基于休眠—唤醒机制下无线传感器网络的建模分析和协同控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络(WSN)被应用于诸多领域并有着广泛的应用前景,同步控制是WSN的支撑技术之一,也是目前的一大研究热点.最近几年,许多学者对WSN的同步问题进行了深入广泛的研究并取得大量有价值的成果.但是,这些成果是建立在网络有很强的连通性与网络拥有固定节点基础上的,这与实际WSN中因节点使用了休眠-唤醒机制(SAM)后的弱连通性不相符合,也与节点在线增减的实际情况不一致.本文以WSN的应用为背景,在SAM下建立固定节点集合和变节点集合的WSN模型,对所建立的模型进行理论分析.接着,对所建立的模型实施同步控制.本论文的研究内容主要包括以下几个方面.
     1.针对节点数量众多并经常遭受数据拥堵和数据碰撞的WSN,建立leader-following拓扑结构,对其实施SAM,通过对leader节点的控制达到对整个网络的控制.分别针对leaders和followers中的完备子图(支派)实施SAM,得到两个变拓扑结构,即固定leaders变followers和固定followers变leaders的拓扑结构,针对这两个拓扑结构以及固定leaders固定followers结构设计同步控制协议.由协方差的分析表明,在协议的控制下,系统达到拟平均均方同步,同时,得到系统达到同步的几个充分必要条件.这部分内容提出在完备子图中实施SAM,根据不同的休眠方式设计同步控制协议.
     2.对于节点数量庞大且在多变时滞和噪声环境下的WSN,建立以最大度节点(MDN)的休眠-唤醒节奏为主导,其他节点相应地采取休眠的机制(SSAM),以应对MDN经常遭受的数据拥堵.在SSAM下,设计出相应的带有噪声和多变时滞的分布式控制协议,得到一个基于Markov链作系统切换的WSN.通过p-阶矩指数稳定性理论的分析表明,系统达到目标同步,同时得出系统达到目标同步的几个标准.这部分内容提出对MDN及其邻居节点实施SSAM,根据SSAM设计出能克服不同多变时滞和噪声干扰的同步控制协议.
     3.在SSAM下,研究了WSN的目标自适应跟踪问题.假设节点之间的信息交换和部分节点随机得到目标信号的过程均受到噪声的干扰,并且在不同的拓扑中,系统含有不同的多变时滞函数.在这种运行环境中,设计出基于目标跟踪的自适应控制协议并得到自适应滤波的WSN.通过p-阶矩指数稳定性理论的分析表明,在所设计的滤波下,所有节点能直接或间接地与目标函数保持同步.这部分内容提出能事先设定跟踪精度的自适应同步控制器.
     4.对于节点在线增加并运行SAM的WSN,提出了无标度WSN.针对无标度WSN,设计一种新的数据融合型控制协议.由不等式及偏序关系的分析表明,在数据融合型控制协议下,所有的节点达到局部同步.如果网络是概率连通的,那么WSN达到全局同步.其中,所有的同步标准与网络的标度无关.这部分提出无标度WSN的概念,并给出不依赖于标度的同步标准.
     5.考虑变标度WSN的同步问题,其中标度的增、减是由于系统中有新节点的加入和失效节点的退出.对于变标度WSN,文中给出了局部有限交连通和全局有限交连通等概念.若WSN是局部有限交连通的,则在所设计的控制协议下,通过误差分析表明,WSN达到分支同步.如果WSN是全局有限交连通的,则WSN达到全局同步.同时,给出了系统的收敛域,结果表明,在参数的许可范围内,所给出的协议允许系统有很广的收敛范围.这部分内容提出了节点在线增、减的WSN模型,并给出同步标准.
Wireless sensor network(WSN) is widely used in different fields, it has broad ap-plication prospects, consensus control is one of its supporting technologies, and also is the hot research field. In recent years, many researchers have devoted themselves into the field and many exciting results have been obtained. However, the gotten results are based on the networks which possess the strong connectivity and the fixed node set, and these are not consistent with real applications which WSN possesses the weakly connectivity when the system runs the sleeping-awaking method(SAM), and these also are not consistent with the varying node set which some nodes quit from the network for the energy is exhausted or some new nodes join the network. Depending on the applications of WSN, this thesis analyzes the formulated models under the given SAM and the consensus protocols. In the meanwhile, the related consensus investigations are provided accordingly. The main research contents of the thesis are listed as follows.
     1. For a WSN which possesses a large number of nodes and system often en-counters with data collision and data jams, the leader-following topology and SAM are employed, and system is controlled via the leader nodes directly. Applying SAM to the cliques (complete subgraphs) of followers or leaders respectively, the varying followers fixed leaders and the varying leaders fixed followers topologies are gotten, respectively. According to the varying topologies and the fixed leaders fixed followers topology, the related consensus protocols are designed. Based on the analysis of the co-variance, all nodes achieve the quasi-average mean square consensus, in the meanwhile, several consensus criteria of sufficient and necessary are obtained. In this part, SAM is implemented for some complete subgraphs, and the related consensus protocols are provided.
     2. For a WSN which possesses a large number of sensors and system runs in multiple varying time delays and noise disturbance surroundings, a type of sleeping-awaking method (SSAM) is provided. SSAM refers to the maximal degree node and its neighbors fall in the sleep or be awaken simultaneously, other nodes take the sleep or be waken accordingly, where SSAM is taken to deal with the data jams. Under SSAM, the distributed consensus protocol is proposed, then, the Markov switching WSN is obtained. Based on the theory of the p-th moment exponential stability, the analysis shows that under the designed protocol, system keeps synchronization with the aim state, meanwhile, several criteria are gotten. In this part, SSAM is offered for MDN and its neighbors, and the related consensus protocol can overcome the disturbances that caused by multiple varying time delays and noise.
     3. Under SSAM, the adaptive target tracking problem is considered. It supposes that there exist noise disturbances in the communication among node-to-node and the signal randomly getting from the target. And among the different topologies, system may contain the different multiple varying time delays. In such an environment, an adaptive target tracking protocol is designed, and the distributed adaptive target tracking filter is obtained. The analysis of p-th moment exponential stability shows that under the designed filter, all nodes keep the synchronized with the target directly or indirectly. It is worth to note that the adaptive consensus controller which the tracking accuracy can be assigned firstly.
     4. For a WSN which runs SAM and possesses the increasing node set, the scale free WSN is proposed. For scale free WSN, a type of data fusion consensus protocol is designed. Based on the analysis of inequalities and the partial sequences, under the designed protocol, all nodes achieve the local consensus, when the network is the probability connected, all nodes achieve the global consensus. All gotten consensus criteria are free from the network scale. It should point out that scale free WSN is offered here, and the consensus protocol is independent to the varying scale.
     5. Consensus problem of the varying scale WSN is studied, where the scale is in-creasing or decreasing due to some new nodes joining or some invalid nodes withdraw-ing. For the varying scale WSN, several concepts such as the local limited intersection connected and the global limited intersection connected are provided. According to the analysis of the systematic error, WSN achieves the component consensus if the network is the local limited intersection connected, if WSN is the global limited inter-section connected, WSN achieves the global consensus. In the meanwhile, the widely consensus regions are proposed. It should be noticed that the varying scale WSN is proposed here, and the related consensus criteria are provided.
引文
[1]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社,2005.
    [2]I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. Wireless sensor net-works:a survey [J]. Computer Networks,2002,38 (4):393-422.
    [3]H. Luo, H. Tao, H. Ma and S. Das. Data fusion with desired reliability in wireless sensor networks [J]. IEEE Transcations on Parallel and Distributed Systems,2011, 22 (3):501-513.
    [4]Y. Xia, J. Shang, J. Chen and G. Liu. Networked data fusion with packet losses and variable delays [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2009,39 (5):1107-1120.
    [5]M. Defoort, T. Floquet, A. Kokosy and W. Perruquetti. Sliding-mode formation control for cooperative autonomous mobile robots [J]. IEEE Transactions on In-dustrial Electronics,2008,55 (11):3944-3953.
    [6]W. Zhou, J. Mou, T. Wang, C. Ji and J. Fang. Target-synchronization of the distributed wireless sensor networks under the same sleeping-awaking method [J]. Journal of the Franklin Institute,2012,349 (6):2004-2018.
    [7]R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Transactions on Automatic Control, 2004,49 (9):1520-1533.
    [8]R. Olfati-Saber and J. Shamma. Consensus filters for sensors networks and dis-tributed sensor fusion [C]. In Proceedings of the 44 Conference on Decision and Control, and 2005 European Conference, Seville, Spain,2005,6698-6703,
    [9]E. Franco, R. Olfati-Saber, T. Parisini and M. Polycarpou. Distributed fault diag-nosis using sensor networks and consensus-based filters [C]. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, USA,2006,386-391.
    [10]R. Olfati-Saber and P. Jalalkamali. Coupled distributed estimation and control for mobile sensor networks [J]. IEEE Transactions on Automatic Control,2012, 57 (10):2609-2614.
    [11]P. Frasca, R. Carli, F. Fagnani and S. Zampieri. Average consensus by gossip algorithms with quantized communication [C]. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico,2008,4831-4836.
    [12]R. Carli, A. Chiuso, L. Schenato and S. Zampieri. Optimal synchronization for networks of noisy double integrators [J]. IEEE Transactions on Automatic Control, 2011,56 (5):1146-1152.
    [13]A. Chiuso, F. Fagnani, L. Schenato and S. Zampieri. Gossip algorithms for simul-taneous distributed estimation and classification in sensor networks [J]. Selected Topics in Signal Processing, IEEE Journal,2011,5 (4):691-706.
    [14]L. Schenato and S. Zampieri. Optimal rendezvous control for randomized com-munication topologies [C]. In Proceedings of the 45th Conference on Decision and Control, San Diego, USA,2006,4339-4344.
    [15]R. Carli, A. Chiuso, L. Schenato and S. Zampieri. Distributed Kalman filtering based on consensus strategies [J]. Selected Areas in Communications, IEEE Jour-nal,2008,26 (4):622-633.
    [16]R. Carli and S. Zampieri. Networked clock synchronization based on sedond order linear consensus algorithms [C]. In Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, USA,2010,7259-7264.
    [17]F. Fagnani and S. Zampieri. Randomized consensus algorithms over large scale networks [J]. Selected Areas in Communications, IEEE Journal,2008,26 (4):634-649.
    [18]G. Scutari and S. Barbarossa. Distributed consensus over wireless sensor networks affected by multipath fading [J]. IEEE Transactions on Signal Processing,2008, 56 (8):4100-4106.
    [19]S. Sardellitti, S. Barbarossa and A. Swami. Optimal topology control and power al-location for minimum energy consumption in consensus networks [J]. IEEE Trans-actions on Signal Processing,2012,60 (1):383-399.
    [20]L. Pescosolido, S. Barbarossa and G. Scutari. Average consensus algorithms robust against channel noise [C]. In Proceedings of the 9th Workshop on Signal Processing Advances in Wireless Communications, Rome, Italy,2008,261-265.
    [21]S. Sardellitti, M. Giona and S. Barbarossa. Fast distributed average consensus algorithms based on advection-diffusion processes [J]. IEEE Transactions on Signal Processing,2010,58 (2):826-842.
    [22]G. Scutari, S. Barbarossa and L. Pescosolido. Distributed decision through self-synchronizing sensor networks in the presence of propagation delays and asymmet-ric channels [J]. IEEE Transactions on Signal Processing,2008,56 (4):1667-1684.
    [23]S. Barbarossa, T. Battisti and A. Swami. Globally optimal decentralized spatial smoothing for wireless sensor networks with local interactions [C]. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2008,2265-2268.
    [24]U. Munz, A. Papachristodoulou and F. Allgower. Consensus in multi-agent systems with coupling delays and switching topology [J]. IEEE Transactions on Automatic Control,2011,56 (12):2976-2982.
    [25]U. Munz, A. Papachristodoulou and F. Allgower. Delay robustness in non-identical multi-agent systems [J]. IEEE Transactions on Automatic Control,2012,57 (6): 1597-1603.
    [26]B. Touri and A. Nedic. On ergodicity, infinite flow, and consensus in random models [J]. IEEE Transactions on Automatic Control,2011,56 (7):1593-1605.
    [27]A. Nedic, A. Ozdaglar and P. A. Parrilo. Constrained consensus and optimization in multi-agent networks [J]. IEEE Transactions on Automatic Control,2010,55 (4):922-938.
    [28]B. Touri and A. Nedic. Distributed consensus over network with noisy links [C]. In proceedings of the 12th International Conference on Information Fusion, Seattle, USA,2009,146-154.
    [29]R. Carli, F. Fagnani, A. Speranzon and S. Zampieri. Communication constraints in the average consensus problem [J]. Automatica,2008,44 (3):671-684.
    [30]T. Li and J. Zhang. Sampled-data based average consensus control for networks of continuous-time integrator agents with measurement noises [C]. In proceedings of the 26th Chinese Control Conference, Kunming, China,2007,716-720.
    [31]Y. Sun, L. Wang and G. Xie. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays [J]. Systems and Con-trol Letters,2008,57 (2):175-183.
    [32]T. Li and J. Zhang. Mean square average consensus of multi-agent systems with time-varying topologies and stochastic communication noises [C]. In proceedings of the 27th Chinese Control Conference, Zhangjiajie, China,2008,552-556.
    [33]W. Yu, G. Chen, W. Ren, J. Kurths and W. Zheng. Distributed higher order consensus protocols in multiagent dynamical systems [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2011,58 (8):1924-1932.
    [34]W. Yu, G. Chen and W. Ren. Delay-induced quasi-consensus in multi-agent dy-namical systems [C]. In proceedings of the 29th Chinese Control Conference, Bei-jing, China,2010,4566-4571.
    [35]Q. Song, G. Chen and D. Ho. On the equivalence and condition of different con-sensus over a random network generated by i.i.d. stochastic matrices [J]. IEEE Transactions on Automatic Control,2011,56 (6):1203-1207.
    [36]J. Yu and L. Wang. Group consensus of multi-agent systems with undirected communication graphs [C]. In Proceedings of the 7th Asian Control Conference, Kongkong, China,27-29 Auguest 2009,105-110.
    [37]F. Xiao, L. Wang and T. Chen. Finite-time consensus of multi-agent systems with directed and intermittent links [C]. In Proceedings of the 30th Chinese Control Conference, Yantai, China,2011,6539-6543.
    [38]D. Meng and Y. Jia. Finite-time consensus for multi-agent systems via terminal feedback iterative learning [J]. Control Theory and Applications, IET,2011,5 (18): 2098-2110.
    [39]L. Mo and Y. Jia. Hα consensus control of a class of high-order multi-agent systems [J]. Control Theory and Applications, IET,2011,5 (1):247-253.
    [40]W. Li and Y. Jia. Consenstis-based distributed information filter for a class of jump Markov systems [J]. Control Theory and Applications, IET,2011,5 (10): 1214-1222.
    [41]P. Lin and Y. Jia. Further results on decentralised coordination in networks of agents with second-order dynamics [J]. Control Theory and Applications, IET, 2009,3 (7):957-970.
    [42]Z. Ji, Z. Wang and H. Lin. Interconnection topologies for multi-agent coordination under leader-follower framework [J]. Automatica,2009,45 (12):2857-2863.
    [43]Z. Wang, Y. Liu, G. Liu and X. Liu. A note on control of discrete-time stochastic systems with distributed delays and nonlinear disturbances [J]. Automatica,2010, 46 (3):543-548.
    [44]J. Yu and L. Wang. Group consensus in multi-agent systems with switching topolo-gies and communication delays [J]. Systems and Control Letters,2010,59 (6): 340-348.
    [45]Y. Sun and J. Cao. pth moment exponential stability of stochastic recurrent neural networks with time-varying delays [J]. Nonlinear Analysis:Real World Applica-tions,2007,8 (4):1171-1185.
    [46]D. Price. Networks of scientific papers [J]. Science,1965,149 (3683):510-515.
    [47]A. Barabasi and R. Albert. Emergence of scaling in random networks [J]. Science, 1999,286 (5439):509-512.
    [48]H. Wang and Y. Guo. Consensus on scale-free network [C]. In Proceedings of 2008 Amercia Control Conference, Seattle, USA,2008,748-752.
    [49]秦岭,胡荣强.无线传感器网络节点的有效能耗最小化策略[J].武汉理工大学学报,2010,32(2):112-114.
    [50]弋改珍,孙朋康,刘敏娜,欧阳宏基.无线传感器网络中休眠机制能量有效性的研究[J].陕西科技大学学报,2007,27(3):152-156.
    [51]朱洲,朱美琳.基于ODER的节能无线传感器网络覆盖控制[J].东南大学学报(自然科学版),2011,41:139-143.
    [52]王立泉,李立宏,张焕水,那成亮.带休眠算法的无线传感器网络MAC协议[J].通讯系统与网络技术,2007,33(1):14-17.
    [53]黄明亮,吕建平.基于最小能耗的无线传感器网络路由算法[J].现代电子技术,2001,34(14):79-81.
    [54]张韬,陈力军,陈道蓄.无线传感器网络MAC层节能广播协议[J].计算机科学,2013,40(1):29-33.
    [55]任代蓉,雷霖,易勇.无线传感器网络的网络协议与能量问题综述[J].成都大学学报(自然科学版),2007,26(1):58-61.
    [56]顾晓燕,孙力娟,郭剑,肖甫.无线传感器网络覆盖质量与节点休眠优化策略[J].计算机仿真,2011,28(9):127-131.
    [57]任智,王青明,郭晓金.无线传感器网络中基于最小跳数路由的节点休眠算法[J].计算机应用,2011,31(1):194-197.
    [58]石军锋,钟先信.一种无线传感网络的跨层节能同步机制[J].计算机科学,2008,35(1):42-46.
    [59]B. Bollobas. Random Graph [M]. New York:Cambridge University Press,2001.
    [60]M. Zhu and S. Martinez. Discrete-time dynamic average consensus [J]. Automatica, 2010,46 (2):322-329.
    [61]X. Lu, F. Austin and S. Chen. Flocking in multi-agent systems with active virtual leader and time-varying delays coupling [J]. Communications in Nonlinear Science and Numerical Simulation,2011,16 (2):1014-1026.
    [62]W. Zhou, J. Mou, T. Wang, C. Ji and J. Fang. Quasi-average mean square consen-sus for wireless sensor networks under three topologies with respect to sleeping-awaking method [J]. Optimal Control Applications and Methods 2012, Available online at www.wileyonlinelibrary.com.
    [63]J. Hu and G. Feng. Distributed tracking control of leader-follower multi-agent systems under noisy measurement [J]. Automatica,2010,46 (8):1382-1387.
    [64]W. Ni and D. Cheng. Leader-following consensus of multi-agent systems under fixed and switching topologies [J]. Systems Control Letters,2010,59 (3):209-217.
    [65]J. Hu and Y. Hong. Leader-following coordination of multi-agent systems with coupling time delays [J]. Physica A:Statistical Mechanics and its Applications, 2007,374 (2):853-863.
    [66]R. Horn and C. Johnson. Matrix Anysis [M]. New York:Cambridge University Press,1995.
    [67]G. Shi and Y. Hong. Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies [J]. Automatica,2009,45 (5):1165-1175.
    [68]P. Lin and Y. Jia. Average consensus in networks of multi-agents with both switch-ing topology and coupling time-delay [J]. Physica A:Statistical Mechanics and its Applications,2008,387 (1):303-313.
    [69]Y. Wang, H. Wang, J. Xiao and Z. Guan. Synchronization of complex dynamical networks under recoverable attacks [J]. Automatica,2010,46 (3):197-203.
    [70]D. Yue and H. Li. Sychronization stability of continuous/discrete complex dy-namical networks with interval time-varying delays [J]. Neurocomputing,2010,73 (4-6):809-819.
    [71]C. Wu. Synchronization and convergence of linear dynamics in random directed networks [J]. IEEE Transaction on Automatic Control,2006,51 (7):1207-1210.
    [72]X. Mao and C. Yuan. Stochastic Differential Equations with Markovian Switching [M]. London:Imperial College Press,2006.
    [73]A. Berman and R. Plemmons. Nonnegative Matrices in Mathematical Sciences [M]. Phliadeelphia:SIAM,1987.
    [74]J. Li, Q. Jia, X. Guan and X. Chen. Tracking a moving object via sensor network with a partial information broadcasting scheme [J]. Information Sciences,2011, 181 (20):4733-4753.
    [75]J. Hsu. C. Chen and C. Li. POOT:A efficient object tracking strategy based on short-term optimistic prediction for face-structured sensor networks [J]. Computer and Mathematics Applications,2012,63 (2):391-406.
    [76]A. Khedr and W. Osamy. Effective target tracking methchanism in a self-organizing wireless sensor network [J]. Journal of Parallel and Distributed Com-puting,2012,71 (10):1318-1362.
    [77]J. Chen, K. Cao, K. Li and Y. Sun. Distributed sensor activation algorithm for target tracking with binary sensor networks [J]. Cluster Computing,2011,14 (1): 55-64.
    [78]W. Xiao, S. Zhang, J. Lin and C. Tham. Energy-efficient adaptive sensor schedul-ing for target tracking in wireless sensor networks [J]. Journal of Control Theory Application,2010,8 (1):86-92.
    [79]W. Ye, J. Heidemann and D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks [J]. IEEE/ACM Transations on networking,2004,12 (3):493-506.
    [80]Y. Xu, W. Zhou, J. Fang, W. Sun and L. Pan. Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling [J]. Journal of the Franklin Institute,2010,37 (8):1566-1576.
    [81]Y. Xu, W. Zhou, J. Fang and W. Sun. Topology identification and adaptive syn-chronization of uncertain complex networks with adaptive double scaling functions [J]. Communication in Nonlinear Science and Numerical Simulatation,2011,16 (8):3337-3343.
    [82]Y. Sun and L. Wang, Consensus of multi-agent systems in directed networks with nonuniform time-varying delays [J]. Automatic Control, IEEE Transactions,2009, 54 (2):1607-1613.
    [83]A. Garulli and A. Giannitrapani. Analysis of consensus protocols with bounded measurement errors [J]. Systems and Control Letters,2011,60 (1):44-52.
    [84]J. Almeida, C. Silvestre and A. Pascoal. Continuous-time consensus with discrete-time communications [J]. Systems and Control Letters,2012,61 (7):788-796.
    [85]F. Jiang and L. Wang. Finite-time weighted average consensus with respect to a monotonic function and its application [J]. Systems and Control Letters,2011,60 (9):718-725.
    [86]D. Meng and Y. Jia. Iterative learning approaches to design finite-time consensus protocols for multi-agent systems [J]. Systems and Control Letters,2012,61 (1): 187-194.
    [87]D. Hammel. Formation flight as an energy saving mechanism [J]. Israel Journal of Zoology,1995,41 (3):261-278.
    [88]G. Anastasi, M. Conti, M. Francesco and A. Passarella. Energy conservation in wireless sensor networks:A survey [J]. Ad Hoc Networks,2009,7 (3):537-568.
    [89]Z. Wang, G. Chang, N. Fang and H. Hu. Non-linear dynamic coupled equations on controlling patterns of the solid/liquid interface [J]. Science and Technology of Advanced Materials,2001,2 (1):321-323.
    [90]Y. Wang, Z. Wang, J. Liang, Y. Li and M. Du. Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters [J]. Neurocomputing,2010,73 (13-15):2532-2539.
    [91]Y. Zhang and Y. Tian. Consentability and protocol design of multi-agent systems with stochastic switching topology [J]. Automatica,2009,45 (5):1195-1201.
    [92]IEEE Computer Society LAN MAN Standards Committee. IEEE Std 802.11-1999, Wireless Lan Medium Access Control (MAC) and Physical Layer (PHY) specifi-cations [M]. New York:The Institute of Electrical and Electronics Engineers, Inc., 1999.
    [93]L. Bao and J. Garcia-Luna-Aceves. A new approach to channel access scheduling for ad hoc networks [C]. In Proceedings of the 7th Annual international Conference on Mobile Computing and Networking, Rome, Italy,2001,210-221.
    [94]H. Yang, L. Lan and S. Zhang. Consensus of synchronization-preferential scale free networks [J]. Physics Procedia,2010,3 (5):1913-1920.
    [95]Z. Li, Z. Duan, G. Chen and L. Huang. Consensus of multi-agent systems and synchronization of complex networks:a unified viewpoint [J]. IEEE Transactions on circuits and systems-Ⅰ:regular papers,2010,57 (1):213-224.
    [96]C. Liu, Z. Duan, G. Chen and L. Huang. Analysing and controlling the network synchronization regions [J]. Physica A,2007,386 (1):531-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700