绝经后妇女性激素环境的改变与胰岛素抵抗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素抵抗(insulin resistance)是指胰岛素在外周组织摄取和利用葡萄糖的能力下降的一种状态。作为心血管疾病、糖尿病、代谢综合征的发病基础,胰岛素抵抗发生率在绝经后升高严重威胁着老年女性健康。近年来的研究发现,绝经后性激素环境的变化可能与胰岛素抵抗有关,但其机制尚未完全明确。绝经后性激素环境的最大变化是卵巢功能逐渐衰退进而E2水平下降,肾上腺来源的脱氢表雄酮/硫酸脱氢表雄酮(DHEA/DHEA-S)在外周组织的转化逐渐成为性激素的主要来源。在这个变化的过程中,调控性激素的关键蛋白性激素结合球蛋白(SHBG)、游离雄激素、DHEA/DHEA-S及其在外周组织的转化可能参与了绝经后胰岛素抵抗的关键环节。
     本课题从人群研究、动物实验、细胞实验三个水平探讨了绝经后性激素环境的变化与胰岛素抵抗的关系,研究绝经后性激素环境的变化是否通过影响体脂、血脂、胰岛素抵抗相关细胞因子介导胰岛素抵抗,分析在绝经后早期妇女中应用激素替代疗法能否改善胰岛素抵抗,并进一步研究性激素受体表达的变化、DHEA/DHEA-S的外周转化是否与绝经后胰岛素抵抗有关。
     第一部分绝经后妇女性激素环境的改变与胰岛素抵抗
     目的研究绝经后早期、晚期性激素环境的不同与胰岛素抵抗之间的关系以及其是否能通过影响体脂、血脂增加胰岛素抵抗的风险,研究在绝经后早期妇女中应用HRT能否通过改善体脂、血脂进而改善胰岛素抵抗。
     方法募集绝经后早期妇女(绝经时间≤5年)105名、绝经后晚期妇女(绝经时间≥10年)107名,并进一步根据体重指数(BMI)分为正常体重组(BMI<24kg/m2)、超重肥胖组(BMI≥24kg/m2)。采用双能X线吸收法(DEXA)测定体脂分布情况,抽取空腹血检测SHBG、T、E2、DHEA-S、 Glu、Ins、TC、TG、HDL-c、LDL-c、apoA、apoB水平并计算游离睾酮指数(FAI)和稳态模型胰岛素抵抗指数(HOMA-IR),采用偏相关分析、多元线性回归分析、单因素方差分析等统计方法分析SHBG、FAI、E2、 T、DHEA-S与体脂分布、血脂、胰岛素抵抗的关系。募集25名绝经后早期妇女(绝经时间≤5年)并用戊酸雌二醇(补佳乐)+孕激素(琪宁)周期序贯HRT进行干预一年,每三月随访一次,测定治疗前后体脂、血脂、性激素水平、胰岛素、血糖,采用配对t检验分析HRT对体脂、血脂、胰岛素抵抗的影响。
     结果绝经后晚期妇女比绝经后早期妇女脂肪含量、TG、Ins、HOMA-IR更高,DHEA-S、E2、apoA/apoB水平更低(p<0.05)。无论是绝经后早期妇女还是绝经后晚期妇女,超重肥胖组比正常体重组T/L、男性脂肪比例、HOMA-IR、Ins更高而女性脂肪比例、apoA/apoB更低(p<0.05),而血脂其它指标无显著差异(p>0.05)。在绝经后早期妇女中、超重肥胖组比正常体重组SHBG更低而FAI更高(p<0.05)。在绝经后晚期妇女中,超重肥胖组比正常体重DHEA-S、E2更高(p<0.05)。偏相关分析和多元线性回归分析表明:在绝经后早期妇女中,FAI与腹部脂肪堆积成正相关,SHBG与apoA/apoB成正相关,SHBG与Ins、HOMA-IR成负相关,DHEA-S与Glu成正相关(p<0.05);在绝经后晚期妇女中,DHEA-S与腹部脂肪堆积成正相关而与apoA成负相关,FAI与Glu成正相关(p<0.05)。经过HRT治疗一年后,生活质量明显改善,T/L、男性脂肪比例、HOMA-IR明显下降(p<0.05),而女性脂肪比例明显上升(p<0.05),血脂各项指标之间无显著差异(p>0.05)。
     结论绝经后雄激素活性升高与胰岛素抵抗风险增加有关,这种相关性在绝经后不同阶段表现有所不同,主要体现在:低水平SHBG引起的FAI升高、卵巢功能逐渐丧失引起的肥胖妇女体内代偿性DHEA-S升高,而且低SHBG、高FAI与DHEA-S能导致腹部脂肪堆积、apoA下降并进一步影响胰岛素抵抗。绝经后早期妇女进行HRT能显著改善体脂分布和HOMA-IR.
     第二部分戊酸雌二醇对去势大鼠胰岛素抵抗的影响及相关核受体机制
     目的研究戊酸雌二醇(补佳乐)对去势大鼠性激素水平、体脂、血脂、细胞因子、胰岛素抵抗的影响,进一步探讨戊酸雌二醇(补佳乐)对去势大鼠肝脏组织中SHBG、PPARγ、性激素受体(AR、ERα、ERβ)及DHEA外周转化所需的酶(17β-HSD、芳香化酶)表达的影响。
     方法27只雌性SD大鼠分为三组:假手术组(SHAM, n=10)、去势组(OVX,n=8)、去势+补佳乐组(OVX+E2, n=9)。双卵巢切除后OVX+E2组用补佳乐灌胃(800μg/kg-d), SHAM和OVX组蒸馏水灌胃,每两周称重一次,12周后处死动物。腹主动脉抽血检测SHBG、T、E2、DHEA, Glu、Ins、TC、TG、HDL-c、LDL-c、TNF-α、IL-6、脂联素、瘦素水平,摘取内脏脂肪并计算内脏脂肪系数,摘取肝脏组织切片进行HE染色,用Western blot、Real-time PCR检测肝脏组织中SHBG、PPARγ、AR、 ERα、ERβ、17β-HSD、芳香化酶的表达。
     结果 与SHAM组相比,OVX组动物E2、SHBG明显下降,FAI、DHEA、体重、VFM、IL-6、HOMA-IR明显上升(p<0.05),肝脏组织中脂肪堆积明显增多;OVX+E2组与OVX组动物相比,E2、SHBG、HDL-c明显上升,FAI、体重、VFM、LDL-c、IL-6、HOMA-IR明显下降(p<0.05),肝脏组织中脂肪堆积明显减少。与此同时,OVX组比SHAM组PPARγ、 AR、17β-HSD、芳香化酶的表达明显升高,而SHBG、ERα的表达明显下降(p<0.05);采用补佳乐干预后,这种趋势呈现一定程度的逆转(p<0.05)。
     结论在动物实验中,补佳乐能逆转由于手术绝经导致的内脏脂肪堆积、IL-6及HOMA-IR升高(这些变化与E2和SHBG下降、FAI升高、DHEA代偿性升高有关)。绝经后胰岛素抵抗风险增加可能与肝脏组织中PPARγ、 AR、DHEA外周转化升高以及SHBG、ERα表达下降有关。
     第三部分HepG2细胞中胰岛素抵抗状态下SHBG的表达及DHEA外周转化对胰岛素受体信号通路的影响
     目的研究胰岛素抵抗模型下SHBG表达的变化,不同浓度DHEA及其外周转化对胰岛素受体信号通路中的关键分子(IR、IRS-2、GLUT-2)表达的影响。
     方法采用高胰岛素诱导方法建立胰岛素抵抗HepG2细胞模型,并检测胰岛素抵抗状态下SHBG的表达;用E2、T、不同浓度DHEA作用于HepG2细胞72h,检测IR、IRS-2、GLUT-2的表达;采用来曲唑(letrizole)、曲洛司坦(trilostane)阻断DHEA外周转化后,检测IR、IRS-2、GLUT-2的表达。
     结果浓度为10-6M胰岛素作用于HepG2细胞36h后,细胞达到最大胰岛素抵抗状态,与此同时SHBG蛋白及mRNA表达最低(p<0.05)。高浓度(10-5M)DHEA的作用和T类似,明显下调IR、IRS-2、GLUT-2蛋白与mRNA表达;随着浓度的降低,DHEA的下调作用减弱;10-9M浓度的DHEA作用于细胞后IRS-2、GLUT-2蛋白与mRNA表达较空白对照组上升(类似于E2);和空白对照组相比,E2明显上调IR、IRS-2、GLUT-2蛋白与mRNA表达(p<0.05)。与单独DHEA作用相比,Letrizole阻断后IR、IRS-2、GLUT-2蛋白和mRNA表达明显下调;与DHEA+Letrizole作用相比,Trilostane阻断后,IR、IRS-2、GLUT-2蛋白和mRNA表达明显上升(p<0.05)。
     结论肝细胞中SHBG表达下降、DHEA向雄激素转化较雌激素更多与胰岛素抵抗有关。DHEA对胰岛素抵抗的作用与浓度有关:高浓度DHEA与T作用类似,下调胰岛素受体信号通路中IR、IRS-2、GLUT-2的表达从而促进胰岛素抵抗;而低浓度DHEA与E2作用类似,上调IRS-2、GLUT-2的表达从而改善胰岛素抵抗。
     1.绝经后性激素环境的改变(特别是雄激素活性增加)增加了胰岛素抵抗的风险,主要体现在:在绝经后早期,E2下降进而SHBG下降、FAI升高,卵巢逐渐丧失功能从而代偿性高DHEA/DHEA-S;在绝经后晚期,肾上腺来源的DHEA/DHEA-S外周转化增加。
     2、内脏脂肪堆积、血脂异常、IL-6升高可能是性激素介导胰岛素抵抗的作用环节。人群调查和动物实验表明,绝经后早期HRT能通过改善体脂、血脂、降低IL-6水平进而改善胰岛素抵抗。
     3、肝脏组织中PPARy表达升高引发SHBG下降,ERa表达下降、AR表达升高可能是性激素介导绝经后胰岛素抵抗的受体机制。
     4、DHEA在肝脏细胞中向雄激素转化更多与胰岛素抵抗有关。肝细胞中DHEA对胰岛素受体信号通路的作用与浓度有关,高浓度DHEA促进胰岛素抵抗而低浓度DHEA改善胰岛素抵抗。
Insulin resistance is defined as the peripheral tissues'decreased ability of utilizing glucose. As the common risk factor of coronary heart diseases, metabolic syndrome and type2diabetes, the increased incidence of insulin resistance after menopause is detrimental to the health of elderly women.During recent years many researches suggested that the changes of sex hormone environment after menopause were associated with insulin resistance, but the concrete mechanisms are still unknown. The most remarkable changes of sex hormone environment after menopause are the gradually reduced sex hormones originating from ovaries and the peripheral synthesis from dehydroepiandrosterone(DHEA) or dehydroepiandrosterone-sulfate (DHEA-S) originating from the adrenals.In these processes, sex hormone-binding globulin (SHBG) which is the key protein regulating sex hormones,free androgens,DHEA/DHEA-S and their peripheral transformation may mediated the key steps of insulin resistance.
     Our studies dicussed the relationships between the changes of sex hormone environment after menopause and insulin resistance according to population based investigation, animal experiment and cell experiment. To determine whether the changes of sex hormone environment after menopause mediate insulin resistance by modulating body fat distribution and blood lipids. We also analyzed whether hormone replacement therapy (HRT) in early postmenopausal women could improve insulin resistance and studied whether the changes of sex hormone receptors and peripheral transformation of DHEA/DHEA-S correlated with insulin resistance.
     Part Ⅰ The changes of sex hormone environment and insulin resistance after menopause
     Objectives:To determine the relationships between insulin resistance and sex hormone environment which are different between early postmenopause and late postmenopause. To study whether the changes of sex hormone environment could improve insulin resistance by regulating body fat and blood lipids and whether hormone replacement therapy (HRT) in early postmenopausal women could improve insulin resistance.
     Methods:We enrolled postmenopausal women consisting of an early group years since menopause, n=105) and an elder group (≥10years since menopause, n=107). Each group was subdivided into normal weight (BMI<24kg/m2) group, overweight and obese (BMI≥24kg/m2) group. Body fat distribution was evaluated by dual-energy X-ray absorptiometry (DEXA). Fasting SHBG, T, E2, DHEA-S, Glu, Ins, TC, TG, HDL-c, LDL-c, apoA, apoB levels were measured and then calculated FAI and HOMA-IR. The relationships among sex hormone environment and body fat, blood lipids and insulin resistance were estimated by partial correlation, multiple linear regression and oneway ANOVA analyses. We also recruited25early postmenopausal women (≤5years since menopause) which accepted HRT (progynova+progesterone, cyclic combined therapy) for one year. Follow up visit were performed every3months. We measured sex hormones, body fat, blood lipids, insulin and glucose before and after therapy.The effects of HRT on body fat, blood lipids and insulin resistance were evaluated by matching t-test.
     Results:Compared to early postmenopausal women, late postmenopausal women had higher proportion of body fat, TG, Ins and HOMA-IR but they had lower DHEA-S,E2and apoA/apoB (all p<0.05).Both in early postmenopausal and late postmenopausal groups, overweight and obese women had higher T/L, the proportion of android fat, HOMA-IR and Ins, they had lower apoA/apoB and the proportion of gynoid fat than normal weight women (all p<0.05),but there were no significant differences in other blood lipids between normal weight women and overweight and obese women (p>0.05).In early postmenopausal group, overweight and obese women had lower SHBG and higher FAI than normal weight women (all p<0.05).In late postmenopausal group, overweight and obese women had higher DHEA-S and E2levels (all p<0.05). Partial correlation and multiple linear regression analyses suggested that:In early postmenopausal group, FAI correlated positively with abodominal fat accumulation, SHBG correlated positively with apoA/apoB and negatively with Ins and HOMA-IR, DHEA-S correlated positively with glucose (all p<0.05). In late postmenopausal group, DHEA-S correlated positively with abodominal fat accumulation and negatively with apoA, FAI correlated positively with glucose (all p<0.05).After one-year HRT, the quality of women's life were significantly improved, their T/L, the proportion of android fat and HOMA-IR decreased significantly but the proportion of gynoid fat increased significantly (all p<0.05). There were no significant differences in blood lipids between before and after HRT (all p>0.05)
     Conclusions:The increased androgenic activities after menopause are associated with insulin resistance. These correlations are different during the different stages of posmenopause and mainly incarnate in:high FAI caused by low SHBG, compensatory high DHEA-S in obese postmenopausal women caused by gradual cesscation of ovary function. High FAI and DHEA-S and low SHBG may affect insulin resistance according to regulating body fat and apoA. HRT in early postmenopausal women could improve insulin resistance.
     Part II The effects of progynova on insulin resistance in ovariectomised rats and their nuclear receptor mechanisms
     Objectives:To determine the effects of progynova on sex hormones,body fat,blood lipids and insulin resistance in ovariectomised Sprague-Dawley rats.And then to discusss the effects of progynova on the expressions of SHBG、PPAR、AR、ERα、 ERβ、17β-HSD and aromatase.
     Methods:Twenty-seven female SD rats were divided into three groups:SHAM group (n=10), OVX group (n=8) and OVX+E2group (n=9).After ovariectomy OVX+E2group received800μg/kg progynova via gavage daily, SHAM and OVX groups received2ml water via gavage daily. Weight and food intake were recorded every two weeks. All of the animals were euthanized12weeks after ovariectomy, then we collected blood from abdominal aorta, after which their fasting SHBG,T,E2,DHEA,Glu,Ins,TC,TG,HDL-c,LDL-c,TNF-a,IL-6,adiponectin and leptin levels were measured. After euthanising the rats, we opened their abdominal cavities and accessed all of their intra-abdominal fat. We then weighed and calculated their visceral fat mass (VFM=visceral fat weight/body weight,%). Liver tissue slices were stained by hemotoxylin and eosin (HE).We also detected the expressions of SHBG、PPARγ、AR、ERα、ERβ、17β-HSD and aromatase in liver tissue using Western blot and Real-time PCR.
     Results:Compared to SHAM group, OVX group had lower E2and SHBG levels,higher FAI,DHEA,body weight,VFM,IL-6and HOMA-IR (all p<0.05),OVX group also had significantly higher fat accumulation in liver. Compared to OVX group,OVX+E2group had higher E2,SHBG and HDL-c levels,lower FAI,DHEA,body weight,VFM,LDL-c,IL-6,HOMA-IR and fat accumulation in liver (all p<0.05). In the meantime, the expressions of PPARy,AR,17β-HSD and aromatase in the liver of OVX group were higher than SHAM group.The expressions of SHBG and ERa in the liver of OVX group were lower than SHAM group (all p<0.05). After progynova therapy, these tendencies were reversed to some extent (all p<0.05)
     Conclusions:In animal experiment, progynova can reverse visceral fat accumaltion, high IL-6and HOMA-IR induced by surgical menopause (These changes correlated with low SHBG and E2, high FAI and DHEA-S). The increased incidence of insulin resistance after menopause correlated with high expressions of PPARy and AR, low expressions of SHBG and ERa, peripheral transformation of DHEA.
     PartⅢ The expressions of SHBG in the HepG2cell model of insulin resistance and the effects of peripheral transformation of DHEA on insulin receptor signal path
     Objectives:To detect the expression of SHBG in cell model of insulin resistance and the effects of different concentrations of DHEA and their peripheral transformation on the key molecule(IR,IRS-2,GLUT-2) of insulin receptor signal path.
     Methods:We established cell model of insulin resistance in HepG2cell line induced by high dose of insulin and then detected the expression of SHBG in the condition of insulin resistance. After72h stimulation of E2,T and different concentrations of DHEA,then we detected the expressions of IR,IRS-2and GLUT-2. We used letrizole and trilostane to inhibit peripheral transformation of DHEA in HepG2cell line and then detected the expressions of IR, IRS-2and GLUT-2.
     Results:HepG2cells reached the extreme insulin resistance after the stimulation of insulin at a concentration of10-6M for36h. In the meantime, the expressions of SHBG protein and mRNA touched the bottom (p<0.05). High concentration of DHEA (10-5M) down-regulated the expressions of IR, IRS-2and GLUT-2, which was similar to T. As the concentration reduced, the effects of down-regulation were weakened.10-9M concentration of DHEA up-regulated the expressions of IRS-2and GLUT-2, which was similar to E2. Compared to the control group, E2significantly up-regulated the expressions of IR, IRS-2and GLUT-2. After inhibited by letrizole, the expressions of IR, IRS-2and GLUT-2were down-regulated compared with the effects of sole DHEA. The expressions of IR, IRS-2and GLUT-2were up-regulated after inhibited by trilostane than combination of DHEA and letrizole (p<0.05)
     Conclusions:There were two factors associated with insulin resistance in HepG2cell line:The expression of SHBG decreased and DHEA-S converted more readily to androgens than to estrogens. The effects of DHEA on insulin resistance correlated with its concentration:High concentration of DHEA down-regulated the expressions of IR, IRS-2and GLUT-2, which was similar to T. Low concentration of DHEA up-regulated the expressions of IRS-2and GLUT-2, which was similar to E2.
     1、The changes of sex hormone environment after menopause (especially, the increased androgenic activities) increase the risk of insulin resistance and this correlation mainly incarnates in:In early postmenopause, low SHBG caused by low E2,high FAI caused by low SHBG, compensatory high DHEA induced by gradual cessation of ovarian function; In late postmenopause, the increased peripheral transformation of DHEA/DHEA-S induced by the cessation of ovarian function.
     2、Visceral fat accumulation, abnormal blood lipids and increased IL-6levels are the possible aspects of the effects of the changes of sex hormone environment after menopause on insulin resistance.Population based investigation and animal experiment suggested that HRT in early postmenopause could improve insulin resistance by regulating body fat distribution, blood lipids and IL-6levels.
     3、The decreased expression of SHBG induced by high PPARy,the decreased expression of ERa, the increased expression of AR are the possible receptor mechanisms which the changes of sex hormone environment mediated insulin resistance.
     4、DHEA-S converted more readily to androgens than to estrogens in liver, which correlates with insulin resistance. The effects of DHEA on insulin receptor signal path depending on its concentration:High concentration of DHEA promotes insulin resistance and low concentration of DHEA could improves insulin resistance.
引文
[1]Collins P, Rosano G, Casey C, et al. Management of cardiovascular risk in the perimenopausal women:a consensusstatement of European cardiologists and gynecologists. Climacteric 2007;10:508-26.
    [2]Heidari R, Sadeghi M, Talaei M, Rabiei K, Mohammadifard N, Sarrafzadegan N. Metabolic syndrome in menopausal transition:Isfahan Healthy Heart Program, apopulation based study. Diabetol Metab Syndr 2010;2:59.
    [3]Bonnet F, Balkau B, Malecot JM, et al. Sex hormone-binding globulin predicts the incidence of hyperglycemia in women:interactions with adiponectin levels. Eur J Endocrinol 2009; 161:81-5.
    [4]Weinberg ME, Manson JE, Buring JE, et al. Low sex hormone-binding globulin is associated with the metabolic syndrome inpostmenopausal women. Metabolism 2006;55:1473-80.
    [5]Hribal ML, Oriente F, Accili D. Mouse models of insulin resistance. Am J Physiol Endocrinol Metab 2002:282:E977-81.
    [6]Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88: 2404-11.
    [7]Schneider JG, Tompkins C, Blumenthal RS, Mora S. The metabolic syndrome in women. Cardiol Rev 2006; 14:286-91.
    [8]Kim HM, Park J, Ryu SY, Kim J. The effect of menopause on the metabolic syndrome among Korean women:the Korean National Health and Nutrition Examination Survey,2001. Diabetes Care 2007:30: 701-6.
    [9]Lin KC, Tsai ST, Kuo SC, Tsay SL, Chou P. Interrelationship between insulin resistance and menopause on the metabolicsyndrome and its individual component among nondiabetic women in the kinmenstudy. Am J Med Sci 2007;333:208-14.
    [10]Cho GJ, Lee JH, Park HT, et al. Postmenopausal status according to years since menopause as an independent riskfactor for the metabolic syndrome. Menopause 2008; 15:524-9.
    [11]Chu MC, Cosper P, Orio F, Carmina E, Lobo RA. Insulin resistance in postmenopausal women with metabolic syndrome and the measurements of adiponectin, leptin, resistin, and ghrelin. Am J Obstet Gynecol 2006; 194:100-4.
    [12]Poehlman ET, Toth MJ, Gardner AW. Changes in energy balance and body composition at menopause:a controlled longitudinal study. Ann Intern Med 1995;123:673-5.
    [13]Svendsen OL, Hassager C, Christiansen C. Age- and menopause-associated variations in body composition and fat distributionin healthy women as measured by dual-energy X-ray absorptiometry. Metabolism 1995;44:369-73.
    [14]Romaguera J, Ortiz AP, Roca FJ, Colon G, Suarez E. Factors associated with metabolic syndrome in a sample of women in Puerto Rico. Menopause 2010:17:388-92.
    [15]汪芳,褚德发.王抒,许峰,季福绥.绝经后女性冠心病患者血脂变化特点.中华心血管病杂志.1999.(02):21-23.
    [16]Senn JJ, Klover PJ, Nowak IA. Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002;51:3391-9.
    [17]Lagathu C, Bastard JP, Auclair M. Maachi M. Capeau J. Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and inducedinsulin resistance in adipocyte:prevention by rosiglitazone. Biochem Biophys Res Commun 2003:311:372-9.
    [18]Kim OY, Chae JS, Paik JK, et al. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age (Dordr) 2011.
    [19]Ben AS, Jemaa R, Ftouhi B, et al. Relationship of plasma leptin and adiponectin concentrations with menopausal status in Tunisian women. Cytokine 2011;56:338-42.
    [20]Fogle RH, Stanczyk FZ, Zhang X, Paulson RJ. Ovarian androgen production in postmenopausal women. J Clin Endocrinol Metab 2007;92:3040-3.
    [21]Avvakumov GV, Cherkasov A, Muller YA, Hammond GL. Structural analyses of sex hormone-binding globulin reveal novel ligands andfunction. Mol Cell Endocrinol 2010;316:13-23.
    [22]Labrie F, Martel C, Balser J. Wide distribution of the serum dehydroepiandrosterone and sex steroid levels inpostmenopausal women:role of the ovary. Menopause 2011; 18:30-43.
    [23]Labrie F. Intracrinology. Mol Cell Endocrinol 1991;78:C113-8.
    [24]Labrie F, Luu-The V, Labrie C, et al. Endocrine and intracrine sources of androgens in women:inhibition of breastcancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev 2003;24:152-82.
    [25]Labrie F. DHEA as physiological replacement therapy at menopause. J Endocrinol Invest 1998;21: 399-401.
    [26]Auchus RJ. Overview of dehydroepiandrosterone biosynthesis. Semin Reprod Med 2004;22:281-8.
    [27]Labrie F, Belanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levelsof active androgens and estrogens but of their metabolites:intracrinology. J Clin Endocrinol Metab 1997;82:2403-9.
    [28]Labrie C, Belanger A, Labrie F. Androgenic activity of dehydroepiandrosterone and androstenedione in the ratventral prostate. Endocrinology 1988;123:1412-7.
    [29]Labrie F. Extragonadal synthesis of sex steroids:intracrinology. Ann Endocrinol (Paris) 2003;64:95-107.
    [30]Salpeter SR, Walsh JM, Ormiston TM, Greyber E, Buckley NS, Salpeter EE. Meta-analysis:effect of hormone-replacement therapy on components of themetabolic syndrome in postmenopausal women. Diabetes Obes Metab 2006;8:538-54.
    [31]Tchernof A, Poehlman ET. Effects of the menopause transition on body fatness and body fat distribution. Obes Res 1998;6:246-54.
    [32]Salpeter SR, Walsh JM, Greyber E, Ormiston TM, Salpeter EE. Mortality associated with hormone replacement therapy in younger and older women:a meta-analysis. J Gen Intern Med 2004;19:791-804.
    [33]Wild RA, Taylor EL, Knehans A. The gynecologist and cardiovascular disease:a window of opportunity forprevention. J Soc Gynecol Investig 1994;1:107-17.
    [34]Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy:the Women's Health Initiative randomized controlled trial. JAMA 2004:291: 1701-12.
    [35]Manson JE, Hsia J, Johnson KC, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003;349:523-34.
    [36]Pines A, Sturdee DW, Birkhauser MH, Schneider HP, Gambacciani M, Panay N. IMS updated recommendations on postmenopausal hormone therapy. Climacteric 2007; 10:181-94.
    [37]Sturdee DW, Pines A, Archer DF, et al. Updated IMS recommendations on postmenopausal hormone therapy and preventivestrategies for midlife health. Climacteric 2011; 14:302-20.
    [38]Kalme T, Loukovaara M, Koistinen R, et al. Estradiol increases the production of sex hormone-binding globulin but notinsulin-like growth factor binding protein-1 in cultured human hepatoma cells. Fertil Steril 1999:72:325-9.
    [39]Meza-Munoz DE, Fajardo ME, Perez-Luque EL, Malacara JM. Factors associated with estrogen receptors-alpha (ER-alpha) and -beta (ER-beta)and progesterone receptor abundance in obese and non obese pre-andpost-menopausal women. Steroids 2006;71:498-503.
    [40]Nader N, Raverot G, Emptoz-Bonneton A, et al. Mitotane has an estrogenic effect on sex hormone-binding globulin andcorticosteroid-binding globulin in humans. J Clin Endocrinol Metab 2006;91:2165-70.
    [41]Akin F, Bastemir M, Alkis E, Kaptanoglu B. SHBG levels correlate with insulin resistance in postmenopausal women. Eur J Intern Med 2009;20:162-7.
    [42]Ding EL, Song Y, Manson JE, et al. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med 2009;361:1152-63.
    [43]Reinecke H, Bogdanski J, Woltering A, et al. Relation of serum levels of sex hormone binding globulin to coronary heartdisease in postmenopausal women. Am J Cardiol 2002;90:364-8.
    [44]Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the metabolic syndrome: the Study of Women's Health Across theNation. Arch Intern Med 2008:168:1568-75.
    [45]Torrens JI, Sutton-Tyrrell K, Zhao X, et al. Relative androgen excess during the menopausal transition predicts incidentmetabolic syndrome in midlife women:study of Women's Health Across the Nation. Menopause 2009; 16:257-64.
    [46]Janssen I, Powell LH, Kazlauskaite R, Dugan SA. Testosterone and visceral fat in midlife women:the Study of Women's HealthAcross the Nation (SWAN) fat patterning study. Obesity (Silver Spring) 2010;18: 604-10.
    [47]Braunstein GD, Johnson BD, Stanczyk FZ, et al. Relations between endogenous androgens and estrogens in postmenopausal women withsuspected ischemic heart disease. J Clin Endocrinol Metab 2008;93: 4268-75.
    [48]Lee CC, Kasa-Vubu JZ, Supiano MA. Androgenicity and obesity are independently associated with insulin sensitivityin postmenopausal women. Metabolism 2004;53:507-12.
    [49]Nakhla AM, Romas NA, Rosner W. Estradiol activates the prostate androgen receptor and prostate-specific antigen secretion through the intermediacy of sex hormone-binding globulin. J Biol Chem 1997:272: 6838-41.
    [50]Rosner W, Hryb DJ, Kahn SM, Nakhla AM. Romas NA. Interactions of sex hormone-binding globulin with target cells. Mol Cell Endocrinol 2010;316:79-85.
    [51]Nakhla AM, Khan MS, Romas NP, Rosner W. Estradiol causes the rapid accumulation of cAMP in human prostate. Proc Natl Acad Sci U S A 1994;91:5402-5.
    [52]Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 2004;25:947-70.
    [53]Labrie F, Luu-The V, Labrie C, Simard J. DHEA and its transformation into androgens and estrogens in peripheral target tissues:intracrinology. Front Neuroendocrinol 2001:22:185-212.
    [54]Medina MC, Souza LC, Caperuto LC, et al. Dehydroepiandrosterone increases beta-cell mass and improves the glucose-induced insulin secretion by pancreatic islets from aged rats. FEBS Lett 2006:580:285-90.
    [55]Wellman M. Shane-McWhorter L, Orlando, Jennings JP. The role of dehydroepiandrosterone in diabetes mellitus. Pharmacotherapy 1999;19:582-91.
    [56]Golden SH, Dobs AS, Vaidya D, et al. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin Endocrinol Metab 2007:92:1289-95.
    [57]Dhatariya K, Bigelow ML, Nair KS. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes 2005;54:765-9.
    [58]Villareal DT. Holloszy JO. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA 2004:292:2243-8.
    [59]Mortola JF, Yen SS. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J Clin Endocrinol Metab 1990:71:696-704.
    [60]Gebre-Medhin G, Husebye ES. Mallmin H, et al. Oral dehydroepiandrosterone (DHEA) replacement therapy in women with Addison's disease. Clin Endocrinol (Oxf) 2000;52:775-80.
    [61]Callies F, Fassnacht M, van VJC, et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency:effects on body composition, serum leptin, bone turnover, and exercise capacity. J Clin Endocrinol Metab 2001;86:1968-72.
    [62]Panjari M, Bell RJ, Jane F, Adams J, Morrow C, Davis SR. The safety of 52 weeks of oral DHEA therapy for postmenopausal women. Maturitas 2009;63:240-5.
    [63]Boxer RS, Kleppinger A, Brindisi J, Feinn R, Burleson JA, Kenny AM. Effects of dehydroepiandrosterone (DHEA) on cardiovascular risk factors in older women with frailty characteristics. Age Ageing 2010;39: 451-8.
    [64]Davis SR, Panjari M, Stanczyk FZ. Clinical review:DHEA replacement for postmenopausal women. J Clin Endocrinol Metab 2011;96:1642-53.
    [65]Folsom AR, Kushi LH, Anderson KE, et al. Associations of general and abdominal obesity with multiple health outcomes in older women:the Iowa Women's Health Study. Arch Intern Med 2000; 160:2117-28.
    [66]Toth MJ, Tchernof A, Sites CK, Poehlman ET. Menopause-related changes in body fat distribution. Ann N Y Acad Sci 2000;904:502-6.
    [67]Llaneza P. Inarrea J, Gonzalez C, Alonso A, Arnott I, Ferrer-Barriendos J. Differences in health related quality of life in a sample of Spanish menopausal women with and without obesity. Maturitas 2007;58: 387-94.
    [68]Panotopoulos G, Ruiz JC, Raison J, Guy-Grand B, Basdevant A. Menopause, fat and lean distribution in obese women. Maturitas 1996:25:11-9.
    [69]Tremollieres FA, Pouilles JM, Ribot CA. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol 1996;175:1594-600.
    [70]Uesugi T, Toda T, Tsuji K, Ishida H. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biol Pharm Bull 2001;24:368-72.
    [71]Babaei P, Mehdizadeh R, Ansar MM, Damirchi A. Effects of ovariectomy and estrogen replacement therapy on visceral adipose tissue and serum adiponectin levels in rats. Menopause Int 2010;16:100-4.
    [72]李清亚,张松.祝扬等.不同年龄及性别国人体脂和总体水分含量的测量分析.解放军预防医学杂志.2007.(06):412-415.
    [73]强宏娟,庄一义,许瑞吉.绝经后妇女雌激素缺乏与胆固醇酯转运蛋白水平改变的关系.临床检验杂志.2002.(06):367-369.
    [74]Castanho VS, Oliveira LS, Pinheiro HP, Oliveira HC, de Faria EC. Sex differences in risk factors for coronary heart disease:a study in aBrazilian population. BMC Public Health 2001:1:3.
    [75]Cho GJ, Lee JH, Park HT, et al. Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause 2008;15:524-9.
    [76]宓继红.胰岛素抵抗与年龄关系的研究现状.老年医学与保健.1999.(04):190-192.
    [77]Rafiei M, Boshtam M. Sarraf-Zadegan N. Lipid profiles in the Isfahan population:an Isfahan cardiovascular disease risk factor survey,1994. East Mediterr Health J 1999;5:766-77.
    [78]Chu MC, Cosper P, Orio F, Carmina E, Lobo RA. Insulin resistance in postmenopausal women with metabolic syndrome and the measurements of adiponectin, leptin, resistin, and ghrelin. Am J Obstet Gynecol 2006;194:100-4.
    [79]武阳丰.胡永华.李贤.陈春明.中国居民的超重和肥胖流行现状.中华预防医学杂志.2005.(05): 22-26.
    [80]Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 1982:16:801-10.
    [81]Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 1999;84:3666-72.
    [82]Labrie F, Belanger A, Belanger P, et al. Metabolism of DHEA in postmenopausal women following percutaneous administration. J Steroid Biochem Mol Biol 2007; 103:178-88.
    [83]Panjari M. Davis SR. DHEA for postmenopausal women:a review of the evidence. Maturitas 2010;66: 172-9.
    [84]Davis SR, Panjari M, Stanczyk FZ. Clinical review:DHEA replacement for postmenopausal women. J Clin Endocrinol Metab 2011;96:1642-53.
    [85]李自成,王瑞英,黄文增.高血压病患者血清脂蛋白、载脂蛋白异常与胰岛素抵抗的关系.中国循环杂志.1996.(09):6-9.
    [86]Williams K, Sniderman AD, Sattar N, D'Agostino R Jr, Wagenknecht LE, Haffner SM. Comparison of the associations of apolipoprotein B and low-density lipoproteincholesterol with other cardiovascular risk factors in the Insulin ResistanceAtherosclerosis Study (IRAS). Circulation 2003:108:2312-6.
    [87]Weinberg ME, Manson JE, Buring JE, et al. Low sex hormone-binding globulin is associated with the metabolic syndrome in postmenopausal women. Metabolism 2006;55:1473-80.
    [88]Cuadros JL, Fernandez-Alonso AM, Cuadros AM, Chedraui P, Perez-Lopez FR. Body mass index and its correlation to metabolic and hormone parameters in postmenopausal Spanish women. Gynecol Endocrinol 2011;27:678-84.
    [89]Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998;280:605-13.
    [90]Salpeter SR, Walsh JM, Greyber E, Ormiston TM, Salpeter EE. Mortality associated with hormone replacement therapy in younger and older women:a meta-analysis. J Gen Intern Med 2004; 19:791-804.
    [91]Wild RA, Taylor EL, Knehans A. The gynecologist and cardiovascular disease:a window of opportunity for prevention. J Soc Gynecol Investig 1994:1:107-17.
    [92]Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy:the Women's Health Initiative randomized controlled trial. JAMA 2004;291: 1701-12.
    [93]Manson JE, Hsia J, Johnson KC, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003:349:523-34.
    [94]Pines A, Sturdee DW, Birkhauser MH, Schneider HP, Gambacciani M, Panay N. IMS updated recommendations on postmenopausal hormone therapy. Climacteric 2007;10:181-94.
    [95]Gambacciani M, Rosano G, Cappagli B, Pepe A, Vitale C, Genazzani AR. Clinical and metabolic effects of drospirenone-estradiol in menopausal women:a prospective study. Climacteric 2011;14:18-24.
    [96]Godsland IF, Manassiev NA. Felton CV, et al. Effects of low and high dose oestradiol and dydrogesterone therapy on insulin and lipoprotein metabolism in healthy postmenopausal women. Clin Endocrinol (Oxf) 2004;60:541-9.
    [97]白文佩,陈淑玲.激素替代治疗对绝经后妇女糖代谢的影响.中国临床药理学杂志.1999.(01):15-18.
    [98]吴雪清,叶碧绿,叶真.雌激素替代治疗对绝经后妇女糖代谢的影响(附15例报告).中国医师杂志.2000.(8):498-499.
    [99]Christodoulakos G, Lambrinoudaki I, Panoulis C, et al. Serum androgen levels and insulin resistance in postmenopausal women:association with hormone therapy, tibolone and raloxifene. Maturitas 2005;50: 321-30.
    [100]Poehlman ET, Toth MJ. Gardner AW. Changes in energy balance and body composition at menopause:a controlled longitudinal study. Ann Intern Med 1995:123:673-5.
    [101]Svendsen OL, Hassager C, Christiansen C. Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism 1995;44:369-73.
    [102]Romaguera J, Ortiz AP, Roca FJ, Colon G, Suarez E. Factors associated with metabolic syndrome in a sample of women in Puerto Rico. Menopause 2010; 17:388-92.
    [103]Salpeter SR, Walsh JM, Ormiston TM, Greyber E, Buckley NS, Salpeter EE. Meta-analysis:effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab 2006:8:538-54.
    [104]Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002:51:3391-9.
    [105]Lagathu C, Bastard JP, Auclair M, Maachi M, Capeau J, Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte:prevention by rosiglitazone. Biochem Biophys Res Commun 2003;311:372-9.
    [106]Liu S, Tinker L, Song Y, et al. A prospective study of inflammatory cytokines and diabetes mellitus in a multiethnic cohort of postmenopausal women. Arch Intern Med 2007; 167:1676-85.
    [107]Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002;51:1884-8.
    [108]de Lartigue G, de la Serre C B. Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 2011;301: E187-95.
    [109]Liu MH, Lin YS, Sheu SY, Sun JS. Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutr Neurosci 2009;12:123-34.
    [110]Sowers MR, Randolph JF, Zheng H, et al. Genetic polymorphisms and obesity influence estradiol decline during the menopause. Clin Endocrinol (Oxf) 2011;74:618-23.
    [111]Subbaramaiah K, Howe LR, Bhardwaj P, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 2011;4:329-46.
    [112]Le MC, Chu K, Hu M, et al. Estrogens protect pancreatic beta-cells from apoptosis and preventinsulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 2006:103:9232-7.
    [113]Festa A, D'Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome:the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000:102:42-7.
    [114]Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science (80-) 2007;317:121-4.
    [115]Wang YC, Xu GL, Jia WD. et al. Estrogen Suppresses Metastasis in Rat Hepatocellular Carcinoma through Decreasing Interleukin-6 and Hepatocyte Growth Factor Expression. Inflammation 2011.
    [116]Prieto J. Inflammation. HCC and sex:IL-6 in the centre of the triangle. J Hepatol 2008;48:380-1.
    [117]Kim OY Chae JS, Paik JK, et al. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age (Dordr) 2011.
    [118]Ben AS, Jemaa R, Ftouhi B, et al. Relationship of plasma leptin and adiponectin concentrations with menopausal status in Tunisian women. Cytokine 2011:56:338-42.
    [119]Avvakumov GV, Cherkasov A. Muller YA. Hammond GL. Structural analyses of sex hormone-binding globulin reveal novel ligands and function. Mol Cell Endocrinol 2010:316:13-23.
    [120]Page-Wilson G, Goulart AC, Rexrode KM. Interrelation between sex hormones and plasma sex hormone-binding globulin andhemoglobin Ale in healthy postmenopausal women. Metab Syndr Relat Disord 2009;7:249-54.
    [121]Phillips GB, Jing T, Heymsfield SB. Does insulin resistance, visceral adiposity, or a sex hormone alteration underliethe metabolic syndrome? Studies in women. Metabolism 2008:57:838-44.
    [122]Maggio M, Ceda GP, Lauretani F,et al. SHBG, sex hormones, and inflammatory markers in older women. J Clin Endocrinol Metab 2011;96:1053-9.
    [123]Selva DM, Hogeveen KN, Innis SM, Hammond GL. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest 2007;117:3979-87.
    [124]Pugeat M, Nader N, Hogeveen K, Raverot G, Dechaud H, Grenot C. Sex hormone-binding globulin gene expression in the liver:drugs and themetabolic syndrome. Mol Cell Endocrinol 2010:316:53-9.
    [125]Keller H, Givel F, Perroud M, Wahli W. Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements. Mol Endocrinol 1995:9:794-804.
    [126]张汝学,贾正平,李茂星,郭丽民,张小华.体外胰岛素抵抗细胞模型的建立及在药物筛选中的应用.中国药理学通报.2008.(07):971-976.
    [127]Levy JR, Belsky M. Down-regulated insulin receptors in HepG2 cells have an altered intracellularitinerary. Am J Med Sci 1990;299:302-8.
    [128]Williams JF, Olefsky JM. Defective insulin receptor function in down-regulated HepG2 cells. Endocrinology 1990;127:1706-17.
    [129]Kalme T, Koistinen H, Loukovaara M, Koistinen R, Leinonen P. Comparative studies on the regulation of insulin-like growth factor-bindingprotein-1 (IGFBP-1) and sex hormone-binding globulin (SHBG) production by insulinand insulin-like growth factors in human hepatoma cells. J Steroid Biochem Mol Biol 2003;86:197-200.
    [130]Selva DM, Hogeveen KN, Innis SM, Hammond GL. Monosaccharide-induced lipogenesis regulates the human hepatic sexhormone-binding globulin gene. J Clin Invest 2007; 117:3979-87.
    [131]Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF. Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheralinsulin signalling. Nat Genet 1999:23:32-40.
    [132]Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998:391:900-4.
    [133]Panjari M. Bell RJ, Jane F, et al. A randomized trial of oral DHEA treatment for sexual function, well-being, and menopausal symptoms in postmenopausal women with low libido. J Sex Med 2009:6:2579-90.
    [134]Liu D, Dillon JS. Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelialcells: evidence for a cell surface receptor. Steroids 2004;69:279-89.
    [135]Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by aspecific plasma membrane receptor coupled to Galpha(i2,3). J Biol Chem 2002:277:21379-88.
    [1]Forges T, Gerard A, Hess K. Monnier-Barbarino P, Gerard H. Expression of sex hormone-binding globulin (SHBG) in human granulosa-h(?)tein cells. Mol Cell Endocrinol,2004,219:61-8.
    [2]Xita N. Tsatsoulis A. Genetic variants of sex hormone-binding globulin and their biological consequences. Mol Cell Endocrinol,2010.316:60-5.
    [3]Pugeat M. Nader N. Hogeveen K. Raverot G, Dechaud H. Grenot C. Sex hormone-binding globulin gene expression in the liver:drugs and the metabolic syndrome. Mol Cell EndocrinoL2010.316:53-9.
    [4]Avvakumov GV, Cherkasov A. Muller YA. Hammond GL. Structural analyses of sex hormone-binding globulin reveal novel ligands and function. Mol Cell EndocrinoL2010.316:13-23.
    [5]Janssen I, Powell LH. Crawford S, Lasley B. Sutton-Tymell K. Menopause and the metabolic syndrome:the Study of Women's Health Across the Nation. Arch Intern Med.2008.168:1568-75.
    [6]Eshtiaghi R, Esteghamati A. Nakhjavani M. Menopause is an independent predictor of metabolic syndrome in Iranian women. Maturitas.2010.65:262-6.
    [7]Michelsen TM. Pripp AH. Tonstad S. Trope CG Dorum A. Metabolic syndrome after risk-reducing salpingo-oophorectomy in women at high risk for hereditary breast ovarian cancer:a controlled observational study Eur J Cancer.2009,45:82-9.
    [8]Weiuberg ME. Manson JE. Buring JE. et al Low sex hormone-binding globulin is associated with the metabolic syndrome in postmenopausal women. Metabolisin.2006.55:1473-80.
    [9]Cuadros JL, Fernandez-Alonso AM. Cuadros AM. Chedraui P. Perez-Lopez FR. Body mass index and its correlation to metabolic and hormone parameters in postmenopausal Spanish women. GynecolEndocrinol.2011.27:678-84.
    [10]Akin F. Bastemir M. Alkis E. Kaptanog lu B. SHBG levels correlate with insulin resistarce in postmenopausal women. Eur J Intern Med.2009.20:162-7.
    [11]Dahan MH. Goldstein J. Serum sex hormone-binding globulin levels show too much variability to be used effectively as a screening marker for insulin resistance in women with polycystic ovary syndrome. Fertil Steri2006.86:934-41.
    [12]Akin F. Bastemir M. Alkis E. Kaptanog lu B. Associations between sex hormone binding globulin and metabolic syndrome parameters in premenopausal obese women. Indian J Med Sci.2008.62:407-15.
    [13]Reinecke H. Bogdanski J, Woltering A, et al. Relation of serum levels of sex hormone binding globulin to coronary heart disease in postmenopausal women. Am J CardioL2002.90:364-8.
    [14]Ding EL, Song Y, Manson JE. et al. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med.2009.361:1152-63.
    [15]Bonnet F. Balkau B. Malecot JM. et al. Sex hormone-binding globulin predicts the incidence of hyperglycemia in women:interactions with adiponectin levels. Eur J Endocrinol,2009.161:81-5.
    [16]Rosner W. Hryb DJ. Kahn SM. Nakhla AM. Romas NA Interactions of sex hormone-binding globulin with target cells. Mol Cell EndocrinoL2010,316:79-85.
    [17]Al-Azzawi F. Palacios S. Hormonal changes during menopause. Maturitas.2009.63:135-7.
    [18]Nader N. Raverot G, Emptoz-Bonneton A. et al. Mitotane has an estrogenic effect on sex hormone-binding globulin and corticosteroid-binding globulin in humans. J Clin Endocrinol Metab.2006.91:2165-70.
    [19]Browne-Martin K Longcope C. Regulation of sex hormone-binding globulin secretion in human hepatoma G2 cells. Steroids.2001.66:605-7.
    [20]Kalyani RR. Franco M, Dobs AS, et al. The association of endogenous sex hormones, adiposity, and insulin resistance with incident diabetes in postmenopausal women. J Clin Endocrinol Metab.2009.94:4127-35.
    [21]Davis SR, Robinson PJ, Moufarege A Bell RJ. The contribution of SHBG to the variation in HOMA-IR is not dependent on endogenous oestrogen or androgen levels in postmenopausal women. LID-10.1111/j.1365-2265.2011.04301.x [doi]. Clin Endocrinol (Oxf).2011.
    [22]Lee CC. Kasa-Vubu JZ. Supiano MA Androgenicity and obesity are independently associated with insulin sensitivity in postmenopausal women. Metabolism.2004.53:507-12.
    [23]Page-Wilson G, Goulart AC. Rexrode KM. Interrelation between sex hormones and plasma sex hormone-binding globulin and hemoglobin Alc in healthy postmenopausal women. Metab Syndr Relat Disord.2009.7:249-54.
    [24]Phillips GB. Jing T. Heymsfield SB. Does insulin resistance, visceral adiposity, or a sex hormone alteration underlie the metabolic syndrome? Studies in women. Metabolism.2008.57:838-44.
    [25]Heidari R, Sadeghi M. Talaei M. Rabiei K. Mohammadifard N. Sarrafzadegan N. Metabolic syndrome in menopausal transition:Isfahan Healthy Heart Program. a population based study. Diabetol Metab Syndr.2010.2:59.
    [26]Braunstein GD, Johnson BD. Stanczyk FZ. et al. Relations between endogenous androgens and estrogens in postmenopausal women with suspected ischemic heart disease. J Clin Endocrinol Metab.2008.93:4268-75.
    [27]Torreus JI, Sutton-Tyrrell K. Zhao X. et aL Relative androgen excess during the menopausal transition predicts incident metabolic syndrome in midlife women:study of Women's Health Across the Nation. Menopause.2009.16:257-64.
    [28]Christodoulakos G, Lambrinoudaki I. Panoulis C. et al. Serum androgen levels and insulin resistance in postmenopausal women:association with hormone therapy, tibolone and raloxifene. Maturitas.2005.50:321-30.
    [29]Kahne T, Koistinen H. Loukovaara M. Koistinen R. Leinonen P. Comparative studies on the regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) and sex hormone-binding globulin (SHBG) production by insulin and insulin-like growth factors in human hepatoma cells. J Steroid Biochem Mol Biol.2003.86:197-200.
    [30]陈秋.夏永鹏.邱宗荫.毗格列酮对胰岛素抵抗HepG2细胞模型的药理学评价.中国药理学通报.2006:(02):248-251.
    [31]Selva DM. Hogeveen KN. Innis SM. Hammond GL. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest.2007,117:3979-87.
    [32]Maggio M, Ceda GP, Lauretani F. et al. SHBG sex hormones, and inflammatory markers in older women. J Clin Endocrinol Metab.2011,96:1053-9.
    [I]Janssen J. Powell LH. Crawford S. Lasley B. Sutton-Tyrrell K. Menopause and the metabolic syndrome: the Study of Women's Health Across the Nation. Arch IntemMed.2008.168(14):1568-75.
    [2]Collins P. Rosano G. Casey C. et al. Management of cardiovascular risk in the perimenopausal women:a consensus statement of European cardiolo (?)ists and gynecologists. Climacteric.2007.10(6):508-26.
    [3]Panjari M. Davis SR. DHEA for postmenopausal women:a review of the evidence, Maturitas.2010.66(2): 172-9.
    [4]Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev.2004.25(6):947-70.
    [5]Labrie F. Luu-The V. Labric C. Simard J. DHEA and its transformation into androgens and estrogens in peripheral target tissues:intracrinology. Front Neuroendocrinol.2001.22(3):185-212.
    [6]Labrie F. Martel C. Balser J. Wide distribution of the serum dehydroepiandrosterone and sex steroid levels in postmenopausal women:role of the ovary. Menopause.2011.18(1):30-43.
    [7]Labrie F.Intracrinologr.Mol Cell Endocrinol.1991.78(3):C113-8.
    [S]Labrie F. Luu-The V. Labric C. et al. Endocrine and intracrine sources of androgens in women:inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endoer Rev. 2003.24(2):152-82.
    [9]Labrie F. DHEA as physiological replacement therapy at menopause. J Endocrinol Invest.1998.21(6): 399-401.
    [10]Auchus RJ, Overview of dehydroepiaudrosterone biosynthesis. Semin Reprod Med 2004.22(4):281-8.
    [11]Labrie F. Belanger A. Cusan L. Candas B. Physiological changes in dehydroepiandrosterone arc not reflected by serum levels of active androgens and estrogens but of their metabolites:inrracrinology. J Clin Endocrinl M etab.1997.82(8):2403-9.
    [12]Labrie C, Belanger A. Labrie F. Androgenic activity of dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology.1988.123(3):1412-7.
    [13]Labrie F. Extragonadal synthesis of sex steroids:intracrinology. Ann Endocrinol (Paris).2003.64(2): 95-107.
    [14]MedinaMC. Souza LC. Caperuto LC, et al. Dehydroepiandrosterone increases beta-cell mass and improves the glucose-induced insulin secretion by pancreatic islets from aged rats. FEBS Lett.2006.580(1):285-90.
    [15]Wellman M. Shane-McWhorter L. Orlando. Jennings JP. The role of dehydroepiandrosterone in diabetes mellitus. Pharmacotherapy.1999.19(5):582-91.
    [16]Golden SH. Dobs AS. Vaidya D, et al. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin EndocrinolMetab.2007.92(4):1289-95.
    [17]Dhatariya K. Bigelow ML. Nair KS. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes.2005.54(3):765-9.
    [18]Villareal DT. Holloszy JO. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA.2004.292(18):2243-8.
    [19]Mortola JF. Yen SS. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J Clin Endocrinol Metab.1990.71(3):696-704.
    [20]Gebre-Medhin G. Husebye ES. Mallmin H. et al. Oral dehydroepiandrosterone (DHEA) replacement therapy in women withAddison's disease. Clin Endocrinol (Oxf).2000.52(6):775-80.
    [21]Callies F. Fassnacht M. van VJC. et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency:effects on body composition. serum leptin. bone turnover, and exercise capacity. J Clin Endocrinol Metab.2001.86(5):1968-72.
    [22]Panjari M. Bell RJ. Jane F. Adams J. Morrow C. Davis SR. The safety of 52 weeks of oral DHEA therapy for postmenopausal women.Maturitas.2009.63(3):240-5.
    [23]Boxer RS. Kleppinger A, Brindisi J, Feinn R, Burleson JA, Kenny AM. Effects of dehydroepiandrosterone (DHEA) on cardiovascular risk factors in older women with frailty characteristics. Age Ageing.2010.39(4): 451-8.
    [24]Panjari M. Davis SR. DHEA therapy for women:effect on sexual function and wellbeing. Hum Reprod Update.2007.13(3):239-48.
    [25]Johannsson G, Burman P, Wiren L. et al. Low dose dehydroepiandrosterone affects behavior in hypopituitary androgen-deficient women:a placebo-controlled trial. J Clin Endocrinol Metab.2002.87(5): 2046-52.
    [26]Dhatariya K. Bigelow ML. Nair KS. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes.2005.54(3):?65-9.
    [27]Herrera JD. Davidson JA. Mestman JH. Hyperandrogenism due to a testosterone-secreting Sertoli-Leydig cell tumor associated with a dehydroepiaudrosterone sulfate-secreting adrenal adenoma in a postmenopausal woman:case presentation and review of literature. Endocr Pract.2009.15(2):149-52.
    [28]Lasco A. Frisina N. Morabito N. et al. Metabolic effects of dehydroepiandrosterone replacement therapy in postmenopausal women. Eur J Endocrinol.2001.145(4):457-61.
    [29]Villareal DT. Holloszy JO. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA.2004.292(18):2243-8.
    [30]Villareal DT. Holloszy JO. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA.2004.292(18):2243-8.
    [31]Labrie F. Archer D,Bouchard C. et al. Effect of intravaginal dehydroepiandrosterone(Prasterone) on libido and sexual dysfunction in postmenopausal women. Menopause.2009.16(5):923-31.
    [32]Labrie F, Archer D. Bouchard C. et al. Serum steroid levels during 12-week intravaginal dehydroepiandrosterone administration. Menopause.2009.16(5):897-906.
    [33]Liu D. Dillon JS. Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor. Steroids.2004.69(4):279-89.
    [34]Liu D. Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2.3). J Biol Chem.2002.277(24):21379-88.
    [35]Torrens JI. Sutton-Tyrrell K, Zhao X. et al. Relative androgen excess during the menopausal transition predicts incident metabolic syndrome in midlife women:study of Women's Health Across the Nation. Menopause.2009.16(2):257-64.
    [36]Pluchino N. Ninni F, Stomati M. et al One-year therapy with 10mg/day DHEA alone or in combination with HRT in postmenopausal women:effects on hormonal milieu. Maturitas.2008.59(4):293-303.
    [37]Weinberg ME. Manson JE. Buring JE. et al Low sex hormone-binding globulin is associated with the metabolic syndrome in postmenopausal women. Metabolism.2006.55(11):1473-80.
    [38]Genazzani AD. Stomati M. Strucchi C. Puccetti S. Luisi S. Genazzani AR. Oral dehydroepiandrosterone supplementation modulates spontaneous and growth hormone-releasing hormone-induced growth hormone and insulin-like growth factor-1 secretion in early and late postmenopausal women. Fertil Steril. 2001. 76(2):241-8.
    [39]Davis SR. Panjari M. Stanczyk FZ. Clinical review:DHEA replacement for postmenopausal women. J Clin Endocrinol Metab.2011.96(6):1642-53.
    [40]Panjari M. Bell RJ. Jane F. et al. A randomized trial of oral DHEA treatment for sexual function. well-being.. and menopausal symptoms inpostmenopausal women with low libido. J SexMed.2009.6(9):2579-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700