崇明东滩盐沼前缘带上覆水氮、磷营养盐潮周期变化特征及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口潮滩是海陆交互作用的重要环境界面,其水动力作用强烈、泥沙输移和冲淤变化复杂、生物多样丰富,具有独特的环境功能和生态价值,尤其在清除河口陆源氮污染方面起着十分重要的作用。长江口滨岸带人口密集、城市化进程迅速,尤其是近20a来,经济快速增长伴随的巨大开发强度,严重影响了长江口滨岸潮滩环境系统内部物质的自然循环过程,对河口潮滩生态系统及近岸水体环境造成了直接和潜在的危害。开展长江口滨岸潮滩氮、磷营养盐的生物地球化学循环研究,具有全球性环境学意义,为滨岸潮滩可持续发展和保护提供科学依据。
     在国家自然科学基金项目“长江口崇明东滩高潮滩盐沼水—沉积物—植物界面泥沙输移机制研究”(编号:40571012)和河口海岸国家重点实验室开放基金项目“崇明东滩生源要素在潮流作用下输移过程”(编号:SKLEC0510)支撑下,于2007年春季(5月)和2007年夏季(7、8月)在崇明东滩盐沼前缘带进行野外监测和样品采集,系统研究了该区域上覆水氮、磷营养盐潮周期变化和大小潮周期变化及其时空变化特征,并探讨了水环境因子和水动力条件——流速对氮、磷营养盐的影响机制,取得了以下主要成果:
     崇明东滩盐沼前缘带上覆水溶解态总无机氮(DIN)浓度平均值达到4.86mg·L-1。个别潮汐中三态氮含量高达9.79mg·L-1(NH4+-N)、3.02mg·L-1(NO2--N)和9.15mg·L-1(NO3--N)。春季三态氮比为NO3--N: NH4+-N: NO2--N = 11: 1.6: 1,夏季三态氮比为NO3--N: NH4+-N: NO2--N = 14: 4: 1,显然NH4+-N在夏季时占溶解态无机氮的比例有所提高。TDP的浓度介于0.000~0.374mg·L-1之间,平均浓度为0.056mg·L-1。
     崇明东滩盐沼前缘带上覆水三态氮、DIN和TDP浓度在整个潮周期变化过程中不具有明显的分层现象。三态氮、DIN和TDP浓度在垂向上的变化较为复杂,大潮时其垂向浓度变化没有一致性,且在潮平阶段其波动性表现的更为复杂和剧烈;小潮时,随着潮位降低其垂向浓度变化越来越趋于简单,甚至其垂向浓度趋于相同。
     崇明东滩盐沼前缘带上覆水不同潮汐三态氮、DIN和TDP浓度潮周期变化不存在一致性。三态氮、DIN和TDP在潮周期变化过程中出现“单峰型”和“双峰型”的变化过程,甚至在个别潮汐出现“多峰型”变化,且大多数潮汐无机氮在涨潮阶段和落潮阶段均出现极大值。
     崇明东滩盐沼前缘带上覆水三态氮、DIN和TDP浓度大小潮周期变化表现为:NO2--N的大小潮周期变化在盐沼区和光滩区变化趋势基本一致;NO3--N大小潮周期变化均具有增加的变化趋势;DIN的大小潮周期变化在盐沼区和光滩区具有明显的差异性;NH4+-N和TDP大小潮周期变化均具有明显波动减少的变化趋势,光滩区减少的速率比盐沼区的快,且光滩区的波动强度高于盐沼区。
     崇明东滩盐沼前缘带上覆水三态氮、DIN和TDP时空分异明显。盐沼区夏季NH4+-N、NO3--N、DIN和TDP平均浓度高于春季相对应潮汐的浓度;NO2--N则恰好相反,表现为春季高于夏季;三态氮、DIN和TDP的潮周期变化表现出较大的差异性,其中TDP潮周期变化幅度表现为夏季强于春季,随着潮位逐渐减少,二者之间的差异也逐渐减少。盐沼区和光滩区NH4+-N、NO3--N和DIN平均浓度在各个潮汐间的差异表现非常复杂,NO2--N和TDP基本上表现为光滩区大于盐沼区或相差不大。盐沼区和光滩区的三态氮、DIN和TDP的潮周期变化存在差异,其中TDP潮周期变化范围相对较小。
     相关分析表明,崇明东滩盐沼前缘带水环境因子(温度、盐度、电导率、pH、溶解氧、悬沙浓度和悬沙粒径等)对上覆水三态氮、DIN和TDP的影响大多不具有直接的作用,但是在2007年5月18日夜潮盐度和电导率分别与NH4+-N呈显著正相关,即NH4+-N随着盐度和电导率增加而增加。
     在个别潮汐中,流速与氮、磷营养盐变化呈显著性相关,其余潮汐流速对三态氮、DIN和TDP浓度在沉积物—水界面氮、磷营养盐迁移和转化及水平输移的影响存在较为复杂的关系。潮汐的涨潮阶段、潮平阶段、落潮阶段及潮平均流速与三态氮、DIN和TDP均没有显著性相关。潮汐平均流速与NO2--N变异系数呈显著正相关,潮汐平均流速越大,NO2--N潮周期波动性越大。
The estuarine tidal flat is widely identified as an important interface between land and sea, the environmental functions and ecological values of which are unique because of its powerful tidal and riverine hydrodynamic processes, frequent sediment transportation and various organism species, especially known as a natural barrier in purifying terrigenous nitrogen input. Yangtze estuarine littoral zone is densely polluted with fast development of urbanization. Especially in recent two decades, rapid economic growth accompanied by tremendous development has gravely affected the progress of natural circle in the entrails material of Yangtze estuarine environmental system, causing direct and potential hazards to estuarine tidal flat ecosystem and water environment. Thus, it is meaningful to carry out the research on the biology geochemistry cycle of nitrogen and phosphorus nutrients.
     Supported by National Nature Foundation of China(NO. 40571012) and Open foundation of State Key Laboratory of Estuarine and Coastal Research(NO. SKLEC0510), we did scientific surveys and collected samples in the margin of Chong Ming salt marsh in spring (May) and summer (July and August), 2007. We studied the nitrogen and phosphorus nutrients characters of tidal cycle variation, variation between spring tides and neap tides and spatio-temporal tides. We also discussed how the water environment factors and the hydrodynamic factors (velocity) did an impact on nitrogen and phosphorus nutrients. Several major conclusions are concluded as follows:
     The average of dissolved inorganic nitrogen(DIN) concentration was 4.86mg·L-1 in the margin of Chong Ming salt mash. In some badly contaminated stations, the ammonia, nitrite, nitrate concentrations reached 9.79mg·L-1,3.02mg·L-1 and 9.15mg·L-1 respectively. In spring, the ratio of NO3--N: NH4+-N: NO2--N was 11: 1.6: 1. In summer, the ratio of NO3--N: NH4+-N: NO2--N was 14:4:1. It’s obvious that the ammonia concentration in summer was higher than that in spring. The Dissolved total phosphorous(TDP) concentration varied from 0.000 to 0.374mg·L-1, with an average TDP concentration of 0.056mg·L-1.
     On all accounts, there existed no obvious delamination phenomenon in nitrogen and phosphorus nutrients concentration throughout tides. The vertical variation of nitrogen and phosphorus nutrients concentration was complex. In spring tides (water height exceeded 0.7m), there were no coherence variation in vertical direction, with a more complex and severe fluctuation in the middle tides. In neap (water height was lower than 0.7m), the lower the tides were, the simpler the variation was, even the concentration tended to be the same.
     There was no tidal cycle variation coherence in different tides. Concentration variation curves of nitrogen and phosphorous nutrients shaped single-peak or bimodal. In some tides, even multi-peak occurred. The maximum nitrogen concentration always appeared in flood tide and ebb tide period in most tides。
     In the period of observation, with tides subrogation, nitrite concentration variation was almost the same in margin of salt marsh with that of the bald field. nitrate concentration varied with gradual incresed fluctuation. DIN concentration variation varied rather differently. Ammonium concentration varied with gradual reduced fluctuation, so did TDP concentration. However, with the TDP concentration, the slope of reduction in bare flat was quicker than that of salt marsh and the fluctuation in bare flat was more intense than salt marsh too.
     There were apparent spatio-temporal variation of nitrogen and phosphorus nutrients concentration in Chong Ming slat marsh. Nitrogen and phosphorous nutrients concentration in summer was higher than that in spring in salt marsh, but nitrite was just the opposite. The tidal variation of nitrogen and phosphorous nutrients concentration showed much difference between spring and summer in salt marsh. Take TDP as an example, the range of tidal variation in summer was more severe than that in spring, and the range became smaller and smaller with the tides drawdown. The otherness of ammonium, nitrate and TIN between salt marsh and bare flat was complicated in summer, and nitrate and TDP concentration in bare flat was higher than that in salt marsh or in the same level. The tidal variation of nitrogen and phosphorous nutrients between salt marsh and bare flat was also different, but the range of TDP variation changed in a relatively small scope.
     The linear relationship between nitrogen and phosphorous nutrients and water environment factors (such as water temperature, salinity, electrical conductivity, pH, dissolved oxygen, suspended sediment concentration, suspended sediment grain-size, and so on) indicated that water environment factors had no direct impact on them. However, on the night on 18th May, 2007, there was positive correlation between ammonium and salinity and electrical conductivity respectively, which meant ammonium increased with the raise of salinity and electrical conductivity.
     DIN and TDP had a linear correlation with velocity in some tides, but it was quite complex with how velocity had impacted on nitrogen and phosphorous nutrients in sediment–water interface when they transferred and transformed or transported between salt marsh and bare flat in most tides. The flood tide, middle tide, ebb tide and average velocity had no direct impact on nitrogen and phosphorous nutrients. The variation coefficient of nitrate had a linear positive correlation with average velocity. The higher velocity was, the more severe the fluctuant nitrate variation was.
引文
[1] Steffen W, Sanderson A,Tyson P D,et al.Global change and earth system:A planet under pres- sure[M]. New York:Springer-Verlag,2004.
    [2]国家自然科学基金委员会,2006年度国家自然科学基金项目指南[ EB/OL ] . http://www.nsfc.gov.cn/nsfc/cen/xmzn/2006xmzn/index.htm.2008.
    [3] Anderson F E.The northern muddy intertidal:seasonal factors controlling erosion and deposi- tion—a review[J]. Canadian Journal of Fisheries and Aquatic Science,1983,40(Suppl 1): 143~159.
    [4]侯立军,刘敏,许世远,等.潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J].地球科学进展,2004,19(5):774~781.
    [5]宋长青,冷疏影,吕克解.地理学在全球变化研究中的学科地位及重要作用[J].地球科学进展,2000,15(3),318~320.
    [6]刘杰.长江口潮滩无机氮界面交换研究[D].上海:华东师范大学,2006.
    [7] Butcher S S, Charlson R J, Orians G H, et al.Global biogeochemical cycles[M].London: Acad- emic Press, 1992.
    [8] Bolin B, Degens F T, Kempe S,et al.The Global Carbon Cycle[R].Scope No.13,CONF-77031 40. New York:John Wiley & Sons,1979:416~437.
    [9] Wollast R, Mackenzie F T.Interactions of C,N,P and S biogeochemical cycles and global change[M].Berlin:Springer-Verlag,1993.
    [10]庄亚辉,全球生物地球化学循环研究的进展[J].地学前缘,1997,4(1~2):163~168.
    [11]高建华,欧维新,杨桂山.潮滩湿地N、P生物地球化学过程研究[J].湿地科学, 2004,2(3)220~227.
    [12]刘敏,许世远,陈振楼.上海南汇淤泥质潮滩表层沉积物中多环芳烃[J].中国环境科学, 1998,18(3):284~288.
    [13]陈建芳,叶新荣,周怀阳,等.长江口—杭州湾有机物污染历史初步研究——BHC与DDT的地层学记录[J].中国环境科学, 1999,19(3):206~210.
    [14]段水旺,章申,陈喜保,等.长江下游氮、磷含量变化及其输送量的估计[J].环境科学, 2000, 21(1):53~56.
    [15]陈振楼,许世远,柳林,等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报, 2000,55(6):641~651.
    [16]蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究Ⅰ:秋季的营养限制情[J].海洋学报, 2000,22(4):60~66.
    [17]陈吉余.上海市海岸带和滩涂资源综合调查报告[M].上海:上海科学技术出版社,1988.
    [18]顾宏堪,熊孝先,刘明星,等.长江口附近氮的地球化学Ⅰ:长江口附近海水中的硝酸盐[J].山东海洋学院学报,1981,1(4):37~46.
    [19]刘敏,许世远,侯立军.长江口潮滩沉积物—水界面营养盐环境生物地球化学过程[M].北京:科学出版社,2007.
    [20] Latimer J S,Davis W R,Keith D J.Mobilization of PAHs and PCBs from in-place contaminat- ed marine sediments during simulated resuspension events[J].Estuarine Coastal and Shelf Science,1999,49(4):577~595.
    [21]吴丰昌,万国江,蔡玉蓉.沉积物—水界面的生物地球化学作用[J].地球科学进展, 1996,11(2):191~197.
    [22]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物—水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41~47.
    [23]孟伟,秦延文,郑丙辉,等.长江口水体中氮、磷含量及其化学耗氧量的分析[J].环境科学, 2004,25(6):65~68.
    [24]李文朝,尹澄清,陈开宁,等.关于湖泊沉积物磷释放及其测定方法的雏议.湖泊科学,1999,11(4):296~333.
    [25] Nixon S W.Between Coastal marshes and Coastal waters-A review of twenty years of specul- ation and research on the role of salt marshes in estuarine productivity and water chemistry [A].Hamilton P,Macdonald K B(ed.).Marine Science,II:Estuarine and Wetland Processes[C]. New York:Plenum Publishing Corporation,1980.437~525.
    [26] Childers D L,Day J W,JR et al.Twenty more years of marsh and estuarine flux studies:revisit- ing Nixon(1980)[A].Weinstein M P,Kreeger D A(eds).Concepts and Controversies in Tidal Marsh Eeology[C].Dordrecht,The Netherlands:Kluwer Academic Publishers,2000.391~424.
    [27] Lara R J.Dittmar T.Nutrient dynamics in a mangrove creek(North Brazil)during the dry sea- son[J].Mangroves and Salt Marshes,1999,3(3):185~195.
    [28] Yin K.Harrison P J.Influences of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat[J].Marine Ecology Process Series,2000,196:75~85.
    [29] Nedwell D B,Trimmer M.Nitrogen fluxes through the upper estuary of the Great Ouse,Engl- and:the role of the bottom sediments[J].Marine Ecology Process Series,1996,142:273~286.
    [30] Trimmer M,Nedwell D B,Sivyer D B,et al.Nitrogen fluxes through the lower estuary of the Great Ouse,England:the role of the bottom sediments[J].Marine Ecology Progress Series,19 98,163:109~124.
    [31] Falc?o M,Vale C.Sediment-water exchanges of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal lagoon (Ria Formosa)[J].Hydrobiologia, 1998,373/374: 193~201.
    [32]高效江,张念礼,陈振楼,等.上海滨岸潮滩水沉积物中无机氮的季节性变化[J].地理学报, 2002,57(4):407~412.
    [33]刘敏,侯立军,许世远,等.河口滨岸潮滩沉积物—水界面N、P的扩散通量[J].海洋环境科学,2001,20(3):19~23.
    [34]翁焕新,刘云峰.滨海沉积物和间隙水中的磷研究——以美国墨西哥湾为例[J].环境科学学报,1997,17(2):148~153.
    [35]刘敏,侯立军,许世远,等.潮滩“干湿过程”模式下营养盐的迁移、转化微观实验模拟[J].海洋学报,2006,28(1):169~175.
    [36]刘敏,侯立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特征[J].地理学报, 200l,57(4):397~406.
    [37]刘巧梅.长江口潮滩沉积物—水界面营养元素N的累积迁移过程[J].上海:华东师范大学, 2004.
    [38]侯立军.长江口潮滩湿地生源要素氮的生物地球化学过程研究[D].上海:华东师范大学, 2006.
    [39]高磊,李道季*,王延明,等.长江口最大浑浊带潮滩沉积物间隙水营养盐剖面研究[J].环境科学,2006,27(9):1744~1752.
    [40]高效江,陈振楼,许世远,等.长江口滨岸潮滩沉积物中磷的环境地球化学特征[J].环境科学学报,2003,23(6):171~175.
    [41]张兴正.长江口潮滩无机氮界面交换通量研究[D].上海:华东师范大学,2004.
    [42]陈振楼,王东启,许世远,等.长江口潮滩沉积物—水界面无机氮交换通量[J].地理学报,2005,60(2):328~336.
    [43]王东启,陈振楼,王军,等.夏季长江河口潮间带反硝化作用和N2O的排放与吸收[J].地球化学,2006,35(3):221~226.
    [44] Risgaard-Petersen N,Ottosen L D M.Nitrogen cycling in tow temperate Zostera marina beds: seasonal variation. Marine Ecology Process Series,2000,198:93~107.
    [45] Klump J V, Martens C S.Biogeochemical cycling in an organic rich coastal marine basin-Ⅱ: Nutient sediment-water exchange processes[J].Geochimica et Cosmochimica Acta,1981,45: 101~121.
    [46]尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学, 1994,6(3):240~244.
    [47] Vink S,Chambers R M,Smith S V.Distribution of phosphorus in sediments from Tomales Bay, California[J].Marine Geology,1997,139(1):157~179.
    [48]刘敏,陆敏,许世远,等.长江口及其上海岸带水体沉积物中磷的存在形态[J].地学前缘, 2000,7(增刊):94~98.
    [49]陈华.长江口滨岸湿地盐生植被对生源要素循环的影响[D].上海:华东师范大学,2006.
    [50]王东启,陈振楼,钱嫦萍,等.盐度对崇明东滩沉积物—水界面NH4+-N交换行为的影响[J].海洋环境科学,2002,21(3):5~9.
    [51] Magalhaes C M, Bordalo A A, Wiebe W J.Temporal and spatial patterns of intertidal sedi- ment-water nutrient and oxygen fluxes in the Doure River estuary,Portugal[J].Marine Ecology Progress Series,2002,233:55~71.
    [52] Clavero V, Izquierdo J, Fernandez J A,et al.Seasonal fluxes of phosphate and ammonium acr- oss the sediment-water interface in a shallow small estuary (Palmones River,southern Spain) [J].Marine Ecology Progress Series,2000,198:51~60.
    [53]王初.长江口潮滩水动力过程及TN、TP动力输移[D].上海:上海师范大学,2004.
    [54]付金沐,刘敏,侯立军,等.长江口滨岸排污活动对潮滩营养盐环境地球化学过程的影响[J].环境科学,2007,28(2):315~321.
    [55] Spagnoli F,Bergamini M C.Water-sediment exchange of nutrients during early diagenesis and resusupension of anoxic sediments from the northern Adriatic sea shelf[J].Water,Air and Pollution, 1997,99(1-4):541~556.
    [56] Cartaxana P,Lloyd D.N2 N2O and O2 Profiles in a Tagus estuary salt mash[J].Estuarine, Coastal and Shelf Scince,1999, 48(6):751~756.
    [57] Dittmar T,Lara R J.Driving forces behind nutrient and organic matter dynamics in a Mang- rove Tidal Creek in North Brazil[J].Estuarine,Coastal and Shelf Science,2001,52(2): 249~259.
    [58] Pereira-Filho J,Schettini C A F,R?rig L,et al.Intratidal variation and net transport of dissolved inorganic nutrients,POC and Chlorophyll a in the CamboriúRiver estuary,Brazil[J].Estuarine, Coastal and Shelf Science,2001,53(2):249~257.
    [59] Childer D L.Fifteen years of flumes:a view of marsh-water column interactions in the southeastern USA estuaries[A].Mitsch W J.Global Wetlands:Old World and New[C]. Amsterdam: Elsevier,1994.277~293.
    [60] Cabrita M T,Catarino F,Vale C.The effect of tidal range on the flushing of ammonium from intertidal sedimenis of the Tagus estuary,Portugal[J].Oceanlogica Acta,1999,22(3):291~302.
    [61]钱嫦萍.沉积物再悬浮对长江口潮滩N、P界面交换的影响研究[D].上海:华东师范大学, 2003.
    [62] Schoellhamer D H David H S.Sediment resuspension mechanisms in Old Tampa Bay, Florida[J].Estuarines,Coastal and Shelf Science,1995,40(6):603~620.
    [63] Morin J,Morse J W.Ammonium release from resuspended sediments in the Laguna Madre estuary[J].Marine Chemisry,l999,65(l-2):97~110.
    [64]胡珍玲.长江口潮滩氮、磷的潮汐循环与反硝化作用研究[D],上海:华东师范大学,2004.
    [65] Saulnier I,Mucci A.Trace metal remobilization following the resuspention of estuarine sedi- ments:Saguenay Fjord,Canada[J].Applied Geochemistry,2000,15(2):191~210.
    [66] Abri1G,Riou S A,Etcheber H,et al.Transient,tidal time-scale,nitrogen transformation in an estuary turbidity maximum-fluid mud system(the Gironde,south-west France)[J].Estuary, coastal and Shelf Science,2000,50(5):703~715.
    [67]钱嫦萍,陈振楼,胡玲珍,等.崇明东滩沉积物再悬浮对沉积物—水界面氮、磷交换行为的影响[J].环境科学,2003,24(5):114~119.
    [68]陈淑珠,钱红,张经,等.沉积物对磷酸盐的吸附与释放[J].青岛海洋大学学报, 1997,27(3):413~418.
    [69]石晓勇,史致丽,余恒,等.黄河口磷酸盐缓冲机制的探讨1黄河口沉积物对磷酸盐的吸附-解吸研究[J].海洋与湖沼,1999,30(2):192~197.
    [70]隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(l):102~105.
    [71]朱广伟,秦伯强,张路,等.太湖底泥悬浮中营养盐释放的波浪水槽试验[J].湖泊科学,2005, 17(1):61~68.
    [72]李大鹏,黄勇,李伟光.再悬浮条件下底泥对磷固定作用的研究*[J].环境化学, 2008,27(2):164~167.
    [73] Thornton D C O,Underwood G C,Nedwell D B.Effect of illumination and emersion period on the exchange of ammonium across the estuarine sediment-water interface[J].Marine Ecology Progress Series,1999,184:11~20.
    [74] Laima M,Brossard D,Sauriau P G, et al. The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Oléron Bay,France[J].Marine Environmental Research,2002,53(4):381~402.
    [75] Rocha C.Rhythmic ammonium regeneration and flushing in iniertidal sediments of the Sado estuary[J].Limnolgy and Oceanography,1998,43(5):823~831.
    [76]汪青,刘巧梅,刘敏,等.潮滩沉积物—水界面NH3-N交换通量的底栖藻类效应[J].海洋环境科学,2006,25(2):17~20.
    [77]屈璠,刘敏,侯立军,等.潮汐循环影响下上覆水环境因子和氮营养盐的变化及其相关关系[J].长江流域资源与环境,2007,16(3):345~350.
    [78]刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中NH 4+释放的影响研究.上海环境科学,2002,21(5):271~273
    [79]王东启,陈振楼,许世远,等.长江口崇明东滩沉积物反硝化作用研究*[J].中国科学D辑地球科学,2006,36(6):544~551.
    [80]刘玉生,邹兰,郑丙辉.光照、温度和藻类对底泥释放磷的影响[J].环境科学研究, 1992,5(2):41~44.
    [81]范成新.隔湖沉积物理化特征及磷释放模拟[J].湖泊科学,1995,7(4):34~350.
    [82]韩伟明.杭州西湖底泥释磷及对富营养化的影响[J].环境科学,1992,13(3):25~29.
    [83]韩伟明.底泥释磷及对杭州西湖富营养化的影响[J].湖泊科学,1993,5(l):71~77.
    [84] Rysgaard S.Thastum P,Dalsgaard T,et al.Effects of salinity on NH4+ adsorption capacitynitrification and denitrification in Danish estuarine sediments[J].Estuaries,1999,22(1):21~30.
    [85] Gardner W S,Seitzinger S P,Malczyk J M.The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments:Does ion pairing affect ammonium flux? [J].Estuaries,1991,14(2):157~166.
    [86]侯立军,刘敏,蒋海燕,等.河口潮滩沉积物对NH4+-N的等温吸附特性[J].环境化学, 2003,22(6):568~572.
    [87]王正方,姚龙奎,阮小正.长江口营养盐(N,P,Si)分布与变化特征*[J].海洋与湖沼,1983, 14(3):324~332.
    [88]黄尚高,杨嘉东,暨卫东,等.长江口水体活性硅、氮、磷含里的时空变化及相互关系[J].台湾海峡,1986,5(2):114~123.
    [89]蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究Ⅱ.春季的营养限制情况[J].海洋学报,2001,23(3):57~65.
    [90]刘敏,侯立军,许世远,等.盐度变化对崇明东部河口潮滩氮营养盐循环影响实验模拟研究[J].海洋环境科学,2004,23(4):6~9.
    [91]刘敏,侯立军,许世远,等.长江口潮滩表层沉积物对NH4+-N的吸附特征[J].海洋学报, 2005,27(5):60~66.
    [92] Shang C,Stewart J W B,Huang P M.pH effect on kinetics of adsorption of organic and inorg- anic short-range ordered aluminum and iron precipitates[J].Geoderma,1992,53(1-2):1~14.
    [93] Sundareshwar P V,Morris J T.Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient[J].Limnology and Oceanogrophy,1999,44(7): 1693~1701.
    [94]徐进,张奇,王世和,等.湖滨湿地基质—水界面磷释放特性研究[J].中国给水排水, 2007,23(1):43~47.
    [95]刘巧梅,刘敏,许世远,等.上海滨岸潮滩不同粒径沉积物中无机形态磷的分布特征[J].海洋环境科学,2002,21(3):29~33.
    [96] Jensen H S,Andersen F S.Importance of temperature,nitrate,and pH for phosphate release from aerobic sediments of four shallow,eutrophic lakes[J].Limnology and Oceanology, 1992,37(3):577~589.
    [97]张兴正,陈振楼,邓焕广,等.长江口北支潮滩沉积物—水界面无机氮的交换通量及季节变化[J].重庆环境科学,2003,25(9):31~34,76.
    [98]陈敏,阮晓蕾,陈邦林,等.界面化学研究河口颗粒物对氮迁移、转化的影响[J].华东师范大学学报(自然科学版),1994,3:61~65.
    [99] Bola?ek J,Graca B.Ammonia nitrogen at the water-sediment interface in Puck bay(Baltic sea) [J],Estuarine,Coastal and Shelf Science,1996,43(6),767~779.
    [100] Boatman C D, Murray J W.Modeling exchangeable NH4+-N adsorption in marine sediments: process and controls of adsorption[J].Limnology and Oceanography,1984,27(1):99~110.
    [101] Mackin J E,Aller R C,Ammonium Adsorption in Marine Sediment[J].Limnology and Ocea- nography,1984,29(2):250~257.
    [102]侯立军,刘敏,蒋海燕,等.河口潮滩沉积物对氨氮的等温吸附特性[J].环境化学, 2003,22(6):568~572.
    [103] Bowden K F.Oceanic and estuarine mixing processes[A].Riley J P,Skirrow G(eds).Chemical Oceanography[C].New York:Academic Press,1975.1-41.
    [104]王明远,赵桂久,章申.长江碳、氮、磷、硫输送量的研究[A].章申.化学元素水环境背景值研究[C].北京:测绘出版社,1989.121~131.
    [105]林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放[J].海洋学报,1994,16(4):82~90.
    [106] Caffrey J M,Kemp W M.Influence of the submersed plant, potamogeton perfoliatus, on nitr- ogen cycling in estuarine sediments[J].Limnology and Oceanogrophy,1992,37(7): 1483~1495.
    [107] Rivera-Monroy V H,Twilley R R.The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments(Terminos Lagoon,Mexico)[J], Limnology and Oceanogrophy,1996,41(2):284~296.
    [108] Risgaard-Petersen N,Jensen K.Nitrification and denitrification in the rhizosphere of the aqu- atic macrophyte Lobelia dortmanna L..Limnology and Oceanogrophy,1997,42(3):529~537.
    [109] Eriksson P G,Weisner E B.An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems[J].Limnology and Oceanogrophy,1999,44(8):1993~1999.
    [110] Wingand C,Finn M,Findlay S,et al.Submersed macrophyte effects on nutrient exchanges in riverine sediments[J].Estuaries,2001,24(3):398~406.
    [111]高建华,杨桂山,欧维新.互花米草引种对苏北潮滩湿地TOC、TN和TP分布的影响[J].地理研究,2007,26(4):799~808.
    [112] Reise K.Tidal flat ecology-An experiment approach to species interactions[M].Berlin: Springer Verlag,1985.
    [113] Yamada H, Kayama M.Liberation of nitrogenous compounds from bottom sediments and effects of bioturbation by small bivalve,Theora lata(Hinds)[J].Estuarine,Coastal and Shelf Science,1987,24(4):539~555.
    [114] Sundb?ck K,Miles A.Balance between denitrification and microalgal incorporation of nitrogen in microtidal sediments, N E Kattegat [J].Aquatic Microbial Ecology,2000,22: 291~300.
    [115] Berg P,Rysgaard S,Funch P,et al.Effects of bioturbation on solutes and solids in marine sediments[J].Aquatic Microbial Ecology,2001,26:81~94.
    [116] Pelegri S P,Blackburn T H.Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformation in marine sediments[J].Marine biology,1994,121(2): 253~258.
    [117] Pelegri S P, Nielsen L P, Blackburn T H.Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator[J].Marine Ecology Progress Series,1994,105:285~290.
    [118] Tuominen L,M?kel? K,Lehtonen K K,et al.Nutrient fluxes,porewater profiles and denitrifi- cation in sediment influenced by algal sedimentation and bioturbation by Monoporeia affinis[J].Estuarine, Coastal and Shelf Science, 1999, 49(1):83~97.
    [119]刘敏,侯立军,许世远,等.长江口潮滩生态系统氮微循环过程中大型底栖动物效应实验模拟[J].生态学报,2005,25(5):1132~1137.
    [120] Mortimer R J G, Davey J T, Krom M D,et al.The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber estuary[J].Estuarine,Coastal and Shelf Science,1999,48(6):683~699.
    [121] Hughes D J,Atkinson R J A,Ansell A D.A field test of the effects of megafaunal burrows on benthic chamber measurements of sediment-water solute fluxes[J].Marine Ecology Progress Series,2000,195:189~199.
    [122] Aigars J,Carman R.Seasonal and spatial varlations of carbon and nitrogen distribution in thesurface sediments of the Gulf of Riga.Baltic Sea[J].Chemosphere,2001,43(3):313~320.
    [123]刘敏,侯立军,许世远.底栖穴居动物对潮滩沉积物中营养盐早期成岩作用的影响[J].上海环境科学,2003,22(3):180~184.
    [124]余婕,刘敏,侯立军,等.底栖穴居动物对潮滩N迁移转化的影响[J].海洋环境科学,2004,23(2):1~4.
    [125]陈振楼,刘杰,许世远,等.大型底栖动物对长江口潮滩沉积物—水界面无机氮交换的影响[J].环境科学,2005,26(6):43~50.
    [126] Valiela I,Teal J M.The nitrogen budget of a salt marsh ecosystem[J].Nature,1979,280: 652~656.
    [127] Vernberg F J.Salt-marsh processes,a review[J].Environmental Toxicology and Chemistry, 1993,12(12):2167~2195.
    [128] Thompson S P,Paerl H W,Go M C.Seasonal patterns of nitrification and denitrification in a natural and a restored salt marsh[J].Estuaries,1995,18(2):399~408.
    [129] Howarth R W,Marino R,Lane J,et al.Nitrogen fixation in freshwater, estuarine and marine ecosystem.1.Rates and importance[J].Limnology and Oceanography,1988,33(4):669~687.
    [130] Claret C,Marmonier P,Bravard J P.Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river[J].Aquatic Sciences,1998,60(1): 33~55.
    [131]侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应[D].上海:华东师范大学, 2004.
    [132] Walker N.土壤微生物学[M].中国科学院南京土壤研究所微生物室.北京:科学出版社,1981.
    [133] Drizo A,Forst C A,Smith K A,et al.Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow,using shale as a substrate[J].Water Science and Technology,1997,35(5):95~102(8).
    [134]高磊,长江口潮滩湿地主要生源要素的动力学过程研究[D].上海:华东师范大学,2006.
    [135]欧冬妮,刘敏,侯立军,等.围垦对东海农场沉积物无机氮分布的影响[J].海洋环境科学, 2002,21(3):18~22.
    [136]刘敏,许世远,侯立军,等.长江口滨岸潮滩沉积物中磷的存在形态和分布特征[J].海洋通报,2001,20(5):10~17.
    [137]茅志昌,潘定安,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析[J].地理研究, 2001,20 (2) :170~177.
    [138]沈焕庭,等.长江河口物质通量[M].北京:海洋出版社,2001.
    [139]许世远.长江三角洲地区风暴潮沉积研究[M].北京:科学出版社,1997.
    [140]曹慧,崇明东滩盐沼近底层水流与悬沙变化过程研究[D].上海:上海师范大学,2008.
    [141]王初,贺宝根.长江河口潮滩悬浮泥沙输移规律研究进展[J],上海师范大学学报(自然科学版),2003,32(2):96~100.
    [142]杨世伦,徐海根.长江口长兴、横沙岛潮滩沉积特征及其影响机制[J].地理学报, 1994,49(5) :450~456.
    [143]杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律[J].海洋与湖沼, 1999,30(6) :764~769.
    [144]赵保仁.长江口外的上升流现象[J].海洋学报,1993,15(2):108-114.
    [145]袁兴中.河口潮滩湿地底栖动物群落的生态学研究[D].上海:华东师范大学河口海岸国家重点实验室,2001.
    [146]孙平跃,陆健健.长江口湿地资源生物的可持续利用[J].长江流域资源与环境,1998,7(4):330~336.
    [147]梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J].应用生态学报,2007,18(4): 933~936.
    [148]汪松年,上海湿地利用和保护[M].上海:上海科学技术出社, 2003.
    [149]秦晓怡.基于ADCP的高潮滩盐沼潮流过程研究——以长江口崇明东滩盐沼为例[D].上海:上海师范大学,2008.
    [150]任杰.长江口崇明东滩盐沼边缘带悬浮泥沙短期变化特征研究[D].上海:上海师范大学, 2008.
    [151]喻林.水质监测分析方法标准实务手册[M].北京:中国环境科学出版社,2002.262-265.
    [152]蔡裕丰,徐立生.纳氏试剂光度法测定水和废水中氨氮方法的改进[J].环境科学导刊, 2008,27(1):92~94.
    [153] Jickells T D.The biogeochemistry of nutrients along the tidal zone.Scienee,1998,281: 217~222.
    [154]林以安,唐仁友,李炎,等.渤海莱州湾沉积物—水界面溶解无机氮的扩散通量[J].环境科学,1995,20(2):12~16.
    [155]沈志良,刘群,张淑美,等.长江和长江口高含量无机氮的主要控制因素[J].海洋与湖沼, 2001,32(5):465~473.
    [156]张斌亮,刘敏,侯立军,等.上海滨岸沉积物、上覆水中N含量及时空变[J].长江流域资源与环境,2002,11(3):250~254.
    [157] Holland H D.The phosphorus-oxygen connection[A].EOS.Transactions of the American Geophysical Union,Ocean Sciences Meeting Supplement[C],1994.75~96.
    [158]徐开钦,林诚二,牧秀明,等.长江干流主要营养盐含量的变化特征——1998~1999年日中合作调查结果分析[J].地理学报, 2004,59(1): 118~124.
    [159]乔方利,袁业立,朱明远,等.长江口海域赤潮生态动力学模型及赤潮控制因子研究[J].海洋与湖沼, 2003,31(1): 93~100.
    [160]华兆哲,朱晓青,王晓蓉.太湖沉积物磷释放对羊角月芽藻的生物可利用性研究[J].环境科学学报, 2000,20(1): 100~105.
    [161]周俊丽,刘征涛*,孟伟,等.长江口营养盐浓度变化及分布特征[J].环境科学研究,2006,19(6):139~144.
    [162]张超,杨秉赓.计量地理学基础(第二版)[M].北京:高等教育出版社,1991.
    [163]徐建华.计量地理学[M].北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700