应变诱发Mg-Al-Zn合金半固态组织及腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对半固态组织的观察分析,总结了半固态组织的演变机制。半固态组织的演变结合了枝晶断裂和再结晶两种机制。第二相化合物含量多的合金,枝晶断裂和再结晶机制共同影响半固态组织的演变;第二相化合物含量少的合金,再结晶机制是影响半固态组织演变的主要机制。
     系统研究了工艺参数对采用应变诱发法形成AZ91D镁合金半固态组织的影响,得出变形量为40%时,满足AZ91D镁合金半固态流变性的温度、时间范围为:温度550-590℃,时间(45-60min)~(6-20min)。固相粒子的长大遵循Ostwald熟化关系。首次通过实验设计了几种成分的Mg-Al-Zn合金,结果表明合金元素铝和锌的增加都有利于形成更加均匀、细小的半固态组织,且缩短了等温时间。
     系统研究了半固态试样的腐蚀行为,建立了半固态镁合金的腐蚀模型,得出半固态组织的形态参数是影响半固态试样腐蚀性能的主要因素,合金成分对半固态试样的腐蚀性能影响较小。在相同的固相分数下,半固态组织的固相粒子尺寸小,数量多,则腐蚀初始阶段的速度快;固相粒子的尺寸大,数量少,腐蚀坑大且深,则最后的腐蚀量较大。固相粒子被连续的β相包围能有效抑制腐蚀向内部扩展,计算了在半固态镁合金中形成连续β相的合金成分。
Magnesium alloys are the highest structure materials at present, which have a lot of excellent properties. The utilization of magnesium has penetrated the fields of engineering components in the automotive, spaceflight, computer industry, etc. Magnesium alloys were preferable for the reduction of automobile weight, energy saving and environment protecting. So they are referred to as the 21st century green engineering materials.
     Semi-solid forming (SSF) are being a potential technology for metal forming for its many advantages. The key feature that permits the shaping of alloys in the semisolid state is the absence of dendritic characteristics from the morphology of the solid phase. The microstructures reveal very small flow resistance and finer molding capability. Therefore, the preparation of eligible semisolid microstructure is the basic for semisolid processing. Strain induced melt activation (SIMA) method omits the procedure of molten metal treatment and the metal is partial remelted so that the inflammation of the magnesium is avoided. SIMA is considered as a net-shape process in which the basic extruded or rolled bars are subjected to additional deformation to accumulate a large quantity of deformation energy to induce sufficient strain, then heated to the semisolid state to transform the dendritic structure to develop a fine, uniform and spheroidal microstructure.
     The semisolid forming (SSF) has special technical and economic advantages. Therefore, SSF can produce diversiform parts that involve automotive and aeronautic parts and so on. But, magnesium alloys currently used in SSM processing are restricted to a few commercial alloys such as AZ91, AM50 and AM60. Now, the traditional casting or forging alloys cannot show all advantages of semisolid metal processing. We should design new SSF alloys that can meet process ability requirements of different parts, sequentially the all advantages of semisolid forming can exert adequately. Al and Zn element is low-cost and effective alloying element of magnesium applies that to develop most magnesium alloys.
     Firstly, through observation of microstructural evolution of semisolid alloy to founded the evolution model of semisolid microstructure in this paper. The microstructural evolution of semisolid magnesium alloy as follow: after compression form fibroid structure and dendrite rupture→fibroid structure has disappeared, take placed recovery and recrystallization, eutectic and second phase gets dissolved inα-Mg matrix partially below the solidus temperature→the eutectic and agglomerate Mg17Al12 phase melted firstly when the isothermal temperature is slightly higher than the solidus temperature→the liquid phase saturated into high-energy recrystallization grain boundaries, isolated solid particle appeared→solid particle rounded→solid particle coarsing. The semisolid microstructure consists of primary solid particle, liquid drop within primary solid particle and liquid phase that consists of eutectic and re-solidificationα-Mg. The liquid drop consists of eutectic and secondly phase that has acicular and globular morphology. The microstructural evolution of semisolid combined two mechanisms that are dendrite rupture and recrystallization. When contain many compound, recrystallization and dendrite rupture influence microstructural evolution of semisolid together. When contain lesser compound, recrystallization is primary mechanism.
     Strain induced melt activation (SIMA) process was used to manufacture the semisolid billets of magnesium alloys in this paper. Firstly, the effect of compression ratio, asymmetrical deformation, isothermal holding temperature, isothermal holding time and original as-cast microstructure on the microstructure evolution of semisolid AZ91D magnesium alloy was investigated. Based above investigations, we found appropriate parameter range for favorable semisolid microstructure. The investigation indicates that the effect of mould material on the as-cast microstructure is very great, but the effect on the semisolid microstructure falls evidently. The plastic deformation is asymmetrical in different area of specimen that separate into three areas which are prone to deform area, difficult to deform area and uncontrolled area. The wrought causation of semisolid microstructure is different in the three areas. Liquid formed in different place of specimen because of compression. The liquid appear along the new recrystallization grain boundaries in middle and drum where deformation degree is large and it primary dendrite boundaries and solute-rich area in grains mostly, along the new recrystallization grain boundaries no other than a little in the areas of upper and nether surface. The stress and strain affect the nucleation of liquid together. The nucleation of liquid is much more sufficient in drum area that experiences the tension stress than in middle area that experiences the compression stress. During the same isothermal holding times, the solid fraction is lower slightly in drum area than in middle area. As a whole, after isothermal holding for a certain times (20 min in this paper), the asymmetric deformation by compression induced that affect the holistic performance of semisolid billets on the small side. Consequently, it can avoid the effect of asymmetric deformation on the microstructure of semisolid in SIMA process. Compression ratio is an important parameter for semisolid forming. With increasing compression ratio, the recrystallization grain size decreases and the recrystallization grain quantity increases, simultaneity the semisolid microstructure is much more uniform and fine. When the compression ratio less than 15%, with increasing compression ratio, the solid fraction and solid particle size decreased rapidly, the alterant extent is biggish. When the compression ratio bigness than 15%, with increasing compression ratio, the decreasing speed of solid fraction and solid particle size slower besides solid particle size occurred coarseness at critical compression ratio. The critical compression ratio is about 40% for favorable semisolid billet in this experimental condition. The isothermal holding temperature and isothermal holding time are interrelated two parameters. Isothermal holding long times and low temperature and isothermal holding short times and high temperature can obtain same purpose, but the isothermal holding time and temperature all have a critical value. At overly low temperature, the kinetic capability of atom is not strong, consequently even if isothermal holding long times also cannot obtain favorable semisolid billet. At exorbitant temperature, the diffusivity of atom increased, in isothermal holding short times the semisolid microstructure can obtain, but solid particle coarseness very severe that fall short of need of favorable semisolid billet. The appropriate isothermal holding temperature is 550℃~590℃and corresponding isothermal holding time is (45-60min)~(6-20min) in this experimental condition.
     The Mg-Al-Zn alloys prepared that have different Al and Zn element content. Semisolid microstructural evolution rule was investigated at different compression ratio, isothermal holding temperature and isothermal holding time. The rheological parameter of semisolid billet was analyzed and via that estimate usability of semisolid billet. The experiment demonstrated that with increasing Al content, the temperature sensitivity of alloys decreased that is propitious to control quality variety of semisolid billet. At equal Al content, with increasing temperature, the variational speed of solid fraction increased. The Zn element reduced final freezing point, and promoted appearance ofβphase along grain boundary and it enrichment in theβphases that cause melting point of compound drop. The increase of Al and Zn content favor of the transformation of semisolid that come down to two causes. With increasing Al and Zn content, the compound quantity increased that melt fleetly at isothermal holding, as a result can fleetly obtain fine and globular semisolid microstructure. On the other hand, with increasing element content the recrystallization grain decreased that bring small solid particle size.
     The effect factors of semisolid microstructure were educed that involve conglomeration deposition of elements, compression ratio, distribution of stress and strain and alloy component etc. The many alloy elements result in severe conglomeration deposition that turn into nucleus of liquid phase at semisolid temperature isothermal holding, which in favor of form the semisolid microstructure. On the other hand, many alloy elements increase the volume fraction of second phase that bring fine recrystallization grain, sequentially can bring fine semisolid microstructure. The compression ratio also influenced recrystallization consequently and the semisolid microstructure. Stress state influenced nucleation of liquid phase. The tension stress reduces nucleation temperature of liquid phase that accelerate nucleation, and the compressive stress increase nucleation temperature of liquid phase that restrain nucleation.
     The corrosion behaviour of semisolid AZ91D magnesium alloy was investigated for the first time by electrochemical test, immersion test and salt spray test. The investigation demonstrates that the corrosion resistance of semisolid specimen is higher than as-cast specimen by three different testing methods. A severe substantive desquamation and downthrows appeared in as-cast specimen, whereas the semisolid specimen reveals flat seeming breach. Galvanic corrosion is a major reason for both kinds of specimen, and the microstructural difference is result in a grave difference of corrosion behavior. For as-cast specimens, theβphase discontinuously distribute in the grain boundaries that accelerate the corrosion process. Contrarily, the solid particles surround byβphase that inhibit the overall corrosion of the semisolid specimen. There are three kinds of galvanic corrosion in semisolid specimen that first is between solid phase and liquid phase, second is within liquid phase, and final is within solid phase. The primary breakage by the corrosion along the interphase of solid phase and liquid phase bring on. Theα-Mg around liquid drop is also a place of corrosion nucleation easily in the solid particles that accelerate whole mass loss. The effect of corrosion is low in liquid phase, owing to the barrier effect ofβphase.
     The effect of morphological parameter of semisolid microstructure is foremost on corrosion performance of semisolid specimens. At same solid fraction, small solid particle size and large numbers of solid particle amount induce speedy corrosion at the initiatory step of corrosion, whereas big solid particle size and a small quantity of solid particle amount induce big and deep corrosion pit and large numbers of corrosion amount at last step. When Al content achieves 8%, the Mg-Al alloy can form continuousβphase in semisolid alloy that have upper solid fraction and biggish solid particle size. When Al content achieves 11.05%, the Mg-Al alloy can form continuousβphase in experimental all condition. The continuousβphase can restrain corrosion of semisolid alloy effectively that detailed research can provide a new way for antisepsis of magnesium alloys.
引文
[1] 陈振华,严红革,陈吉华,等编著.镁合金.北京:化学工业出版社,2004,19-22.
    [2] 左铁镛.21 世纪的轻质结构材料—镁及镁合金发展.新材料产业,2007,12:22-26.
    [3] Mordike B L, Ebert T. Magnesium properties applications potential. Materials Science and Engineering, 2001, 30 (2): 37-45.
    [4] Friedrich H, Schumann S. Research for a new age of magnesiumin the automotive industry. Journal of Materials Processing Technology, 2002, 117 (3): 276-281.
    [5] 王渠东,吕宜振,曾小勤,等.镁合金在电子器材壳体中的应用.材料导报,2000,14 (6):22-24.
    [6] 潘复生,王敬丰,章宗和,等.中国镁工业发展的机遇、挑战和责任.中国金属通报,2008,2:6-14.
    [7] 师昌绪,李恒德,王淀佐,等.加速我国金属镁工业发展的建议.材料导报,2001,15 (4):5-6.
    [8] 王凤娥.国内外镁合金成形技术专利分析.轻合金加工技术,2006,34 (2): 4-6.
    [9] 胡勇,陈国香,闫洪,等.镁合金半固态成形的现状及发展前景.现代制造工程,2006,6:147-150.
    [10] Bralower P M. Light Metal Age, 1996, 54 (5-6): 6-22.
    [11] Flemings M C. Behavior of metals in the semi-solid state. Metallurgical Transactions A, 1991, 22A: 957-981.
    [12] Spencer D B, Mehrabian R, Flemings M C. Theological behavior of Sn-15%Pct Pb in the crystallization range. Metallurgical Transactions A, 1972, 3: 1925-1932.
    [13] Flemings M C, (GUANYU long tr.). Solidification Process(凝固过程). Beijing: Metallurgical Industry Press, 1981.
    [14] 崔晓鹏,刘海峰,刘勇兵.镁合金半固态触变注射成形过程中固相形成机制.铸造,2007,56 (11):1147-1150.
    [15] Czerwinski F. Magnesium Injection Molding. Springer, 2008, 215-224.
    [16] Chen T J, Hao Y, Sun J. Microstructural Evolution of Previously Deformed ZA27 Alloy During Partial Remelting. Materials Science and Engineering A, 2002, (337): 73-81.
    [17] Tzimas E, Zavaliangos A. A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced, melt activated process. Material Science Engineering A, 2002, (289): 217-227.
    [18] Zhang Q Q, Cao Z Y, Zhang Y F, et al. Effect of compression ratio on the microstructure evolution of semisolid AZ91D alloy. Journal of Materials Processing Technology, 2007, 184 (1-3): 195-200.
    [19] 李东成,于思荣,孙国斌,等.Al-3%Si 半固态 SIMA 过程的微观组织演变. 锻压技术,2007,32 (3):103-106.
    [20] Wang J G, Lin H Q, Li Y Q, et al. Effect of initial as-cast microstructure on semisolid microstructure of AZ91D alloy during the strain-induced melt activation process. Journal of Alloys and Compounds, In press.
    [21] Iwassaki H, Mori T, Mabuchi M. Shear deformation behavior of Al-5% Mg in a semi-solid state. Acta Materialia, 1998, 46(18): 6351-6360.
    [22] 毛卫民.半固态金属成形技术.北京:机械工业出版社,2004,277-279.
    [23] 管仁国,马伟民,等.金属半固态成形理论与技术.北京:冶金工业出版社,2005,272-282.
    [24] Lebeau S, Maffia J. Thixomolding: Plastic injection molding turns to metal. Engineered Casting Solutions, 2002, 33-35.
    [25] 崔晓鹏.AZ91D 镁合金半固态触变注射组织与工艺研究.吉林大学博士学位论文,2006,20-21.
    [26] 胡红军,张驰,曾英,等.镁合金触变成形技术在壳罩产品上的应用.现代制造工程,2006,6:67-70.
    [27] Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys. Corrosion Science, 2002, (44): 2737-2756.
    [28] 胡红军,杨明波,彭东,等.镁合金触变注射成形技术综述.铸造,2006,55 (8):763-766.
    [29] 李海宏,陈体军,郝远,等.触变成形 AZ91D 镁合金在 NaCl 溶液中的应力腐蚀行为研究.材料保护,2007,40 (10):12-15.
    [30] Flemings M C, Riek R G, Young K P. Rheocasting process. AFS International Cast Metals Journal, 1976, 1(3): 11-22.
    [31] Flemings M C, Riek R G, Young K P. Rheocasting. Mater. Sci. Eng, 1976, 25: 103-117.
    [32] Flemings M C, Mehrabian R. Casting semi-solid metals. AFS Trans, 1973, 81: 81-88.
    [33] Mehrabian R, Flemings M C. Die casting of partially solidified alloys. AFS Trans, 1972, 80: 173-182.
    [34] Chen H I, Chen J C, Liao J J. The influence of shearing conditions on the rheology of semi-solid magnesium alloy. Material Science and Engineering A, 2008, 487: 114-119.
    [35] Kirkwood D H. Semisolid metal processing. International Materials Reviews,1994, 39: 173-189.
    [36] Chino Y, Kobata M, Iwasaki H, et al. An investigation of compressive deformation behavior for AZ91 Mg alloy containing a small volume of liquid. Acta Materialia, 2003, 51: 3309-3318.
    [37] 康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术.北京:科学出版社,2004,50-63.
    [38] Liu Z, Mao W M, Zhao Z D. Effect of grain refining on primary α phase in semi-solid A356 alloy prepared by low superheat pouring and slight electromagnetic stirring. Acta Metallurgica Sinica, 2008, 21 (1): 57-64.
    [39] Quaak C J, Horsten M G, Kool W H. Rheologial behavior of partially solidified aluminum matrix composites. Material Science Engineering, 1994, 183A: 247-256.
    [40] 谢水生,李兴刚.半固态加工技术在镁合金零部件生产中的应用.世界有色金属,2005,2:39-48.
    [41] Czerwinski F. The generation of Mg-Al-Zn alloys by semisolid state mixing of particulate precursors. Acta Materialia, 2004, (52): 5057-5069.
    [42] 谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999,1-3.
    [43] Mehrabian R, Riek R G, Flemings M C. Preparation and casting of metal – particulate non-metal composites. Metall Trans, 1974, 5 (8): 1899-1905.
    [44] 蒋鹏,贺小毛,张秀峰.半固态成形技术的研究概况与发展前景.热加工工艺,1991,(1):42-44.
    [45] 陈祥,危仁杰,杨湘杰.半固态金属成形的研究概况和应用.铸造,2005,54 (9):835-839.
    [46] Flemings M C. Semi-solid forming: the process and the path forward. Metallurgical Science and Technology, 2000, 18 (2): 3-4.
    [47] 张奎,刘国钧,张永忠,等.半固态金属制备原理与应用.稀有金属,1998,22 (6):447-449.
    [48] 吉泽升,吕新宇,王国军,等. 镁合金半固态成形技术的研究进展.金属热处理,2003,28 (5):8-11.
    [49] 张奎,刘国钧,徐骏,等.电磁搅拌法连续半固态铝合金及其凝固组织分析.中国有色金属学报,2000,10 (1):47-50.
    [50] 罗守靖,田文彤,谢水生,等.半固态加工技术及应用.中国有色金属学报,2000,10 (6):765-769.
    [51] Lee S, Lee J, Lee Y 1. Characterization of Al 7075 alloys after cold working and heating in the semisolid temperature range1. Journal of materials processing technology, 2001, (111): 42-47.
    [52] 朱鸣芳,苏华钦.半固态等温热处理制备粒状组织 ZA12 合金的研究.铸造,1996,4:1-5.
    [53] Cui J Z. Solidification of Al alloys under electromagnetic field. Trans. Nonferrous Met. Soc. China, 2003, 13 (3): 473-483.
    [54] Mao W M, Zhao A M, Zhong X Y. Spherical microstructure formation of the semisolid high chromium cast iron Cr20Mo2. Acta Metallurgica Sinica, 2004, 17 (1): 77-82.
    [55] Song R B, Kang Y L, Sun J L, et al. Investigation of the microstructure of rolled semisolid steel. Journal of Materials Science and Technology, 2002, 18 (2): 281-282.
    [56] Kirkwood D H. Semi-solid processing of high melting point alloys. ibid: 320-325.
    [57] Jiang J F, Luo S J, Zou J X. Preparation of AZ91D magnesium alloy semi-solid billet by new strain induced melt activated method. Transactions of Nonferrous Metals Society of China, 2006, 16 (5): 1080-1085.
    [58] Young K P, Kyonka C P, Courtois J A. Fine grained metal composition, 1983.
    [59] Fan Z. Semisolid metal processing. Int Mater Rev, 2002, (47): 49-85.
    [60] Young K P, Kyonka C P, Courtois J A. US Patent, 4,415,374, 1983.
    [61] Atkinson H V. Modelling the semisolid processing of metallic alloys. Progress in Materials Science, 2005, (50): 341-412.
    [62] Wang J G, Lu P, Wang H Y, et al. Effect of predeformation on the semisolid microstructure of Mg-9Al-0.6Zn alloy. Materials letters, 2004, (58): 3852-3856.
    [63] Xia M X, Zheng H X, Yuan S, et al. Recrystallization of preformed AZ91D magnesium alloys in the semisolid state. Materials and Design. 2005, (26): 343-349.
    [64] 刘昌明,邹茂华,章宗和,等.形变诱导法半固态加热工艺参数对 LY12 合金组织和晶粒尺寸的影响.中国有色金属学报,2002,12 (3):437-440.
    [65] 吉泽升,李庆芬,刘兆晶,等.应变诱发 AZ91D 镁合金半固态组织形态及形成机理.中国有色金属学报,2003,13 (5):1156-1160.
    [66] 姜巨福,彭秋才,单巍巍,等.新 SIMA 法制备 AZ91D 半固态坯.特种铸造及有色合金,2005,25 (12):740-743.
    [67] 王武孝,蒋百灵,袁森,等.AZ91D 镁合金的压缩形变组织及半固态等温组织演变.金属热处理,2005,30 (7):21-25.
    [68] Hall K. Detailed processing and cost considerations for new-rheocastingof light metal alloys, In: Proc. 6th Inter. Conf. On Semi-solid Processingof Alloys and Composites, Torino Italy, 2000, (9): 23-28.
    [69] 徐骏,田战峰,曾怡丹,等.铝合金半固态加工技术的应用研究.特种铸造及有色合金,2007,27 (8):603-607.
    [70] Easton M A, Kaufmann H, Fragner W. The effect of chemical grain refinement and low superheat pouring on the structure of NRC castings of aluminium alloy Al-7Si-0.4Mg. Materials Science and Engineering A, 2006, (420): 135-143.
    [71] Ward P J, Atkinson H V, Anderson P R G, et al. Semisolid processing of novel MMCs based on hypereutectic aluminum-silicon alloys. Acta Mater., 1996, 44 (5): 1717-1727.
    [72] Yu F X, Cui J Z, Ranganathan S, et al. Fundamental differences between spray forming and other semisolid processes. Materials Science and Engineering A, 2001, 304-306: 621-626.
    [73] Hogg S C, Atkinson H V, Kapranos. Semisolid rapid compression testing of spray-formed hypereutectic Al-Si alloys. Metallurgical and Materials Transactions, 2004, 35 A: 899-910.
    [74] 管仁国,邢振环,王超,等.新型倾斜板技术制备半固态铝合金坯料和浆料.特种铸造及有色合金,2007,27 (1):31-34.
    [75] Young K P, Clyne T W. A powder mixing and preheating route to slurry production for semisolid diecasting. Powder Metall., 1986, 29 (3): 195-199.
    [76] 张早明,弭光宝,薛克敏.半固态坯料制备工艺的研究进展.铸造,2006,55 (7):673-677.
    [77] Kiuchi M, Sugiyama S. A new process to manufacture semi-solid alloys. ISIJ International, 1995, 35 (6): 790-797.
    [78] 管仁国,温景林,刘相华.SCR 技术 LY11 半固态材料组织与触变性能研究. 航空材料学报,2002,3:31-35.
    [79] 张广安,罗守靖,霍文灿,等.液态异步轧挤制备半固态坯机理.哈尔滨工业大学学报,2000,32 (5):68-72.
    [80] Haga T, Kapanos P. Thixoforming of laminate made from semisolid cast strips. J. of Mater. Proc. Tech., 2004, 157-158: 508-512.
    [81] 管仁国,李俊鹏,石路,等.倾斜式冷却剪切流变制备半固态 Al-Mg 合金. 东北大学学报(自然科学版),2005,26 (5):448-451.
    [82] 蔡卫华,杨湘杰,郭洪民,等.斜管法流变制浆设备工艺参数的研究.南昌大学学报(工科版),2003,25 (3):13-16.
    [83] Liu D, Cui J Z, Xia Kenong, et al. Non-dendritic structural 7075 aluminum alloy by liquidus cast and its semisolid compression behavior. Trans. Nonferrous Met. Soc. China, 2000, 10 (2): 192-195.
    [84] 周尧和,胡壮麒,介万奇.凝固技术.北京:冶金工业出版社,1983,136-140.
    [85] 朱成才,张鹏,杜云慧,等.半固态金属成形技术的研究及应用.热加工工艺,2006,35 (13):81-86.
    [86] 李元东,郝远,陈体军.镁合金半固态成形的现状及发展前景.特种铸造及有色合金,2001,(2):77-78.
    [87] Gebelin J C, Suery M, Favier D. Characterization of the rheological behaviour in the semi-solid state of grain-refined AZ91D magnesium alloys. Materials Science and Engineering A, 1999, (272): 134-144.
    [88] Cheng J, Apelian D, Doherty R D. Processing structure characterization of rheocast IN 100 superalloy. Metallurgical Transactions A, 1986, 17: 2049-2062.
    [89] Matsumity T, Fleming M C. Modeling of continuous strip prodution by rheocast. Metallurgical Transactions B, 1981, 12: 17-30.
    [90] Pinsky D A, Charreyron P O, Fleming M C. Compression of semi-solid dendritic Sn-Pb alloy at low strain rates. Metallurgical Transactions B, 1984, 15: 173-181.
    [91] 岗野忍. 半凝固加工ズロ·ス研究开发を终了して. 钢铁界, 1994, 44 (12): 44-50.
    [92] Kang C G, Seo P K, Park K J. Semi-solid die casting for automotive applications: Die design, filling characteristics and mechanical properties. In: Tsutsui Y, Kiuchi M and Ichikawa K. Proc. of the 7th Int. Conf. on Semi-solid Processing of Alloys and Composites, Tsukuba, Japan, Sept 25th~27th, 2002, National Institute of Advanced Industrial Science and Technology, JapanSociety for Technology of Plasticity: 67-74.
    [93] 任栖锋,石路,路贵民,等.半固态加工技术的进展及我国应对措施.材料与冶金学报,2002,1:15-19.
    [94] Midson S P. The commercial status of semi-solid casting in the USA. In: Kirkwood D H and Kapranos P. Proc of the 4th Int. Conf. on Semi-Solid Procesing of Alloys and Composites, University of Sheffield, England, June 19-21, 1996. UK: Department of Engineering Materials, University of Sheffield, 1996: 251-255.
    [95] 谢建新.材料加工新技术与新工艺.北京:冶金工业出版社,2004,101-106.
    [96] Alumax. Semi-solid forming at Alumax. Light Metal Age, 1994, 8: 32-34.
    [97] 印飞,王亦新,洪慎章.半固态铸造铝合金材料的研究现状.特种铸造及有色合金,2000,3:44-47.
    [98] Nussbaum A I. Semi-solid forming of aluminum and magnesium. Light Metal Age, 1996, 54 (5-6): 6-22.
    [99] Garat M, Blais S, Pluchon C, et al. Aluminum semi-solid processing: From the billet to the finished part. In: Bhasin A K, Moore J J, Young K P and Midson S. Proc of the 5th Int. Conf. on Semi-Solid Procesing of Alloys and Composites, Golden, Colorado, June 23-25, 1998, Colorado School of Mines: 199-213.
    [100] 毛卫民,白月龙,陈军.半固态合金流变铸造的研究进展.特种铸造及有色合金,2004,(2):4-8.
    [101] 崔建忠,路贵民,刘丹,等.半固态浆料制备技术的新进展.哈尔滨工业大学学报,2000,32 (4):110-113.
    [102] 罗守靖,姜巨福,杜之明.半固态金属成形研究的新进展、工业应用及其思考.机械工程学报,2003,39 (11):52-60.
    [103] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002,16-19.
    [104] 徐红霞,张修丽.21 世纪的绿色环保材料—镁合金.上海工程技术大学学报,2007,21 (4):322-325.
    [105] 姚素娟,张英.镁及镁合金的应用与研究.世界有色金属,2005,1:26-30.
    [106] 郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金.铸造技术,2002,23(3):133-136.
    [107] 高仑.镁合金成形技术的开发与应用.轻合金加工技术,2004,32 (3):5-12.
    [108] 杜文博,吴玉锋,左铁镛.镁合金在交通工具中的应用现状.世界有色金属,2006,2:19-21.
    [109] Deker R F. The renaissance in magnesium. Advanced Materials & Process, 1998, 98: 31-33.
    [110] 西蒙兹 G,苏 B.镁在汽车中的应用广阔.中国有色金属,2006,8:24-25.
    [111] 蔡锁岐,崔而信.镁合金汽车车轮重力铸造研究.铸造,2001,5:8-10.
    [112] 刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势.铸造技术,2007,128 (12):1668-1671.
    [113] Froes F H, Eliezer D. The Science, Technology and Application of Magnesium. J Mine Metals and Mater Soc, 1998, 5 (9): 30-34.
    [114] 黄启德.镁合金市场趋势及工业应用前景.金属工业,2000,(1):74-77.
    [115] 张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护.材料保护,2002,35 (4):4-6.
    [116] Ohara H. Magnesium Alloys and Their Application. Journal of Japan Institute of Light Metals, 1998, 48 (8): 422-424.
    [117] 孟树昆,吴秀铭,韩薇,等.发展中的中国镁业.中国有色金属,2006,8:19-21.
    [118] 居之兰,许晓静.ECAP 细化晶粒法的仿真与分析.材料科学与工程学报,2003,4:255-258.
    [119] 吴炳尧.镁合金压铸技术分析.铸造,2000,49 (8):443-448.
    [120] 李元东,郝远,陈体军,等.等温热处理工艺对 AZ91D 镁合金半固态组织演变和成形性的影响.中国有色金属学报,2002,12 (6):1143-1148.
    [121] Decker R. Magnesium composites molded without melting. Modern Metals, 1990, (8): 10-22.
    [122] Cole G, Michigan D. In:SmithD Sed.Can Magnesium Achieve Its Potential For Large Volume Usagein Automotive Components. Magnesium-the Lightweight Solution-Automotive Sourcing Specia Report, London :Automotive Sourcing UKLtd, 1998.18.
    [123] 唐靖林,曾大本.镁合金触变注射成形技术的现状和发展.中国铸造装备与技术,2000,(6):3-5.
    [124] Nussbaum A I. Semi-solid forming of aluminum and magnesium. Light Metal Age, 1996, 54 (6): 6-22.
    [125] Walukas D M, LeBeau S E, Prewitt N D, et al. Thixomolding technology opportunities and practical uses. Ibid: 109-114.
    [126] 谢水生,潘洪平,丁志勇.半固态金属加工技术研究现状与应用.塑性工程学报,2002,9 (2):1-11.
    [127] Czerwinski F, Zielinska-Lipiec A, Pinet P J, et al. Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy. Acta Mater., 2001, 49: 1225-1235.
    [128] Polmear I J. Magnesium alloys and applications. Materials Science & Technology, 1994, 10 (1): 1-16.
    [129] 刘正,王中光,王越,等.压铸镁合金在汽车工业中的应用和发展趋势.特种铸造及有色合金,1999,(5):55-58.
    [130] 刘金海,李国禄,刘根生.镁合金成形工艺及应用研究进展.轻合金加工技术,2001,29 (8):1-4.
    [131] Tzimas E, Zavaliangos A. Materials selection for semisolid processing,Materials and Manufacturing Processes, 1999 (14): 1-14.
    [132] 郝凤昌,管仁国,译.半固态加工合金成分的选择.国外金属加工,2001,(1):1-4.
    [133] Liu Y Q, Fan Z. Magnesium alloy selections for semisolid metal processing. Proceedings 7th International Conference on Semisolid Processing of Alloys and Composites, 2002, 587-592.
    [134] Song G L, Atrens A. Corrosion mechanism of magnesium alloys. Adv. Eng. Mater., 1999, 1 (1): 11-33.
    [135] Tunold R, Holtan H, Berge M H, et al. The corrosion of magnesium in aqueous solution containing chloride ions. Corrosion Science, 1977, 17 (4): 353-365.
    [136] 黄光胜,范永革,汤爱涛,等.镁及镁合金腐蚀最新研究进展.材料导报,2002,16 (4):38-40.
    [137] Makar G L, Kruger J, Sieradzki K. Stress cossosion cracking of rapidly solidified magnesium-aluminum alloys. Corrosion Science, 1993, 34 (8):1311-1323.
    [138] 刘正,李艳春,王中光,等.载荷频率和热处理对压铸镁合金 AZ91HP 疲劳裂纹扩展速率的影响.航空材料学报,2000,20 (1):7-11.
    [139] Makar G L, Kruger J. Corrosion of magnesium. International Materials Reviews, 1993, 38 (3): 138-153.
    [140] 周婉秋,单大勇,曾荣昌,等.镁合金的腐蚀行为与表面防护方法.材料保护,2002,35 (7):1-3.
    [141] 吴振宁,李培杰,刘树勋,等.镁合金腐蚀问题研究现状.铸造,2001,50 (10):583-586.
    [142] 樊昱,吴国华,高洪涛,等.镁合金腐蚀的研究现状及发展趋势.铸造技术,2004,25 (12):941-944.
    [143] 王金国.应变诱发法镁合金 AZ91D 半固态组织演变机制.吉林大学博士学位论文,2005,12:60-61.
    [144] 姚亮宇,袁森,等.SIMA 法处理 AZ91D 镁合金压缩形变及半固态等温组织的特征.中国有色金属学报,2004,14 (4):660-664.
    [145] 毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994,14-16.
    [146] 潘金生,仝健民,田民波.材料科学基础,北京:清华大学出版社,1998,521-522.
    [147] Doherty R D, Lee H I, Feest E A. Microstructure of stir-cast metals. Materials Science and Engineering, 1984, 65: 181-189.
    [148] 胡汉起.金属凝固原理.北京:机械工业出版社,2007,59-60.
    [149] 冯端.金属物理学第二卷相变.北京:科学出版社,1990,166-167.
    [150] 苏华钦,朱鸣芳,高志强. 半固态铸造的现状及发展前景. 特种铸造及有色合金,2002 年压铸专刊,239-244.
    [151] 张发云,揭小平,闫洪,等.SIMA 处理工艺参数对 AZ61 镁合金组织和性能的影响.南昌大学学报(理科版),2005,29 (5):489-492.
    [152] Wang J G, Lu P, Wang H Y, et al. Semisolid microstructure evolution of the predeformed AZ91D alloy during heat treatment. Journal of Alloys and Compounds, 2005, (395): 108-112.
    [153] 翟秋亚,袁森,蒋百灵.AZ91 镁合金的 SIMA 法半固态组织特征.中国有色金属学报,2005,15 (1):123-128.
    [154] 苏玉芹.金属塑性变形原理.北京:冶金工业出版社,1995,188-195.
    [155] Jung H K, Kang C G, Moon Y H. Induction heating of semisolid billet and control of globular microstructure to prevent coarsening phenomena, J Mater Eng Perform, 2000, (9): 12-23.
    [156] 罗守靖.半固态成形技术讲座.机械工人(热加工),2004,(3):70-72.
    [157] American Society of Metal. Binary alloy phase diagrams. 1990, 81.
    [158] 杨明波,潘复生,李忠盛,等.Mg-Al 系耐热镁合金中的合金元素及其作用.材料导报,2005,19(4):46-49.
    [159] 陆树荪,顾开道,郑来苏.有色铸造合金及熔炼.北京:国防工业出版社,1983,72-74.
    [160] Araki T, Kayuta T, Kamado S, et al. Semi-solid forming of magnesium alloys with high Al and Zn contents. Journal of Japan institute of light metals, 2001, 51 (11): 608-613.
    [161] 素形材センタ—編.素形材の組織.日刊工業新聞社,昭和 63 年,109-110.
    [162] 潘复生,韩恩厚,等.高性能变形镁合金及加工技术.北京:科学出版社,2007.
    [163] Zozulin A J. Anodized coating for magnesium alloys. Metal Finishing, 1994, 92 (3): 39-44.
    [164] 张汉茹,郝远.AZ91D镁合金在含Cl-溶液中腐蚀机理的研究.铸造设备研究,2007,3:19-23.
    [165] Nan Z Y, Ishihara S, Goshima T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution. International Journal of Fatigue, 2008, 30: 1181-1188.
    [166] 宋雨来,刘耀辉,朱先勇,等.压铸镁合金腐蚀行为研究进展.铸造,2007,56 (1):36-40.
    [167] 张汉茹,郝远.AZ91D镁合金在含Cl-溶液中腐蚀机理的研究.铸造设备研究,2007,3:19-23.
    [168] 徐卫军,马颖,陈体军,等.触变成形 AZ91D 镁合金在 NaCl 水溶液中腐蚀特征.热加工工艺,2007,36 (12):22-25.
    [169] 余刚,刘跃龙,李瑛,等.Mg 合金的腐蚀与防护.中国有色金属学报,2002,12 (6):1087-1098.
    [170] Lunder O, Lein J E, Aune T K, et al. Corrosion, 1989, 45 (9): 741-748.
    [171] Mathieu S, Rapin C, Steinmetz J, et al. Corrosion study of the main constituent phases of AZ91 magnesium alloys. Corrosion Science, 2003, 45: 2741-2755.
    [172] 徐卫军,吕维玲,郝远,等.触变成形 AZ91D 镁合金腐蚀过程中表面合金元素浓度变化分析.热加工工艺,2006,35 (8):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700