利用固定化高效优势菌处理焦化废水的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水中含有大量的有毒难降解有机污染物,采用常规活性污泥法处理,出水COD仍较高。进一步降低焦化废水出水COD的关键是去除这类难降解有机污染物。本项实验从4种脱色菌——普通变形杆菌BH、芽孢杆菌DC45、巨大芽孢杆菌F3、枯草芽孢杆菌DC42中筛选出普通变形杆菌BH、芽孢杆菌DC45 2株降解苯酚、吲哚、吡啶、喹啉的优势菌,从焦化厂曝气池活性污泥中筛选出BM7、DM1、EM5、BP3 4株降解苯酚、吲哚、吡啶、喹啉的优势菌,并对普通变形杆菌BH、芽孢杆菌DC45、BM7、BP3分别进行了降解特性研究。将优势菌株固定化混合后组成高效复合菌,采用厌氧水解-好氧(高效复合菌+活性污泥)两段SBR处理焦化废水,进水COD、BOD_5、NH_3-N浓度分别为507.73~698.13mg/L、153.86~232.00mg/L、181.44~195.05mg/L,经12h厌氧水解、18h好氧曝气后出水浓度分别为88.85~136.93mg/L、23.47~39.30mg/L、61.69~77.11mg/L,去除率分别为80.39%~82.50%、83.06%~84.75%、60.47%~66.00%;采用厌氧水解-好氧(高效复合菌+光合细菌+活性污泥)两段SBR处理焦化废水,进水COD、BOD_5、NH_3-N浓度分别为923.47~1067.79mg/L、216.38~287.3mg/L、173.34~218.86mg/L,经12h厌氧水解、18h好氧曝气后出水浓度分别为112.08~147.45mg/L、26.92~32.60mg/L、45.73~52.60mg/L,去除率分别为86.19%~87.86%、87.56%~88.65%、73.62%~75.97%。实验表明:利用该高效复合
    
    菌或高效复合菌和光合细菌处理焦化废水可使出水COD、BOD。满
    足《污水综合排放标准》(GB8978——96)中的排放要求,废水浊
    度明显降低,同时还具有一定的脱氮功能;对于已建成的焦化厂
    污水处理系统,可直接投加固定化高效复合菌及光合细菌来提高
    处理效率。
Coke plant wastewater containing toxic and refractory substances is treated by routine actived studge process,the residual COD can not achieve comprehensive wastewater discharge standard(GB8978-96).The key which reduces the effluent concentration of COD is to remove refractory organic pollutants.In this experiment, Proteus oulgaris BH and Bacillus DC45 which are two dominant species to degradate phonel,indole,pydine and quinoline were cultured and selected from four decolorizing bacteria - Proteus oulgaris BH,Bacillus DC45, Bacillus megaterium F3 and Bacillussubtilis DC42.In addition,BM7,DM1,EMS and BP3 which are four dominant species to degradate phonel, indole.pydine and quinoline were isolated and selected from activated sludge in aeration tank of coke plant.Degradation behavior of Proteus oulgaris BH,Bacillus DC45, BM7 and BP3 were researched. After putting dominant species which were immobilized on activated sludge into wastewater treatment system,coke plant wastewater was treated by the proce
    ss of anaerobic hydrolysis-aerobic SBR,initial concentration of COD,BOD5, NHs-N ranged from 507.73 to 698.13 mg/L,from 153.86 to 232.00mg/L,from 181.44 to 195.05 mg/L respectively,after treatment of anaerbic acidification reactor for 12 hours and aerobic reactor for 18 hours,the residual concentration-of COD, BOD5, NH3-N ranged from 88.85 to 136.93 mg/L,from 23.47 to 39.30mg/L,from 61.69 to 77.11mg/L respectively.the total removal rate of COD, BOD5 and NH3-N were up to 80.39% ~ 82.50%,83.06% ~ 84.75%,60.47% ~ 66.00% respectively.After putting immobilized
    
    
    Photosynthetic bacteria into foregoing aerobic reactor,coke plant wastewater was treated by the process of anaerobic hydrolysis-aerobic SBR.initial concentration of COD, BOD5,NH3-N ranged from 923.47 to 1067.79mg/L,from 216.38 to 287.3mg/L,from 173.34 to 218.86 mg/L,after treatment of anaerobic acidification reactor for 12 hours and aerobic reactor for 18 hours,the residual concentration of COD,BOD5,NH3-N ranged from 112.08 to 147.45mg/L,from 26.92 to 32.60mg/L,from 45.73 to 52.60mg/L respectively,the total removal rate of COD, BOD5 and NH3-N were up to 86.19% ~ 87.86%,87.56% ~ 88.65%,73.62% ~ 75.97% respectively.The results show that after putting dominant species or dominant species and Photosynthetic bacteria which are immobilized on activated sludge into wastewater treatment system, the level of COD and BOD5 in coke plant wastewater which is treated by the process of anaerobic hydrolysis-aerobic SBR can achieve comprehensive wastewater discharge standard (GB8978-96), the turbidity decreases rapidly,NH3-N
     decreases to a certain degree.Moreover,for a built coke plant sewage treatment system,the treatment efficiency can be improved after putting dominant species and Photosynthetic bacteria which are immobilized on activated sludge into wastewater treatment system.
引文
[1] 文一波等.A-A/O法处理焦化废水中试研究.中国给水排水,1992,8(2):7~12
    [2] 舒文龙.我国焦化废水处理技术的现状、进展及适用技术的选择(上).环境工程,1992,10(4):54~56
    [3] 尹承龙等.焦化废水处理存在的问题及其解决对策.给水排水,2000,26(6):35~37
    [4] 刘鹤年.厌氧/好氧生物脱氮-絮凝法处理焦化废水.化工环保,1995,15(6):343~346
    [5] kai-chee Loh,et al.Immobilized-cell Membrane Bioreactor for High-strength Phenol Wastewater.journal of environmental Engineering,2000,1:75~79
    [6] 李惕川.工业污染源控制.北京:化学工业出版社,1987
    [7] 钱易等.焦化废水中难降解有机物去除的研究.环境科学研究,1992,5(5):1~8
    [8] 何苗等.焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性.中国给水排水,1996,12(6):14~17
    [9] 冀滨弘等.难降解有机污染物的处理技术.重庆环境科学,1998,20(5):36~40
    [10] 韩力平等.生物强化技术在难降解有机物处理中的应用.环境科学,1999,20(6):100~102
    [11] 何苗等.杂环化合物好氧生物降解性能与其化学结构相关性的研究.中国环境科学,1997,17(3):199~202
    [12] 张晓健等.好氧生物处理对焦化废水中有机物的去除.环境
    
    保护,1994,(8):7~10,16
    [13]Cooper R L,et al.The Biological Treatment of Carbonization gffluents.Water Research,1997,7:1137~1157
    [14]何苗等.焦化废水中有机物曝气吹脱条件下的挥发特性.环境科学,1997,18(5):34~36
    [15]雷晓玲等.焦化废水中有机物的生物处理特性及处理工艺改进对策.环境科学学报,1995,15(4):385~391
    [16]姚珺等.焦化废水中有机污染物经厌氧酸化后对好氧生物降解性能的影响.中国环境科学,1998,18(3):276~279
    [17]何苗等.混合基质条件下难降解有机物生物降解性能.环境科学,1997,18(3):20~22
    [18]韩力平等.固定化及游离态皮氏伯克霍尔德氏菌(Burkholderia.Pickettii)降解喹啉的试验研究.环境科学学报,2000,20(3):379~381
    [19]黄霞等.固定化优势菌种处理焦化废水中几种难降解有机物的试验研究.中国环境科学,1995,15(1):1~4.
    [20]朱文亭等.污水的水解(酸化)-好氧生物处理工艺.城市环境与城市生态,2000,13(5):43~45,48
    [21]芮尊元等.有机污水的水解-好氧处理技术.环境保护,2000,1(1):12~13,23
    [22]邵林广等.水解(酸化)-缺氧-好氧固定床生物膜系统处理焦化废水的试验研究.环境科学,1994,15(6):51~53
    [23]陈新宇等.难降解有机物的水解-酸化预处理.化工环保,1996,16(3):152~155
    [24]刘新亭等.酸化-生物接触氧化法处理生产维生素C废水.上海环境科学,1990,9(6):12~14
    
    
    [25] 赵建夫等.用厌氧酸化预处理焦化废水的研究.环境科学,1990,11(3):30~34
    [26] 韩小清等.厌氧-好氧—生物活性炭-纤维球过滤处理印染废水试验研究.中国给水排水,1994,10(4):29~31
    [27] 任源等.硝基苯废水的厌氧-好氧基本实验与工艺理论分析.应用与环境生物学报,1999,5(suppl):14~17
    [28] 李旭东等.水解酸化-好氧生物处理天然气脱硫废水的试验研究.环境工程,1999,17(2):19~22
    [29] 罗国维等.生物水解(酸化)法处理高浓度洁霉素废水的降解机理研究.中国环境科学,1995,15(4):284~288
    [30] 巩志坚等.利用纷顿试剂处理焦化废水.工业水处理,1997,17(6):4~6
    [31] 杜鸿章等.焦化污水催化湿式氧化净化技术.工业水处理,1996,16(6):11~13
    [32] Wang Jian long, et al. Biodegradation of Phthalic Acid Ester in Soil by Indigenous and Introduced Microorganisms. Chemosphere,1997,35(8):1747~1754
    [33] Huban C M, et al.Bioaugmentation put miorobes towork. Chemical Engineering, 1997,104(3):74~84
    [34] Selvaratnam S, et al. Application of the Polymerase Chain Reaction(PCR) and Reverse Transcriptase/PCR for Determining the fate of Phenol-degrading Psendornonas Putida ATcc11172 in a Bioaugmcnted Sequencing Batch Reactor.Appl microbial biote-chnol,1997,47(2):236~240
    [35] 蔡建安.三相气提升循环流化床处理焦化废水.水处理技术,1997,23(2):110~114
    
    
    [36] 葛文准等.焦化废水生物处理技术研究.上海环境科学,1992,11(4):7~10,21
    [37] 舒文龙.我国焦化废水处理技术的现状、进展及适用处理技术的选择(下).环境工程,1992,10(5);56~63
    [38] Littleton X, et al. Treatment of Wastewater from Coke Oven and Chemical Recovery Plants by Means of Bioferric Process an Innovative Technique. Water Science and Technology Proceedings of the IAWPRC 2nd International Conference on Waste Management in Chemical and Petrochemical Industries-Toxics Management Jun 17-20 1991,1992,25(3):143~156
    [39] 吴红伟等.氧化塘深度处理焦化废水的初步研究.环境污染与防治,1998,20(2):1~4
    [40] 张昌鸣等.焦化废水净化及回用技术研究.环境工程,1999,17(1):16~19,40
    [41] 张兆春等.长焰煤吸附焦化废水污染物的研究.山东矿业学院学报,1996,15(2):205~209
    [42] 全向春等.生物强化技术及其在废水治理中的应用.环境科学研究,1999,12(3):22~27
    [43] 王应铨等.光合细菌培养技术的探讨.应用微生物,1989,5:9~11
    [44] 史家樑等.光合细菌的生态特征及其在污水净化中的作用.上海环境科学,1984,(4):41~44
    [45] 陈繁忠等.利用光合细菌处理养猪场污水的试验研究.环境工程,2000,18(5):10~12
    [46] 吴国庆等.固定化PSB细胞技术研究及应用.环境科学研究,1994,7(6):51~54
    
    
    [47]卞华松等.冷冻固定化优势菌群处理含甲醛苯酚废水.环境科学,1998,19(2):39~42
    [48]辛宝平等.菌株NKS-3对溴氨酸脱色特性探讨.城市环境与城市生态,1999,12(5):1~3
    [49]K.K.Chin,et al.Wastewater Treatment With Bacterial Augementation.Wat Sci Tech,1996,33(8):17~22
    [50]陈铭等.固定化细胞技术在有机废水处理中的应用与前景.水处理技术,1997,23(2):98~104
    [51]王建龙等.固定化微生物技术在难降解有机污染物治理中的研究进展.环境科学研究,1999,12(1):60~64
    [52]黄霞等.固定化细胞技术在废水处理中的应用.环境科学,1993,14(1):41~48
    [53]Amanda K Y,et al.Cell Immobilization Using PVA Cross Linked with Boric Acid.Biotechnol Bioeng,1992,39:447~449
    [54]Livingston A G,et al.A Novel Membrane Bioreactor for Detoxifying Industerial Wastewater:Ⅱ.Biodegradation of 3-chloronitrobenzene in an Industrially Produced Wastewater. Biotechnol Bioeng,1993,41:927
    [55]李彤等.用PVA包埋法固定化细胞去除洗衣粉废水中LAS的研究.环境科学,1991,13(5):16~19
    [56]周定等.固定化微生物处理含酚废水的研究.环境科学,1990,11(1):1~6
    [57]彭永臻.SBR法的五大优点.中国给水排水,1993,9(2):29~31
    [58]S.S.Mangat,et al.Biodegradation of the Herbicide 2.4-dichlorlophenoxyacetic Acid(2,4-D)in Sequencing Batch Reactots.Wat Res,1999,33(3):861~867
    
    
    [59] Linda A Fingueroa, et al. Biodegradation of Two Polyethoxy-lated Nonionic Surfactants in Sequencing Batch Reactors. water Environ Res, 1997,69(7):1282~1288
    [60] HTimur, et al. Anaerobic Sequencing Batch Reactor Treatment of Landfill Leachate. Wat Res, 1999,33(15):3225~3230
    [61] Ruey-Fang Yu, et al. Performance Enhancement of SBR Applying Real-Time Control. Journal of Environmental Engineering.2000,10:943~948
    [62] 郝瑞霞等.SBR法处理印染废水的研究.环境科学进展,1996,4(5):56~62
    [63] 韩相奎等.序列间歇式活性污泥法处理毛纺厂废水的研究.中国环境科学,1996,16(3):172~175
    [64] 张本兰等.SBR活性污泥法处理乐果生产废水.化工环保,1994,14(5):284~290
    [65] 纪荣平等.SBR法在扬州啤酒厂废水处理中的应用.环境工程,1996,14(6):8~11
    [66] 王彩霞.城市污水处理新技术.北京:中国建筑工业出版社,1990,126~128
    [67] 刘永淞.SBR法设计方法探讨.中国给水排水,1992,8(5):36~39
    [68] 刘永淞等.SBR法工艺特性研究.中国给水排水,1990,6(6):5~11
    [69] 北京大学化学系有机化学教研室.有机化学词典.科学出版社,1986:282
    [70] 俞毓馨等.环境工程微生物检验手册.北京:中国环境科学出版社,1990
    
    
    [71]赵晨红.厌氧水解酸化SBR工艺预处理焦化废水的研究:[学位论文].太原理工大学,1999
    [72]李亚新等.紫外分光光度法同时定量测定多组分混合物——喹啉-吡啶-吲哚-苯酚.环境工程,1999,17(2):58~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700