斜坡法制备半固态过共晶铝硅合金组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用传统铸锭冶金工艺制备的过共晶铝硅合金,因其组织中具有粗大多边形初晶硅相,导致对基体组织的割裂及多边形硅相尖角结构形成应力集中点,使合金的力学性能较低,无法发挥其低膨胀和高耐磨的性能潜力,限制了其应用。半固态成形技术通过半固态制坯和挤压成形工艺,可以细化初晶硅相,并使多边形的初晶硅相尖角球形化,可以达到提高合金性能的目的。为此,本文针对斜坡冷却工艺制备半固态坯锭及对合金组织与性能的影响开展了研究工作。
     本文设计了一种斜坡冷却装置,系统地研究了斜坡冷却工艺对铝硅半固态坯锭组织的影响,确定了适于铝合金半固态制坯的斜坡冷却工艺参数;利用合金强化原理设计了一种过共晶铝硅合金,研究了变质处理、二次加热、流变和触变成形工艺与合金组织与性能关系,并对合金进行了热处理。
     研究表明,影响半固态坯锭组织的斜坡冷却装置主要工艺参数是倾斜板长度、倾斜角,合适的浇注温度与斜坡冷却装置工艺参数的合理匹配是获得理想半固态组织的关键。合适的半固态坯锭制备工艺参数为:倾斜板长度650mm、倾斜板斜坡倾角45°;合金浇注温度600℃-625℃;对于Φ10 mm×15mm圆柱形试样的合适二次加热参数为:二次加热温度585℃、保温时间20-30min。实验尺寸加大后,二次加热温度和保温时间应适当提高或延长。挤压参数:挤压头挤压行程:125mm;充型速度:2mm/s;保压时间:60s;模具加热温度:500℃,半固态成形态抗拉强度227.04MPa、硬度121HB、伸长率1.78%。热处理之后抗拉强度达到了264.35MPa,比铸态提高了123.3%。
     实验结果表明:该合金经斜坡法半固态制坯后,α-Al基体球化、均匀化;在半固态成形后,粗大的针片状共晶硅消失,尖角钝化、圆整化,形成近粒状或短棒状相,大块初晶硅被破碎或消除。在热处理工艺后,共晶硅形态和尺寸显著变化,更加圆整、细小,均匀。
The traditional process of the preparation of bubble metallurgy of hypereutectic al-si alloy ,because of its organization with bulky polygons in primary crystal silicons, lead to base structure of separate and polygon silicon phase structure form stress midpoint pointed horn, make the mechanical properties of the alloy low, cannot play its low inflation and high wear-resisting performance potential in order to limit its application. Semi-solid forming technology through semi-solid blocking and extrusion forming technology, primary crystal silicons can be refined, And primary crystal silicons polygon pointed horn of spherical, can achieve the purpose of improving alloy performance.In this project, slope cooling process preparation semi-solid casting pieces on microstructure and properties and the influence of the research work carried out.
     This subject introduces a design slope cooling device system, the slope cooling process half-and-half solid billet pieces of the influence of the organization. make sure the suitable for semi-solid aluminum alloy cooling process parameters of blocking slope Using alloy strengthening principle designed a kind of hypereutectic al-si alloy, the bad treatment secondary heating rheological and touch into shape technology and alloy organization and performance relationship, and make the heat treatment of alloy.
     The project by Extensive Experimental Studies, get process parameters Eventually include: The optimal semisolid alloy blank parameters: Tilt board length: 650 mm;Tilt board slope Angle: 45°Tilt board pouring temperature: 600℃-625℃; The optimal parameters of reheating:Φ10mm×15mmcylindrical specimens: Heat preservation temperature: 585℃; Holding time: 20-30 min,Φ80×70mm billet pounds Heat preservation temperature: 595℃; Holding time:120min; Extrusion parameters: Extrusion head extrusion trip: 125 mm; The filling speed: 2mm/s; The holding time:60s; Mould heating temperature: 500,semi-solid forming tensile strength reach 227.04MPa,rigidity HB121,elongation 1.78%,after heat treatment tensile strength reached 264.35MPa,than as-cast improved 123.3%.
     Experiment results show: the semi-solid blocking alloy by slope method,α-Al Matrix spheroidizing and homogenization; after semi-solid forming, eutectic silicon phase with Bulky needle flake disappeared, Sharp-angled passivation and roundness , formation of granular or short clavite phase, huge primary silicon phase being broken and eliminated. After heat treatment,shape and size of eutectic silicon phase change prominently, become more roundness,wee,uniformity.
引文
[1]赵鸿.铝在汽车上的应用.汽车工艺与材料,1997,(01):20~25.
    [2]绉裕厚.过共晶铝硅活塞合金的研制与生产.特种铸造及有色合金,1990,(5):23~27.
    [3]彭晓东,刘江.轻合金在汽车工业中的应用.汽车工艺与材料, 1999,(01):1~5.
    [4]朴东学,齐笑冰,等.汽车轻量化用金属材料的现状与发展.水利电力机械,1999,(6):38~40.
    [5]燕战秋,华润兰.论汽车轻量化.汽车工程.1994,16(6):375~383.
    [6]蔡宗德等.过共晶铝硅合金的生产及其应用.特种铸造及有色合金,1990(4):37~39.
    [7]绉裕厚.过共晶铝硅活塞合金的研制与生产.特种铸造及有色合金,1990(5):23~27.
    [8]赵树国.铝硅铁合金半固态成形技术的研究.沈阳工业大学, 2009.
    [9]罗守靖,田文彤,李金平.21世纪最具发展前景的近净成形技术-半固态加工.中国压铸、挤压铸造、半固态加工学术年会,武汉:特种铸造及有色合金杂志社,2001,175~180.
    [10]毛卫民.半固态金属成形技术.北京:机械工业出版社,2004.
    [11]谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999.
    [12] Quaak C J, Horsten M G, Kool W H. Rheological behavior of partially solidified aluminum matrix composites . Materials Science Engineering, 1994, 183A: 247~256.
    [13]管仁国,马伟民等.金属半固态成形理论与技术.北京:冶金工业出版社,2005.
    [14]罗守靖,姜巨福,杜之明.半固态合金成形研究的新进展,工业应用及其思考.机械工程学报,2003,39(11):52~60.
    [15]康永林,毛卫民,胡壮麒编著.金属材料半固态加工理论.北京:科学出版社,2004.
    [16]管仁国等.倾斜式冷却剪切工艺条件对半固态合金组织的影响.特种铸造及有色合金,2005,25(10):32~35.
    [17]管仁国,李俊鹏,石路等.倾斜式冷却剪切制备半固态Al-Mg合金.东北大学学报,2005.
    [18]任栖锋.Y112铝合金半固态成形组织及性能研究.沈阳:东北大学,2003.
    [19]张景新,张奎,刘国钧,徐骏,石力开.电磁搅拌制备半固态材料非枝晶组织的形成机制,中国有色金属学报,2000,10(4):151~155.
    [20]彭著刚,张家涛,樊刚等.温电磁搅拌对半固态Al-25%Si合金组织的影响,昆明理工大学学报,2006,31(1):19~22.
    [21]许珞平,邵光杰,任忠鸣等.电磁搅拌作用下非枝晶合金组织演变过程的数学描述.中国有色金属学报, 2002,(2):52~55.
    [22]甄子胜,赵爱民,毛卫民等.喷射沉积高硅铝合金显微组织及形成机理,中国有色金属学报,2000,10(6):815-818.
    [23]刘政,赵素,雷蕾.金属半固态加工技术的应用与进展.上海有色金属, 2005,(02):79~85.
    [24]郭洪民,杨湘杰.固态流变成形中浆料制备的基本思路,铸造,2006,55(8):794~798.
    [25]张景新.金属半固态加工中的组织及其演变.北京;北京有色金属研究总院, 2000.
    [26]肖黎明,张励忠,张密兰等.半固态挤压铸造工艺参数对制件性能的影响.热加工工艺(铸锻版), 2006,(01):40~43.
    [27] Flemings M C, Riek R G, Young K P. Rheocasting process, AFS International Cast MetalsJournal,1976, 1(3): 11~22.
    [28] Flemings M C, Riek R G, Young K P. Rheocasting, Mater. Sci. Eng, 1976, 25:103~117.
    [29] Flemings M C, Mehrabian R. Casting semi-solid metals, AFS Trans, 1973, 81:81~88.
    [30]晁建兵,彭晓春.半固态铸造技术研究的进展.现代机械, 2004,(05):73~80.
    [31] Wang N N, Peng H, Wang K K, et al. Method and apparatus for injection molding of semi-solid metals,US Patent 5501266, 1996.
    [32] Ji S, Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a twin-screw rheomolding process , Materials Science and Engineering, 2001, (9): 210-217.
    [33] Ji S, Fan Z. Solidification behavior of Sn-15wt%Pb alloys under a high shear rate and highintensity of turbulence during semisolid processing, Metallurgical Materials Transactions, 2002, 33A:3511-3520.
    [34] Kaufmann H, Wabusseg H, Uggowitzer P J. Metallurgical and processing aspects of the NRC semi-solid casting technology, Aluminum, 2000, (76): 70~75.
    [35] Kaufmann H, Mundi A, Uggowitzer P J, et al. An update on the new rheocasting development work for Al-Mg alloys, Die Casting Engineer, 2002, (4): 16~19.
    [36]姚亮宇,袁森,王武孝等.SIMA法处理AZ91D镁合金压缩形变及半固态等温组织的特征.中国有色金属学报, 2004,(04):660~664.
    [37]杨燕,黄卫东.一个国际产、学、研结合的范例美国伍斯特工学院金属研究所.铸造技术,2004,25(5):397~398.
    [38] Yurko J A, Martinez R A, Flemings M C. Development of the semi-solid rheocasting(SSR) process,In: Tsutsui Y, Kiuchi M, Ichikawa K, Proc of the 7th Int Conf on Semi-solid Processing of Alloys and Composites, Tsukuba, Japan, 2002, 659~664.
    [39] Frederick P S, Bradley N L, Erichson S C. Injection molding magnesium alloys, Advance Materials & Processes, 1988, 134(4): 53~56.
    [40] Hao H, Zhang X G, Park J P, et al. Twin-strand technology and microstructure analysis for the electromagnetic near net-shape casting of aluminum alloy, Journal of Materials Processing Technology, 2003, 142: 526~531.
    [41]向东霞,曹建勇,王军.镁合金配件在汽车、摩托车上的应用.汽车工艺与材料,2002,(9):41~43.
    [42]王海东,徐骏,张志峰等.新型半固态铝合金设计与优化选择研究.铸造,2006,55(7): 686~688.
    [43]张志峰,田战峰,杨必成等.汽车用铝合金半固态零件触变压铸工艺研究,有色合金及特种铸造工艺,2005,26(9):770~773.
    [44] Luo S J, Tian W T. Structure evolution of LC4 alloy in making thixothropic billet by SIMA method.Trans[J]. Nonferrous Met, Soc. China, 2001,11 (8): 547~550.
    [45]陈世平.汽车轻量化及其材料.汽车工艺与材料, 1995,(04):1~4.
    [46] Haga T, Kapranos P, Simple Rheocasting processes, Journal of Materials Processing Technology,2002,130:594-598.
    [47] Das A, Fan Z. Nondendritic structural evolution in stirred Sn-15wt%Pb alloy melts. In: Tsutsui Y,Kiuchi M, Ichikawa K. Proc of 7th Int. Conf on Semisolid Processing of Alloys and Composites,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, 2002,156: 449~454.
    [48] Fan Z, Bevis M J. Semisolid processing of engineering alloys by a twin-screw rheomouldingprocess, Materials Science and Engineering, 2009, A239: 135~141.
    [49]张志峰,徐骏,石力开.新型半固态加工专用铝合金的成分设计.热加工工艺,2005.(8):141~143.
    [50]李炯辉,林德成.金属材料金相图谱.北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700