长江河口水体有机胶体含量、来源及其对重金属行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中的有机胶体是指粒径在1nm到0.45gm之间的有机粒子,是胶体的主要组成部分,其比表面积巨大,具有较强的吸附能力,吸附络合水体中的大部分重金属,在其运移和去除过程起着“胶体泵”(真正溶解态和颗粒态之间的传输带)作用,它们的絮凝沉淀、降解、迁移扩散等过程决定了重金属的去向和归宿,对其迁移以及生物有效性发挥了重要的作用。长江河口是长江流域陆源物质向东海运输的主要通道,长江河口地区亦是中国重要的运输和商业枢纽,是一个高度城市化和工业化的区域,河口水体不但接受了上游来水输入的有机胶体,同时还接受了河口地区城市生活污水和工业废水等排放的有机胶体,因而有机胶体较为丰富,成为长江河口区重金属的重要载体。因而,对长江河口水体有机胶体含量、来源及其对重金属行为影响的研究能进一步了解长江河口水环境中重金属的生物地球化学循环,对预防重金属污染,保障人类的健康具有重要的理论意义,同时也是水质监控与治理、保障供水安全的理论依据,具有重大的理论与现实意义。
     本论文选择长江河口南支作为研究对象,采集一年四季大潮和小潮涨落潮过程水体(共111个样品),通过切向流超滤技术分离水体中的胶体,并分析、测试其胶体有机碳含量、三维荧光光谱特征、胶体态重金属含量,理清该区域有机胶体的含量、时空分布及其影响因素,并探讨了胶体有机质的类型和来源,最后分析有机胶体对重金属行为的影响,得到以下几点结论:
     (1)胶体有机碳(1kDa-0.45μm, COC)作为有机胶体的一个重要的指标,长江河口水体COC含量较高(20.29-154.16μmol·L-1),年均值50.78μmol·L-1,占溶解有机碳(DOC)的平均比例为31.93%,在COC中,以中分子量胶体有机碳(5-500kDa, COC5k)为主,其次是大分子量胶体有机碳(500kDa-0.45μm, COC500k),小分子量胶体有机碳(1-5kDa, COC1k)含量最低。从时间分布上看,COC的浓度表现为冬季>夏季>秋季>春季,大潮>小潮,涨潮>落潮。COC浓度空间分布,近岸点高于河段中间点,且近上海点略高于近崇明点,由于受到人为活动的影响,近岸点季节变化明显大于河段中间点。
     (2)2009年长江河口COC年通量大(0.7×106t),受到长江径流量夏丰冬枯的影响,季节通量,夏季最高,秋季次之,春季第三,冬季最小,夏季大量的有机胶体输入长江河口。
     (3)长江河口水体胶体有机质(COM)三维荧光光谱除了检测出与溶解有机质(DOM)三维荧光光谱图中的紫外区类富里酸荧光峰A、海洋来源可见光区类富里酸荧光峰C、低激发态类酪氨酸荧光峰B1、高激发态类酪氨酸荧光峰B2以及低激发态类色氨酸荧光峰D1等5种荧光峰,还发现了高激发态类色氨酸荧光峰D2和陆源可见光区类富里酸荧光峰E,前五种荧光物质主要存在于分子量<1kDa的有机组分中,其次是小、中分子量胶体有机质(COM1k和COM5k),大分子量胶体有机质含量(COM500k)最低,最后两种荧光物质主要集中在胶体态中。
     (4)各类荧光峰强度指示长江河口水体COM主要来源为人类生活和工农业生产排放(人为源),其次为陆地土壤和植物等有机质残体(陆源),接着是河口浮游生物和微生物分解(内源),河口潮汐过程带来的海洋来源有机质(海源)贡献最小。人为源、内源和海源胶体有机质小分子量胶体态所占比例高于陆源有机质。COM来源具有明显的季节性,陆源贡献表现为秋冬季节明显的大于春夏季节,且秋冬季节COMsk所占比例要高于春夏季节;夏季长江径流量大,河口受到潮汐作用相对弱于其它季节,因此海源贡献较弱;人为源贡献春秋季节高于夏冬季节,春季主要以酪氨酸为主,夏季酪氨酸和色氨酸相差不大,而秋冬季节主要以色氨酸为主,人为排放有机质为水体浮游生物提供食物使得浮游生物生命活动变强,因而内源COM浓度同样也是春秋两季强于夏冬两季。长江河口水体上海沿岸水体受到人为活动影响较强,因此人为排放的有机质要多于河段中间点和近崇明点水体。
     (5)长江河口水体胶体态Cu、 Fe、 Mn、 Ni、Cr、Pb、 Zn、 Hg, As等占总溶解态的比例较高,其中胶体态Fe、 Mn、 Cu、 Ni、 Zn和As等6种重金属占总溶解态的比例超过50%。重金属元素的不同分子量胶体态浓度占胶体态比例存在明显的差别,大分子量胶体态Fe、 Mn占胶体态比例均超过65%,小分子量胶体态Pb和As占胶体态比例超过50%,Cu、Cr、 Ni、 Zn和Hg不同分子量胶体态所占比例差别较小,均未超过50%。
     (6)长江河口水体胶体态重金属时空分布差异大。
     时间分布上,胶体态Cu、 Fe浓度值从春季到冬季递增,且Fe浓度值高,季节变化大,受季节因素影响大;胶体态Mn, Cr浓度由低到高分别是夏季、秋季、春季和冬季,胶体态Ni、 Zn浓度由低到高分别是秋季、春季、夏季和冬季,季节变化较大,季节变化产生一定的影响;胶体态Pb浓度由低到高分别是夏季、秋季、冬季和春季,季节变化小,季节变化对胶体态Pb浓度产生的影响较小。从潮汐过程上看,胶体态重金属大潮高于小潮,涨落潮过程,春、冬季在大、小潮时总体上均表现涨潮浓度高于落潮,而夏、秋季总体上为涨潮浓度低于落潮。
     长江沿岸、长江河口区域生产废水和生活污水排放、长江河口船舶航行对水体的扰动等均直接影响水体胶体态重金属浓度的时空分布特征。近上海点小分子量和大分子量胶体态Fe的浓度低于近崇明点,中分子量胶体态Fe高于近崇明点;近岸点小、中分子量胶体态Mn浓度为高于中间点,大分子量胶体态Mn和Cr浓度低于中间点,且近上海点浓度高于近崇明点;近上海点中分子量胶体态Cu和Ni,以及小分子量胶体态Ni和Zn浓度高于其它点,而大分子量胶体态Cu和中分子量胶体态Zn浓度低于近崇明点。
     (7)长江河口较高浓度的胶体有机碳形成的“胶体泵”作用,使得重金属Fe、 Mn、 Cr表现为易于从真溶解态向胶体态、再向颗粒态转化进而沉降至沉积物中从水体中清除,重金属Cu、 Ni、 Zn、 Hg和As易于从颗粒态和真溶解态向胶体态转化,而留存于水体中,从而起到调节水体中的重金属行为的作用,影响其生物地球化学循环。
Organic colloids (1nm~0.45μm) is the main component of colloids in natural aquatic environment. It is particularly important due to its high specific surface area and strong potential adsorptive capacity. Most of heavy metals in natural water are combined in various organic colloids. Thus, organic colloids play a critical role in the biogeochemical cycles and bioavailability of heavy metals in aquatic environment, implying a reversibility of the "colloidal pumping" process (transformation between the particulate and dissolved phases through colloidal intermediates).
     Yangtze River estuary is the main channel to transport terrigenous material from Yangtze River basin to the East China Sea. Yangtze River estuarine area is an important transportation and business hub, and it also is a highly urbanization and industrialization region. Organic colloid in this area is not only from upstream runoff, but also from municipal sewage and industrial wastewater. These organic colloids become the carrier of heavy metals due to huge specific surface. Thus, we would understand more about heavy metals'biogeochemical cycle by researched on character of organic colloids and its effects on heavy metals behavior in Yangtze River estuary. These researches have important theoretical sense to to prevent pollution, and to protect human health, meanwhile, they have important practical significance to monitor water quality, to make the theory of governance, and to ensure safety of water supply.
     In this paper,111water samples were collected from south branch of the Yangtze River estuary during flood and ebb periods of spring and neap tides in different seasons throughout a year. To investigate the content, types, distribution and source of colloidal organic carbon and its effected on heavy metals behavior in the water from Yangtze River estuary (China). Water samples were fractionated into total dissolved (<0.45μm), high molecular weight colloidal (500kDa-0.45μm), medium molecular weight colloidal (5-500kDa), low molecular weight colloidal (1-5kDa) and truely dissolved (<1kDa) fractions with the filters and cross-flow ultrafiltration (CFF) systems, and then all fractions were subsequently characterized for organic carbon content, three dimensional fluorescence spectral characterization and heavy metals content. The main conclusions were showed as follow:
     (1) Concentration of colloidal organic carbon (COC) can be used as an indicator of organic colloids concent. A significant proportion of dissolved organic carbon (DOC) was found in colloidal fractions in estuarine water. In Yangtze River estuary, colloidal organic carbon (COC) concentrations was high (20.29μmol·L-1-154.16μmol·L"1, the average was50.78μmol·L-1), and ratios of COC in DOC varied from14.11%to50.50%(the average was31.93%). In COC, the ratio of medium molecular weight colloidal organic carbon (COC5k) was higher than high molecular weight (COCsook) and low molecular weight colloidal organic carbon (COCik). There was a significant temporal variation of COC in the Yangtze River estuary, such as: winter>summer>autumn>spring, spring tide> neap tide, and flood period> ebb period. In Spatial, COC concentrations in coast were higher than in middle of south branch, and water from coast of Shanghai urban slightly higher than from coast of Chongming. In addition, COC seasonal variation in coast was significantly larger than the other sampling sites, due to human activities.
     (2) In2009, COC annual flux was0.7*106t. Yangtze River runoff in summer is huge, but few in winter, so COC seasonal flux in Yangtze River estuary was summer>autumn>spring>winter. A large number of COC were transported to estuary through Yangtze River.
     (3) In Yangtze River estuary, seven types of fluorescence peaks were observed in three dimensional fluorescence spectrums of dissolved organic matter (DOM) and colloidal organic matter (COM). They were:UV fulvic-like fluorescence peak A, marine sources visible fulvic-like fluorescence peak C, low and high excitation tyrosine peak B1and B2, low and high excitation tryptophan fluorescence peak D1and D2, terrigenous visible fulvic-like fluorescence peak E. Peak A, B1, B2, D1, D2fluorescent substances were mainly existed in the truly dissolved organic matter (UOM,<1kDa), then in low and medium molecular weight colloidal organic matter (COM1k and COMsk,1-500kDa), last in the high molecular weight colloidal organic matter (COM500k). However peak D2and E fluorescent substances were mainly in the colloidal phase.
     (4) COM in Yangtze River estuary were mainly originated from anthropogenic sources, secondly from terrigenous sources, thirdly from autochthonous sources (biological decomposition), and the last from marine sources. The concents of anthropogenic, autochthonous, and marine sources COM1k were higher than COM5k, and higher than COMsook, but the contents of terrigenous sources COMsk were higher than COM1k and COMsook.There was obvious seasonal variation of sources of COM in the Yangtze River estuary. Terrigenous inputs in autumn and winter were significantly larger than spring and summer, and COM5k proportion in autumn and winter was higher than spring and summer. Anthropogenic emissions in spring and autumn were higher than summer and winter; in spring colloidal proteins were mainly tyrosine, in summer tyrosine almost same to tryptophan, but in autumn and winter were mainly tryptophan. The COM from anthropogenic sources were the food of plankton, so autochthonous sources from biological activity significantly in spring and autumn were stronger than summer and winter too. Compare to other seasons, marine origins was weakest in summer, because of the huge runoff in this season. In spatial, anthropogenic sources in coast of Shanghai urban was higher than those in middle of south beanch and coast of Chongming as result of human activities.
     (5) Heavy metals (Cu, Fe, Mn, Ni, Cr, Pb, Zn, Hg, and As) colloidal fractions were significant in dissolved pool. More than50%of dissolved Fe, Mn, Cu, Ni, Zn, and As were associated with colloidal materials. The distribution of each kind of colloidal heavy metals in different molecular weight was obvious difference. The percentages of Fec500k, Mnc500k were more than65%, the percentages of Pbc1k, Asc1k more than50%, each molecular weight percentages of Cu, Cr, Ni, Hg, and Zn were similarly, all exceed50%.
     (6) There was a significant temporal and spatial distribution of colloidal heavy metals in Yangtze River estuary.
     The concentration of Cuc, and Fec was increased from spring to winter, and Fec concentration affected by seasonal factors stronger than other heavy metals. Seasonal variation of Mnc and Crc was summer     The spatial and temporal distribution of colloidal heavy metal concentrations were directly affected by the wastewater and sewage discharged from the industrial enterprises and residents along the Yangtze River and Yangtze River estuary, and navigation of ships in the Yangtze River estuary. Fec1k concentrations in the water from coast of chongming were higher than from coast of Shanghai urban, Fec5k instead; the highest concentrations of Fec500k appeared in the middle of south branch, the rest of the sites increasing from coast of chongming to coast of shanghai urban. k, Mnc5k concentrations in coast were higher than middle, but the highest concentrations of Mncsook, Crc500k were found in middle; Cuc5k, Nic1k, Nic5k, Znc1k concentrations in the water from coast of Shanghai urban were higher than from other sites, but Cuc500k and Znc5k concentrations in the water from coast of Chongming were higher than from other sites.
     (7) The adsorption abilities among COC1k, COC5k, and COCsook on heavy metal were obvious different; it was easily transferred heavy metals Cu, Mn, Ni, Cr, Pb,and Zn from5-500kDa colloidal phase to1-5kDa and500kDa-0.45μm colloidal phase, becease the adsorption ablility of COCsk on these heavy metals was weakest; it was easily transferred heavy metals Fe from1-5kDa colloidal phase to5-500kDa colloidal phase, becease the adsorption ablility of COC1k on Fe was weakest; it was easily transferred heavy metals Hg, and As easily from500kDa-0.45μm colloidal phase to5-500kDa colloidal phase.
     The affect of "colloid pump" was strong in Yangtze River estuary, because it has high concentrations of COC. Due to "colloid pump" effect, In Yangtze River estuary, heavy metal Fe, Mn, and Cr easily transferred from true dissolved phase to colloidal phase, then transferred to particle phase. However, heavy metal Cu, Ni, Pb, Zn, Hg, and As easily transferred from particle and turely dissolved phases into colloidal phase. Therefore, organic colloidal would adjust the distribution of these heavy metals, and affect the biogeochemical cycle of these heavy metals in Yangtze River estuary.
引文
Aluwihare L I and Repeta D J. Acomparison of the chemical characteristics of oceanic DOM and extracelluar DOM produced by marine algae[J]. Marine Ecology Progress Series,1995,186: 105-117
    Aluwihare L I, Repeta D J, and Chen R F. A major biopolymeric component to dissolved organic carbon in surface sea water[j]. Nature,1997,387:166-169.
    Amon R M W and Benner R, Bacterial utilization of different size classes of dissolved organic matter[J]. Limnology Oceanography,1996,41(1):41-45.
    Amon R M W and Benner R, Rapid cycling of high-molecular-weight dissolved organic matter in the ocean[J]. Nature,1994,369:549-552.
    Auffan M, Rose J, Bottero, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective[J].NatNanotechnol,2009,4(10):634-641.
    Baker A, Ward D, Lieten S H, et al. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer[J]. Water Research,2004,38:2934-2938.
    Baker A. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers[J]. Environment Science & Technology,2001,35(5):948-953.
    Baker A, Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent[J]. Environment Science & Technology,2002a,36(7):1377-1382.
    Baker A. Fluorescence properties of some farm wastes:Implications for water quality monitoring[J]. Water Research,2002b,36(1):189-195.
    Baskaran M, Swarzenski P W, and Porcelli D. Role of colloidal material in the removal of 234Th in he Canada basin of the Arctic Ocean[J]. Deep-sea Research Part I-Oceanographic Research Paper,2003,50(10):1353-1373.
    Benner R, Bopaiah B, Black B, et al. Abundance, size, distribution, and stable carbon and nitrogen compositions of marine organic matter isolated by tangential-flow ultrafiltration[J]. Marine Chemistry,1997,57:243-263.
    Benoit G, Oktay-Marshall S D, Cantu A, et al. Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries[J]. Marine Chemistry,1994,45:307-339.
    Boehme and Wells, Fluorescence variability of marine and terrestrial colloids[J]. Marine Chemistry,2006,101:95-103.
    Borch N H and Kurchman D L. Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD[J]. Marine Chemistry,1997, 57:85-95.
    Boyle, E A, Edmond J M, and sholkovita R. The mechanism of iron removal in estuariy[J]. Geochimica et Cosmochimica Acta,1977,(41):1311-1324.
    Buffle J and Leppard G G. Characterization of aquatic colloids and macromolecules.1. structure and behavior of colloidal material[J]. Environment Science & Technology,1995a,29(9): 2169-2175.
    Buffle J and Leppard G G. Characterization of Aquatic Colloids and Macromolecules.2. Key Role of Physical Structures on Analytical Results[J]. Environment Science & Technology,1995b, 29(9):2176-2184.
    Buffle J. The key role of environmental colloids/nanoparticles for the sustainability life[J]. Environment Chemistry,2006,3:155-158.
    Carlson C A, Ducklow H W, and Michaels A F, Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea[J]. Nature,1994,371:405-408.
    Cauwet G and Mackenzie F T. Carbon inputs and distributions in estuaries of turbid rivers:the Yangtze and Yellow Rivers (China)[J]. Marine Chemistry,1993,43:235-246.
    Chen R F and Bada J L, The fluorescence of dissolved organic matter in seawater[J]. Marine Chemistry,1992,37:191-221.
    Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quatify spectra for dissolved organic matter[J]. Environment Science & Technology,2003,37:5701-5710.
    Coble P G, Del Castillo C E, and Bernard A, Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Res II,1998,45:2195-2223.
    Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J].Marine Chemistry,1996,51(4):325-346.
    Dai M H and Benitez-Nelson C R. Colloidal organic carbon and Th234 in the Gulf of Maine[J].Marine Chemistry,2001,74:181-196.
    Dai M H and Martin J M. First data on trace metal level and behaviour in two major Arctic river estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia[J]. Earth and Planetary Science Letters,1995,131:127-141.
    Dai M H, Martin J M, and Cauwet G. The significant role of colloids on the transport and transformation of organic carbon and trace metals in the Rhone delta, France[J]. Marine Chemistry,1995,51:159-175.
    Dai M H, Martin J M, Hong H S et al. Preliminary study on the dissolved and colloidal organic carbon in the Zhujiang River Estuary[J]. Chinese Journal of Oceanology and Limnology, 2000,18(3):265-273.
    Dai M, Martin J M, and Cauwet G. The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhone delta (France)[J]. Marine Chemistry,1995,51:257-275.
    Davide V A L, Tamara D, Benoit F, et al. Assessment of the geochemical role of colloids and their impact on contaminant toxicity in freshwater:an example from the Lambro-Po system (Italy)[J]. Environment Science & Technology,2005,39:489-497.
    Du C, Shang S, Dong Q, et al. Characteristics of chromophoric dissolved organic matter in the nearshore waters of the western Taiwan Strait[J]. Estuarine, Coastal and Shelf Science.2010, 88(3):350-356.
    Eisma D. Intertidal deposits:river mouths, tidal flats and costal lagoons[M]. Boca Radan, Florida: CRC Press,1998:459.
    Gan W B, Chen H M, and Han Y F. Carbon transport by the Changjiang river (at Nanjing) and Huanghe (at Jinan), People's Republic of China. Mitt. Geol. Palaeontol. Inst. University Hamburg 1983,55:459-470.
    Goi M A, Cathey M W, Kim Y H, et al. Fluxes and sources of suspended organic matter in an estuarine turbiity maximum region during low discharge conditions[J]. Estuarine, Coastal and Shelf Science,2005,63:683-700.
    Green S A and Blough N V, Optical adsorption and fluorescence properties of chromophoric dissolved organic matter in natural waters[J]. Limnology Oceanography,1994,39(8): 1903-1916.
    Gueguen C, Belin C, and Dominik J, Organic colloid separation in contrasting aquatic environments with tangential flow filtration. Water Research,2002,36:1677-1684.
    Fu P Q, Wu F C, Liu C Q etal. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment Pore waters from Lake Erhai, Southwest China[J].Biogeochemistry,2006,81:179-189.
    Guo L D, Santschi P H, and Warnken K W. Trace metal composition of colloidal organic material in marine environments[J]. Marine Chemistry,2000,70:257-275.
    Guo L D and Santschi P H, Cyling of high molecular weight dissolved organic matter in the middle Atlantic Bight[J]. Limnology Oceanography,1996,41(6):1242-1252.
    Guo L D and Santschi P H. Composition and cycling of colloids in marine environments[J]. Reviews of Geophysics,1997,35(1):17-40.
    Guo L D, Coleman C H, and Santschi P H, The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico[J]. Marine Chemistry,1994,45:105-119.
    Guo L D, Tanaka N, Schell D M, et al. Nitrogen and carbon isotopic composition of high-molecular-weight dissolved organic matter in marine environments[J]. Marine Ecology Progress Series,2003,252,51-60.
    Hedges J I, Keil R G, and Benner R, What happens to terrestrial organic matter in the ocean?[J] Organic Geochemistry,1997,27(5/6):195-212.
    Hedges J I, Hatcher P G, Ertel J R, et al. A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry[J]. Geochimica et Cosmochimica Acta,1992,56:1753-1757.
    Heiri O, Lotter A F, and Lemcke G. Loss on ignition as a method for estimating organic cabonate content in sediments:reproduclibility and comparability of results[J]. Journal of Paleolimnology,2001,25:101-110.
    Hirose K. Conditional stability constants of metal complexes of organic ligands in sea water:past and present, and a simple coordination chemistry model[J]. Analyse Chimistry Acta.,1994, 284:621-634.
    Hochella M F, Lower S K, Maurice P A, et al. Nanominerals, mineral nanoparticles, and Earth systems[J]. Science,2008,319:1631-1635.
    Honeyman B D and Santshi P H. A "Brownian-Pumping" model for oceanic trace scavenging: evidence from Th isopotes, Marine Research,1989, (47):951-992.
    Honeyman J T and Santschi P H. Coupling adsorption and particles aggregation laboratory studies of colloidal pumping using Fe-labeled hematite[J]. Environment Science & Technology,1991, 25:1739-1747.
    Hwang S J. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie:The significance of the microbial loop for higher trophic levels[Ph.D. thesis]. Kent State University,1995.
    Isao K, Hara S, Terauchi K, et al. Role of sub-micrometer particles in the ocean[J]. Nature,1990, 345:242-244.
    Keith D J, Yoder J A, and Freeman S A. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narrangansett Bay, Rhone Island:Implications for phytoplankton in coastal water[J]. Estuarine, Coastal and Shelf Science,2002,55(5):705-717.
    Kimball B A, Callender E, and Axtmann E V. Effects of colloids on metal transport in a river receiving acid mine drainage, upperArkansas River, Colorado, USA[J]. Applied Geochemistry,1995,10:285-306.
    Komada T, Schofield O M E, and Reimers C E. Fluorescence characteristics of organic matter released from coastal sediments during resuspension[J]. Marine Chemistry,2002,79(2): 81-97.
    Kpkay P E, Nivens E H, and Milligan T G. Low molecular weight and colloidal DOC production during a phytoplankton blomm[J]. Marine Ecology Progress Series,1993,100:233-244.
    Krogh A E. Eine mikromethode fur die organische verbrennungsanalyse, besonders von gelosten substanzen[J]. Biochem Z,1930,221:247-263.
    Krogh A E. Lange, Quantitative untersuchungen uber plankton, kolloide and geloste organische undanorganische substanzen in dem Furesee[M]. Int Rev Ges Hydrobiol,1931,26:20-53.
    Lead J R and Wilkinson K J. Aquatic colloids and nanoparticles:current knowledge and future trends[J]. Environmemt Chemistry,2006,3:159-171.
    Lee S, Han S and Gill G A. Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas[J]. Journal of Environmental Monitoring,2011,13: 1703-1708.
    Leenheer J A and Croue J-P. Characterizing aquatic dissolved organic matter[J]. Environment Science & Technology,2003,37(1):19A-26A.
    Liu C Y, Yang X M, Yang G P, et al. Composition and characterization of colloidal organic matter in the coastal surface waters of Qiongdao, China[J]. Marine Chemistry,2010,121(1-4): 123-131.
    Martin J M and Dai M H. Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy)[J]. Limnology Oceanography,1995,40(1): 119-131.
    Matthew B J H, Jones A C, Theodorou N K, et al. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs[J]. Marine Chemistry,1996,55(3-4): 17-332.
    Maurer L G. Organic polymers in seawater:changes with depth in the Gulf of Mexiko[J]. Deep Sea Research.1976,23:1059-1064.
    Mayer L M, Schick L L, and Loder T C. Dissolved protein fluorescence in two marine estuaries[J]. Marine Chemistry,1999,64:171-179.
    McCarthy M, Hedges J I, and Benner R. Major biochemical composition of dissolved high molecular weight organic matter in seawater[J]. Marine Chemistry,1996,55:281-297.
    McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometrie characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology Oceanography,2001,46(1):38-48.
    Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science,1982,282:401-450.]
    Mopper and Schultz. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components[J]. Marine Chemistry,1993,41:229-238.
    Moran S B and Buesseler K O. Short residence time of colloids in the upper ocean estimated from 238U-234Th disequilibria[J]. Nature,1992,359:221-223.
    Muller F L L. Interactions of copper, lead and cadmium with the dissolved,colloidal and particulate components of estuarine and coastal waters[J]. Marine Chemistry,1996,52: 245-268.
    Pakulski J D and Benner R. Abundance and distribution of carbohydrates in the ocean[J]. Limnology Oceanography,1994,39:930-940.
    Papelis W U C. Geochemical effects on colloid-fracilitated metal transport through zeolitized tuffs from the Nevada Test site[J]. Environmental Geology,2002,43:209-218.
    Parlanti E, Morin B, and Vacher I. Combined 3D-Spectrofluorometry high performance liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural waters[J]. Orgainc Geochemisry,2002,33(3):221-236.
    Peltzer E T and Hayward N A. Spatial and temporal variability of total organic carbon along 140°W in the equatorial Pacific Ocean in 1992[J]. Deep-Sea Res II,1996,42:1155-1180.
    Pokrovsky O S, Shirokova L S, Kirpotin S N, et al. Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of wester Siberia[J]. Biogeosciences,2011,8:565-583.
    Ran Y, Fu J M, Sheng G Y, et al. Frantionation and composition of colloidal and suspended particulate materials in river[J]. Chemosphere,2000,41:33-43.
    Ren H M, Liu H J, Qu J H, et al. The influence of colloids on the geochemical behavior of metals in polluted water using as an example Yongdingxin River, Tianjin, China[J]. Chemosphere, 2010,78:360-367.
    Ross J M and Sherrell R M. The role of colloids in trace metal transport and adsorption behavior in New Jersey Pineland streams[J]. Limnology Oceanography,1999,44(4):1019-1034.
    Santschi P H, Balnois E, Wilkinson K J, et al. Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy[J]. Limnology and Oceanography,1998,43:896-903.
    Santschi P H, Guo L, Baskaran M, et al. Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments [J]. Geochimica et Cosmochimica Acta,1995,59:625-631.
    Sanudo-Wilhelmy S A, Rivera-Duarte I, and Flegal A R. Distribution of colloidal trace metals in the San Francisco Bay estuary[J].Geochimica et Cosmochimica Acta,1996,60(24): 4933-4944.
    Scordal M C, Santschi P H, and Gill G A, Colloidal pumping:Evidence for the coagulation process using colloids tagged with 203Hg[J]. Environmental Sci. Technol.,1996,30(11): 3335-3340.
    Sempere R and Cauwet G. Occurrence of organic colloids in the stratified estuary of the Krka River (Croatia)[J]. Estuarine, Coastal and Shelf Science,1995,40(1):105-114.
    Sempere R, Cauwet G, and Randon R. Ultrafiltration of seawater with a zirconium and aluminum oxide tubular membrane:application to the study of colloidal organic carbon distribution in an estuarine bottom nepheloid layer[J]. Marine Chemistry,1994,46:49-60.
    Sempere R, Charriere B, Wambeke F V, et al. Carbon inputs of the Rohne River to the Mediterranean Sea:Biogeochemical implications[J]. Global Biogeochemical cycles,2000, 14(2):669-681.
    Sigleo A C and Helz G R, Composition of estuarine colloidal material:Major and trace component[J]. Geochimica et CosmochimicaActa,1981,45:2501-2509.
    Sigleo A C, Hare P E, and Helz G R, The amino acid composition of estuarine colloidal material[J].Estuarine, Coastal and Shelf Science,1983,17:87-96.
    Skyllberg U and Drott A. Competition between disordered iron sulfide and natural organic matter associated thiols for merury(II)-An EXAFS study[J]. Environment Science & Technology, 2010,44(4):1254-1259.
    Sleighter R L and Hatcher P G. The application of electrospray ionization couples to high resolution mass spectrometry for the molecular characterization of natural organic matter[J]. J Mass Spectrom,2007,42:559-574.
    Slowey A J. Rate of formation and dissolution of mecury sulfide nanoparticles:The dual role of natural organic matter[J]. Geochimica et Cosmochimica Acta,2010,74(16):4693-4708.
    Stedmon C A, Markager S, and Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry,2003,82:239-254.
    Stordal M C, Santschi P H, and Gill G A, Colloid pumping:evidence for the coagulation process using natural colloids tagged with 203Hg. Environmental Science & Technology,1996,30: 3335-3340
    Stordai M C, Wen L S, Santschi P, et al. Phase speciation of As, Hg, Sb, and Se in Galveston and Corpus Christi Bay:significance of colloidal forms. Paper presented at Pro.13th Biennial Estuarine Res. Fed. Conf.,Nov.l4-18,1995, Corpus Christi, Texas.
    Tan F C, Cai D L, and Edmond J M. Carbon isotope geochemistry of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science,1991,32,395-403.
    Van Beynen P, Bourbonniere R, Ford D, et al. Causes of colour and fluorescence in speleothems[J]. Chemistry Geology,2001,175(3/4):319-341.
    Wang W X and Guo L D. Production of colloidal organic carbon and trace metals by Phytoplankton decomposition[J]. Limnology Oceanography,2001,46:278-286.
    Wells M L. Marine colloids and trace metals[A]. In:Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter[C]. San Diego:Academic Press,2002: 367-397.
    Wells M L and Goldberg E D. Marine submicron particles[J]. Marine Chemistry,1992,40:5-18.
    Wells M L and Goldberg E D. Occurrence of small colloids in seawater[J]. Nature,1991,353: 342-344.
    Wells M L and Mayer L M.The photolysis of colloidal iron in the oceans[J]. Nature,1991,353: 248-250.
    Wells M L and Goldberg E D. The distribution of colloids in the North Atlantic and Southern Oceans[J]. Limnology Oceanography,1994,39:286-302.
    Wells M L, Kozelka P B, and Bruland K W. The complexation of "dissolved" Cu, Zn, Cd, and Pb by soluble and colloidal organic matter in Narragansett Bay, RI[J]. Marine Chemistry,1998, 62:203-217.
    Wells M L, Smith G J, and Bruland K W. The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI[J]. Marine Chemistry,2000,71:143-163.
    Wen L, Santschi P H, Gill G, et al. Estuarine trace metal distributions in Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase[J]. Marine Chemistry, 1999,63:185-212.
    Wen L, Santschi P H, Warnken, et al. Molecular weight and chemical reactivity of dissolved trace metals(Cd, Cu, Ni) in surface waters from the Mississippi river to Gulf of Mexico[J]. Estuarine, Coastal and Shelf Science,2011,92:649-658.
    Wen L, Stordal M C, Tang D, et al. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater[J]. Marine Chemistry,1996,55:129-152.
    Wetzel R G, Limnology.2nd ed. Philadelphia:Saunders,1983.
    Whitehouse B G. Cross-flow filtration of colloids from aquatic environments[J]. Limnology Oceanography,1990,35(6):1368-1375.
    Wu F C, Evans R D, and Dillon P J. High-performance chromatographic fraction and characterization of fulvic acid[J]. Analytica Chimica Acta,2002,646:47-55.
    Wu F C and Tanoue E, Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J]. Environment Science & Technology,2001a,35(18):3646-3652.
    Wu F C, Midorikawa T, and Tanoue E. Fluorescence properties of organic ligands for copper(II) in Lake Biwa and its rivers[J]. Geochemistry Jounal,2001b,32(1):11-20.
    Wu F C, Tanoue E, and Liu C Q. Fluorescence and amino acid characteristics of molecular size fractions of DOMin the waters of LakeBiwa[J]. Biogeochemistry,2003,65(2):245-257.
    Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science,2007,71:13-25.
    Yang F, Huang Q H, Li J H, et al. Characterization of chromophoric dissolved organic matter in the Yangtze estuary by absorption and fluorescence spectroscopy[J]. Journal of Environmental Science for Sustainable,2007,1:55-60.
    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth Science Review,2003,63(1-2):93-120.
    Yue L X, Wu F C, Liu C Q, et al. Relationship between fluorescence characteristics and molecular weight distribution of natural dissolvedorganicmatter in Lake Hong feng and Lake Baihua, China [J]. Chinese Science Bulletin,2006,51(1):89-96.
    Zhang J, Zhang Z F, Liu S M, et al. Human impacts on the large world rivers:Would the Changjiang (Yangtze River) be an illustration? [J]. Global Biogeochemistry Cycles,1999,13: 1099-1105.
    Zirino A and Healy M L. Inorganic zinc complexes in seawater[J]. Limnology Oceangraphy,1970, 15:956-958.
    Zsolnay A. Hydrocarbons in the Mediterranean Sea,1974-1975[J]. Marine Chemistry,1979,7: 343-352.
    蔡德陵.长江口区有机碳同位素地球化学[J].地球化学,1992,3:305-312.
    陈吉余,陈沈良.南水北调工程对长江河口生态环境的影响[J].水资源保护2002,3:10-13.
    陈吉余.二十一世纪的长江河口初探[M].北京:海洋出版社,2009:17.
    陈吉余.上海市海岸带和滩涂资源综合调查报告[M].上海:上海科学技术出版社,1988.
    陈进,黄薇.水资源与长江的生态环境[M].北京:中国水利水电出版社,2008:9-56.
    陈欣.长江口及其邻近海域CDOM光学特性与示踪应用研究[D].浙江大学硕士学位论文,2012.
    方芳,翟端端,郭劲松,等.三峡水库小江回水区溶解有机物的三维荧光光谱特征[J].长江流域资源与环境,2010,13(9):323-328.
    付佳露,杨毅,彭欢,等.长江口水环境中纳米颗粒物初探[J].环境科学,2011,32(7):1924-1931.
    傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析,2005,25(12):2024-2028.
    傅平青,刘丛强,尹柞莹,等.腐殖酸三维荧光光谱特性研究[J].地球化学,2004a,33(3):301-308.
    傅平青,刘丛强,吴丰昌. 三维荧光光谱研究溶解有机质与汞的相互作用[J].环境科学,2004b,25(6):140-144.
    傅平青,刘丛强,吴丰昌,洱海沉积物孔隙水中溶解有机质的三维荧光光谱特征[J].第四纪研究,2004c,24(3):695-700.
    高全洲,沈承德,孙彦敏,等.北江流域有机碳侵蚀通量的初步研究[J].环境化学,2001,22(2): 12-18.
    郭虹,朱治宇.长江上游出现百年难遇特枯水位航道部门全力保航,中国新闻网,2010,http://www.chinanews.com/gn/news/2010/02-24/2136742.shtml.
    郭建青,钱碧华,党爱翠,等.厦门九龙江河口区海水中溶解和颗粒态Cu、Pb、Cd的地球化学行为[J].厦门大学学报(自然科学版)2007,46(增刊):54-61.
    郭卫东,黄建平,洪华生,等.河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性[J]环境科学,2010,31(6):1419-1427.
    贺松林,丁平兴,孔亚珍.长江口南支河段枯季盐度变异与北支咸水倒灌[J].自然科学进展,2006,16(5):584-589.
    胡春明,张远,于涛,等.太湖典型湖区水体溶解有机质的光谱学特征[J].光谱学与光谱分析,2011,31(11):3022-3025.
    黄文丹,周立旻,郑祥民,等.长江河口不同分子量溶解有机质的三维荧光光谱特征[J].光谱学与光谱分析,2013,33(4):100-1004.
    姜加虎,王苏民.长江流域水资源、灾害及水环境状况初步分析[J].第四纪研究,2004,24(5):512-517.
    蒋凤华,杨黄浩,黎先春,等.胶州湾海水溶解有机物三维荧光特征研究[J].光谱学与光谱分析,2007,27(9):1765-1769.
    李道季,李军,陈吉余,等.长江河口悬浮颗粒物研究[J].海洋与湖沼,2000,31(3):295-301.
    李道季.长江河口悬浮体的有机特性及其动力沉积和生物地球化学行为[D].华东师范大学,博士毕业论文,1998.
    李军,高抒,曾志刚,等.长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼,2003,34(5):499-509.
    李磊,平仙隐,沈新强.春、夏季长江口溶解态重金属的时空分布特征及其污染评价[J].浙江大学学报(理学版),2011,38(5):541-549.
    李丽,张正斌,刘连生,等.南黄海胶体有机碳和溶解有机碳的分布[J].青岛海洋大学学报,1999,29(2):321-324.
    李鹏,杨世伦,戴仕宝,等.近10年来长江口水下三角洲的冲淤变化——兼论三峡工程蓄 水的影响[J].地理学报,2007,62(7):707-715.
    林晶,吴莹,张经,等.长江有机碳通量的季节变化及三峡工程对其影响[J].中国环境科学,2007,27(2):24-249.
    刘杰.长江口潮滩无机氮界面交换研究[D].上海:华东师范大学博士学位论文,2006.
    刘敏,许世远,侯立军.长江口潮滩沉积物——水界面营养盐环境生物地球化学过程[M].北京:科学出版社,2007.
    刘明亮,张运林,秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J]. 湖泊科学,2009,21(2):234-241.
    刘志宏,蔡汝秀.三维荧光光谱技术分析应用进展[J].分析科学学报,2000,16(6):516-523.
    马建华.长江口焦点关注[M].武汉:长江出版社,2007:3-16,159.
    茅志昌,潘定安,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析[J].地理研究,2001,20(2):17-177.
    茅志昌,沈焕庭,徐彭令.长江河口咸潮入侵规律及淡水资源利用[J].地理学报,2000,55(2):243-240.
    沈焕庭,贺松林,潘安定,等.长江河口最大浑浊带研究[J].地理学报,1992,47(5):472-479.
    沈焕庭,张超,茅志昌.长江入河口区水沙通量变化规律[J].海洋与湖沼,2000,31(3):288-294.
    沈焕庭.长江河口物质通量[M].北京:海洋出版社,2001.
    史贵涛.痕量有毒金属元素在农田土壤—作物系统中的生物地球化学循环[D].上海:华东师范大学博士学位论文,2009.
    宋志尧,茅丽华.长江口盐水入侵研究[J].水资源保护,2002,3:27-30.
    王江涛,关哈斯高娃,赵卫红,等.东海海水中荧光溶解有机物质的三维荧光光谱特征[J].光谱学与光谱分析,2009,29(5),1345-1348.
    王江涛,于志刚,张经.鸭绿江口溶解有机碳研究[J].青岛海洋大学学报,1998,28(3):471-475.
    王江涛.黄河、长江和钱塘江水体中的胶体有机碳[J].科学通报,1998,43(8):840-843.
    王静,吴丰昌,王立英,等.超滤,三维荧光光谱与高效体积排阻色谱联合表征地表水环境中溶解有机质的性质[J].环境科学,2008,29(11),3027-3034.
    王明远,赵桂久,章申.长江碳、氮、磷、硫输送量的研究,章申,化学元素水环境背景值研究[M].北京:地图出版社,1989:122-131.
    王启明. 长江南京段水位降至 30 年最低, 新华社,http://www.news365.com.cn/gdtp/200910/t20091030_2507985.htm.
    吴莹,张经,曹建平,等.长江流域有机碳同位素地球化学特征[J].青岛海洋大学学报,2000, 30(2):309-314.
    徐前山. 长江汉口水位落至20 年最低, 长江日报,2009,http://cjmp.cnhan.com/cjrb/html/2009-10/22/content_2107229.htm.
    薛薇.SPSS统计分析方法及应用(第2版)[M].北京:电子工业出版社,2009:234-324.
    严钦尚和曾昭璇.地貌学[J].北京:高等教育出版社,1985:73.
    杨帆,朱晓敏,黄清会,等.崇明岛前卫湖水中有色溶解性有机质的分布和来源[J].生态与农村环境学报,2008,24(3):51-53,59.
    姚东京.崇明东滩盐沼前缘带上覆水氮、磷营养盐潮周期变化特征及其影响因素[D].上海:上海师范大学硕士学位论文,2009.
    余婕,刘敏,许世远,等.长江口潮滩有机质稳定同位素时空分布与来源分析[J].地理研究,2008,27(4):847-854.
    虞丹尼,周光明,吉芳英,等. 三峡水库溶解有机质的三维荧光光谱研究[J].化学学报,2011,69(8),960-966.
    虞孝感.长江流域可持续发展研究[M].北京:科学出版社,2003:489.
    张恩仁,张正斌,田玉红.南沙群岛海域海水中胶体铜、锌、铅[J].海洋学报,2003,25(2):136-140.
    张雷,陈文言.地区经济发展与土地利用转换—以长江干流为例[J].资源科学,2004,26(1):2-8.
    张艳君,姜彤,吕宏华.快速城市化地区的土地利用时空动态变化研究——以南京市为例[J].长江流域资源与环境,2005,14(2):168-172.
    张战平,孙小静,池俏俏,等.太湖春季水体中胶体态痕量金属的含量[J].环境化学,2007,26(2):232-235.
    张战平,孙小静,楼章华,等.太湖春季水体中的胶体有机碳含量及影响因素分析[J].中国环境科学,2006a,26(2):166-170.
    张战平,朱广伟,秦伯强,等.风浪扰动对太湖水体中胶体态痕量金属含量的影响[J].中国环境科学,2006b,26(6):662-666.
    张战平,朱广伟,孙小静,等.太湖典型湖区中胶体有机碳浓度的时空变化[J].环境科学学报,2008,28(8):1668-1673.
    张战平.太湖的胶体态痕量金属及其影响因素研究[C].浙江大学博士学位论文,2006:44-47.
    赵保仁.长江口外的上升流现象[J].海洋学报,1993,15(2):108-114.
    周国华,孙彬彬,曾道明,等.中国东部主要入海河流河口区地球化学特征:理化指标与水溶态元素浓度[J].中国地质,2012,39(2):283-294.
    朱伟健.长江口及邻近海域有色溶解有机物(CDOM)的光学特性和遥感反演的初步研究[D].华东师范大学硕士学位论文,2010:9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700