville, J. Chudoba, Explanation of biological meaning of the S0/X0 ratio in batch cultivation. Water Sci. Technol.26(1992)743-751.
    [32]V. Lindahl, Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival, J. microbiol. Methods.25(1996)279-286.
    [33]H.Y. Li, M. Yang, Y. Zhang, T. Yu, Y. Kamagata, Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention, Journal of Biotechnology.123(2006)60-70.
    [34]A.E.F. Botrous, M.F. Dahab, P. Mihaltz, Nitrification of high-strength ammonium wastewater by a fluidized-bed reactor, Water Sci. Technol.49(2004) 65-71.
    [35]G. Ciudad, O. Rubilar, P. Munoz, G. Ruiz, R. Chamy, C.Vergara, D. Jeison, Partial nitrification of high ammonia concentrationwastewater as a part of a shortcut biological nitrogen removal process, Process Biochem.40(2005)1715-1719.
    [36]G. Tallec, J. Gamier, M. Gousailles, Nitrogen removal in a wastewater treatment plant through biofilters:nitrous oxide emissions during nitrification and denitrification, Bioprocess Biosyst Eng. 29(2006)323-333.
    [37]H. Tanaka, and I. J. Dunn, Kinetics of biofilm nitrification, Biotechnol and Bioeng. 24(1982)669-689.
    [38]O. Turk, D.S. Mavinic, Maintaining nitrite build-up in a system acclimated to free ammonium, Water Res.23(1989)1383-1388.
    [39]K. Hanaki, Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor, Water Res.24(1990)297-302.
    [40]W. Bae, S.C. Baek, J.W. Chung, Y.W. Lee, Nitrite accumulation in batch reactor under various operational conditions, Biodegradation.12(2002)359-366.
    [41]G. Knowles, A.L. Downing, M.T. Barrett, Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer, J. Gen. Microbiol. 38(1965)263-278.
    [42]T. Kindaichi, T. Ito, S. Okabe, Ecophysiological Interaction between Nitrifying Bacteria and Heterotrophic Bacteria in Autotrophic Nitrifying Biofilms as Determined by Microautoradiography Fluorescence In Situ Hybridization, Appl. Environ. Microbiol. 70(2004)1641-1650.
    [43]R. Nogueira, D. Elenter, A. Brito, L.F. Melo, M. Wagner, E. Morgenroth. Evaluating heterotrophic growth in a nitrifying biofilm reactor using fluorescence in situ hybridization and mathematical modeling, Water Sci. Technol.52(2005)135-141.
    [44]S. Okabe, H. Satoh, Y. Watanabe, In Situ Analysis of Nitrifying Biofilms as Determined by In Situ Hybridization and the Use of Microelectrodes, Appl. Environ. Microbiol.65(1999)3182-3191.
    [45]S. Okabe, H. Satoh, Y. Watanabe, Structure and function of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes, Water Sci. Technol.42(2000)21-32.
    [1]G Silyn-Roberts and G Lewis, In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms, Water Res.35(2001), p 2731-2739.
    [2]R. Gorra, M. Coci, R. Ambrosoli and H.J. Laanbroek, Effects of substratum on the diversity and stability of ammonia-oxidizing communities in a constructed wetland used for wastewater treatment, J Appl Microbiol.103(2007), p 1442-1452.
    [3]P. Chudoba, B. Capdeville and J. Chudoba, Explanation of biological meaning of the S0/X0 ratio in batch cultivation, Water Sci. Technol.26(1992), p 743-751.
    [4]K. Dong-Jin, S. Dougwon, Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor, Process Biochem.41(2006), p 1055-1062.
    [5]V. Lindahl, Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival, J. microbiol. Methods.25(1996), p 279-286.
    [6]U.Wiesmann, Biological nitrogen removal from waste water, Adv Biochem Eng,51(1994), p 113-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700