ZL117合金半固态浆料的稳定性和流变性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半固态流变成形是目前国内外金属半固态成形研究的热点,而半固态浆料的稳定性和流变性研究是流变成型的关键之一。
     本论文研究主要内容为半固态浆料在不同温度、不同时间条件下浆料性质的变化情况,半固态浆料的流变性,半固态浆料的定量保温装置的设计三个方面。
     半固态浆料的保温试验研究证明,在650℃、640℃、630℃、620℃和610℃等温度恒温保温条件下,随着保温时间的延长,半固态浆料的固相分数变化不大;半固态浆料中的固相颗粒的等效直径逐渐增大,在前15分钟增长较慢,15分钟后增大加快,这是因为随着保温时间的增加,初生Si颗粒粒径分布发生变化,小直径的初生Si颗粒的百分比逐渐减小,而大直径的初生Si颗粒的百分比逐渐升高;固相颗粒的形状的圆整度逐渐变差,在前15分钟形状系数增长较慢,15分钟后有一个突然增大然后又变小的过程。在相同的保温时间内,随着保温温度的增加,半固态浆料的固相分数和初生Si颗粒直径逐渐增大,颗粒形状的圆整度变得越来越差,即浆料的半固态质量越来越差。试验结果为半固态浆料的保温参数选择提供了依据。
     半固态浆料的流变性试验表明:连续冷却搅拌时,固相分数越大,合金浆料的瞬态表观粘度越大;增大剪切速率和减小冷却速率均能使合金浆料的瞬态表观粘度降低。等温搅拌时,固相分数越大,开始搅拌时瞬态表观粘度就越大,得到的稳态表观粘度也越大;冷却速度越小,表观粘度越小;合金浆料的稳态表观粘度随搅拌强度的增大有一个变小然后又变大的过程,搅拌强度在14A左右表观粘度最小。根据试验结果,在选择浆料制备和保温工艺参数时,保温温度越高,冷却速度越小,搅拌强度在14A左右时,浆料的流动性越好,充型性能也更佳。
     根据半固态流变成形工业生产需要实现半固态浆料的连续和定量供给的要求,本论文设计了一套保温定量系统,可以实现半固态浆料的储存、保温和粗略定量。
The semi-solid rheocasting is a hot research subject in the domestic and international academe presently, and the research on the semi-solid slurry's stability and rheological property is crucial for the semi-solid rheocasting.The main content of this thesis involves three aspects: first, researching the microstructure changes of the semi-solid slurry hold in different temperatures for different time;second, researching the changes of the rheological property of the semi-solid slurry;third, designing an equipment for isothermal holding and rationing for semi-solid slurry.The results of the semi-solid slurry isothermal holding experiment show that only in the condition of 650℃、 640℃、 630℃ 、 620℃ or 610℃ isothermal holding, with the increasing of isothermal holding time, the volume fraction of the solid phase keep steady in the main, but the average equivalent diameter of primary silicon particles increases obviously, the increase speed is lower before 15 minutes, and faster after 15 minutes. The main reason of the change in the equivalent diameter of primary silicon particles is that the percentage of the smallness diameter primary silicon particles diminishes gradually, and the percentage of the big diameter primary silicon particles increases gradually. At the same time, the shape coefficient of the primary silicon particles increases slowly before 15 minutes, then enlarges suddenly and diminishes after the 15 minutes.With the isothermal holding temperature increasing, the volume fraction of solid phase and the equivalent diameter of primary silicon particles in the semi-solid slurry increase gradually, the shape coefficient of the primary silicon particles becomes larger, in other words, the quality of the semi-solid slurry turns worse. The results of the experiment have provided the basis for choosing the isothermal holding to the semi-solid slurry.The experiment which tested the semi-solid slurry's rheological property shows
    that in the condition of continuous cooling, the instant apparent viscosity will increase when the solid phase fraction of the semi-solid slurry increases. Increasing the intensity of the stirring and diminishing cooling rate can reduce the instant apparent viscosity of the ZL117 alloys. In the condition of isothermal stirring up, as the solid phase fraction becoming high, the instant apparent viscosity will become high when the stirring begin, and the result is that steady apparent viscosity also becomes high finally. As the cooling rate becomes low, the steady apparent viscosity becomes low;and as the intensity of the stirring increasing, the steady apparent viscosity has a change process that first becomes low and then becomes high. When the intensity of the stirring approaches to 14A, the steady apparent viscosity is the least value. According to the experiment results, when choosing the semi-solid slurry's preparation and isothermal holding, the isothermal holding temperature should choose the high parameter, the cooling rate should choose the low parameter, and the intensity of the stirring parameter should be near to 14A. In this parameters, the fluidity and the forming ability of the semi-solid slurry is best.Basing on the need of rationing the semi-solid slurry continues for industrialization of the recasting, a suit of isothermal holding and rationing system has been designed, this system can realize the function of depositing, isothermal holding and rationing clankingly.
引文
[1] M. C. Flemings, Metal.Trans, 1991, (22A): 975
    [2] D. H. Kirkwood and P. Kapranos, Casting Technology, 1989, 16
    [3] D. B. Spencer, R. Mehrabian and M. C. Flemings. Metal. Trans. 1972, 3
    [4] Stuart B.Brown and Merton C. Flemings. Adv. Mater. & process. 1993, 1
    [5] 谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999
    [6] 谢水生,潘洪平,丁志勇.半固态金属加工技术研究现状与应用.塑性工程学报,2002,9(2)
    [7] 毛卫民,白月龙.半固态合金流变铸造的研究进展.特种铸造及有色合金,2004,2:4~8
    [8] 唐靖林,曾大本.半固态流变技术的发展和应用现状.兵器材料科学与工程,1998,21(3):56~58
    [9] Wang Kuo K., Peng suan H., Wang nan, etal. Method and apparatus for injection molding of semi-solid metals. US Patent, 5501266, 1996
    [10] 范仲云,Bevis M.J.,季守循.生产半固态合金浆液以及成形部件的方法与设备.中国专利:00816228.Ⅹ,2000
    [11] Ji. S., Fan. Z., Bevis M. J., Semi-solid processing of engineering alloys by a twin-screw rheomolding process. Materials Science and Engineering, 2001, (A299): 210~217
    [12] 罗吉荣,吴树森,宋象军等.半固态合金浆料的制备装置.中国专利:01212744.2,2001
    [13] 康永林,安林,孙建林.转筒式半固态合金浆料制备与成形设备.中国专利:01109074.Ⅹ,2001
    [14] 毛卫民.球状初晶半固态合金或合金浆料直接成型方法及装置.中国专利:02104349.3,2002
    [15] 冯鹏发,唐靖林,李双寿等.半固态合金流变成形技术的研究现状与发展.铸造,2004,53(12)
    [16] Toshio Haga, Kapranos P., Simple rheocasting processes. Journal of Materials Processing Technology, 2002, 130~131: 594~598
    [17] Masshi uchida. Feature of UBE squeeze process and UNRC process(semi-solid casting).第三届中国国际压铸会议论文集,沈阳:东北大学出版社,2002, 207~219
    [18] 路贵民,董洁,崔建忠等.半固态浆制备新技术—液相线铸造.特种铸造及有色合金,2001,(1):221~223
    [19] 崔建忠.镁合金超低温铸造制取半固态浆方法.中国专利:03133389.3,2003
    [20] Luo Shou-jing, Jiang Ju-fu, Wang Ying, etal. Mechanic sand forming theory of liquid metal forging. Transactions of Nonferrous Metals Society of China, 2003, 13(2): 369~375
    [21] 罗守靖.液相线模锻制备半固态坯料方法.中国专利:01116406.9,2001
    [22] Yurko J. A., Martinez R. A., Flemings M. C.. Commercial development of the semi-solid recasting (SSRTM) process. Metal logical Science and Technology, 2003, 21(1): 10~15
    [23] Flemings M. C., Martinez R. A., Figueredo A. M., etal. Alloy compositions and process. US Patent2002, 0096231, 2002
    [24] 刘政,赵素,雷蕾.金属半固态加工技术的应用与进展.上海有色金属,2005,26(2)
    [25] 晁建兵,彭晓春.半固态铸造技术研究的进展.金属材料及应用,2004(5):73~75
    [26] Flemings M. C., Behavior of metal alloys in the semi-solid state. Metal. Trans, 1991, 22B(6): 269
    [27] 张景新.金属半固态加工中的组织及其演变.北京有色金属研究总院硕士学位论文,2000
    [28] 宋仁伯,康永林,杨雄飞等.电磁搅拌的半固态60Si2Mn的变形特性.材料研究学报,2000,14(6):591
    [29] Charles Vives, Elaboration of semi-solid alloys by means of new elect-magnetic rheocasting processes. Metal. Trans, 1992, 23B(3): 189
    [30] 王武孝,程健杰,蒋百灵等.AZ91D合金SIMA形变组织与共晶熔化激活能的研究.特种铸造及有色合金,2005,25(4):205~207
    [31] 姚亮宇,袁森,王武孝等.SIMA法处理AZ91D镁合金压缩形变及半固态等温组织的特征.中国有色金属学报,2004,14(4):660~664
    [32] 杨为佑,陈振华,吴艳军等.半固态非枝晶组织合金的制备技术.合金与热处理,2001,24(1)
    [33] 陈祥,李言祥.金属泡沫材料的研究进展.材料导报,2003,17(5):5-9
    [34] 刘丹.铝合金液相线制造制浆及半固态加工工艺及理论研究.沈阳:东北大学博士论文,1999
    [35] Brows S. B., Flemings M. C.. Net-shape Forming via Semi-Solid Processing. Advanced Materials & Processes, 1993(1), 136
    [36] Manabu kiuchi and Sumio sugiyama. A new process to manufacture semi-solid alloys, ISIJ International, 1995, 35(6): 790-797
    [37] Hirt G., Zillgen M., Cremer T., Recent Advances in Thixoforming to Produce Near Net Shape Components.首届中国国际压铸会议论文集,北京:1997,259
    [38] D. B. Spencer, R. Mehrabian, M. C. Flemings. Metall. Trans, 1972, 3: 1925~1932
    [39] S. B. Brown and M. C. Flemings. Adv. Mater. Process, 1993, 143: 36~40
    [40] Lehuy H., Masouave J., Blain J.. Rheological behavior and microstructure of casting Zn-Al alloy. Mater. Sci., 1985, 20: 105
    [41] D. H. Kirkwood, P. Kapranos(eels.). Proc. 4th Int. Conf. on 'Semisolid processing of alloys and composites', Sheffield, UK, June, 1996, the University of Sheffield
    [42] 李涛,黄卫东,林鑫.中国有色金属学报,2000,10:635~639
    [43] 赵学瑞,廖其奠.粘性流体力学.北京:机械工业出版社,1981
    [44] 陈惠钊.粘度测量.北京:中国计量出版社,1994
    [45] Loue. W. R., Suery M., Querbes J. L.. Microstructure and theology of partially remehed Al-Si alloys. Proc. 2nd. Int. Conf. Proc. Semi-Solid Alloys Compos., 1993: 266~275
    [46] Chen xiaoyang, Mao weimin, Zhong xueyou. Rheologicl properties of semisolid Al-Si alloy in solid-liquid zone. Transaction of Nonferrous Metals Society of China (English Edition), 1997, 7(4): 30~33
    [47] 甄子胜,毛卫民,赵爱民等.半固态镁合金的研究进展.特种铸造及有色合金,2001(6):32~33
    [48] Yang C. C., Farm T. C., Peng H.. Investigation of rheology of magnesium semi-solid materials by using a slit rheometer. Materials Science, 2003, 419-422 (2): 623~628
    [49] P. A. Joly, R. Mehrahian. Mater. Sci., 1976, 11: 1393~1418
    [50] R. A. Mclell and G.Henderson, H. V. Atkinson, H. Kirkwood. Mater. Sci., 118
    [51] L. S. Tumg, K. K. Wang, Mater. Sei., 1991, 26: 2173~2183
    [52] Ghosh D., Fan. R., VanSchih C., Thixotropic Properties of Semi-solid Magnesium Alloys AZ91D and AM50. Recent Development in Light Metals, Toronto, Canada, 1994: 377~386
    [53] Sannes S., qestland H., Amberg L.. Thixotropic Magnesium Alloys. Proceedings of the 2nd International Conference on the Processing of Semi-solid Alloys and Composites, Cambridge: MA, USA, 1993: 76~85
    [54] 王云华,高志强,朱鸣芳等.半固态Al—10%Cu合金流变行为.安徽工学院学报,1997,16(3):8~12
    [55] 朱鸣芳,高志强,苏华钦.半固态ZAl2合金的瞬态流变性能.金属学报,1999,35(10):13~15
    [56] 唐靖林,殷雅俊,范钦珊等.液固温区A356合金瞬态流变行为的研究.机械工程学报,2002,38(5):114~117
    [57] J. F. Seconde and M. Suery. Mater. Sci., 1984, 19: 3995~4006
    [58] S. Annavarapu and R. D. Doherty. Adv. Metal. Mater., 1995, 43: 3207~3230
    [59] S. Sannes, H. Gjestl and I. Amberg. Proc. 3rd. Int. Conf. on 'Semisolid processing of alloys and composites', University of Tokyo, Japan, June, 1994, Tokyo, Institute of Industrial Science, 75-84
    [60] I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 1961, 19: 35~50
    [61] C. Wagner, Z. Elektrochem. Adv. Metal. Mater., 1961, 65: 581~591
    [62] W. R. Loue and M. Suery, Mater. Sci. Eng., 1995, A203: 1~13
    [63] I. Salvo, M. Suery, D. E. Charentenay, and W. Loue, Proc. 4th. Int. Conf. on 'Semisolid processing of alloys and composites', Sheffield, UK, June, 1996, The University of Sheffield
    [64] T. W. Hong, S. K. Kim, H. S. Ha, etal, Mater. Sci. Technology, 2000, 16: 887~892.
    [65] 赵爱民,毛卫民,康永林等.钢铁半固态流变浆料制备与输送装置的研制.铸造设备研究,2003,2:1~4
    [66] 胡斌,郭洪民,杨湘杰.转动输送管制备半固态ZL101合金浆料.特种铸造及有色合金,2005,25f2):102~104
    [67] 谭建波,李迅,李立波等.半固态流变成形的技术关键与对策.铸造设备与研究,2004,3:1~4
    [68] 木内学,杉山澄雄,靳井藤男.塑性加工,1996,37(11):1219
    [69] 蒋鹏,贺小毛,张秀峰.半固态成形技术的研究概况与发展前景.热加工工艺,1991,1,
    [70] 朱鸣芳,苏华钦.颗粒组织的形成及枝晶形态的演变.东南大学学报.1996,26(2):1~6
    [71] 蔡宗德,张连芳,孙建荣.过共晶铝硅合金的生产及应用.特种铸造及有色合金,1990,4:37~42
    [72] 毛卫民、李树索等.过共晶铝硅合金等温搅拌的研究.北京科技大学学报,1998,20(4):336~339
    [73] 毛卫民,李树索.电磁搅拌Al-24%Si合金的显微组织.中国有色金属学报,2001,11(5):819~823
    [74] 赖华清,范宏训,徐祥.过共晶铝硅合金的研究及应用.汽车工艺与材料,2001,10:21~24
    [75] 李树索.半固态过共品Al-Si合金组织与性能研究.北京科技大学博士学位论文,2002
    [76] 毛卫民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生Si分布的影响.金属学报,2001,37(7):75~79
    [77] 毛卫民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响.材料科学与工艺,2001,9(2):781~784
    [78] 吴树森,涂小林,吴广忠.冷却速度对过共晶Al-Si合金的初晶Si微细化的影响[J].材料科学与工艺,2001,9(2):141~145
    [79] 万刚,武保林,王洪顺等.电流处理对Al-Si合金定向凝固组织的影响.铸造,2004,53(12):1001~1004
    [80] Kiyoshi chikawa, Satoshi shizuka. Improvement of microstructure in Hypereutectic Al-Si Alloys Rheocasting. The Japan Institute of Metals., 1987, 28(5): 434~442
    [81] Smith D. M.. Crystallization of a Faced Primary Phase in a Stirred Slurry. Metal. Trans. 1991, 22A: 575~585
    [82] Ryoo Y. H., Kim D. H., Microstructure Characteristics of Semi-solid State Processed Hypereutectic Al-Si Alloys. 4th ICSSPAC Trans. University of Sheffield, 1996, 6: 66~70
    [83] Diewwaniti, M. C. Flemings. Semi-solid Forming of Hyper-eutectic Al-Si Alloys. 4th ICSSPAC Trans., University of Sheffield, 1996, 6: 30~34
    [84] 李美霞.半固态过共晶铝硅合金流变性能及组织研究.北京科技大学硕士论文,2003
    [85] 张先念,张恒华等.半固态金属流变仪的研制.特种铸造及有色合金,2005,8(25):507~510
    [86] 管桂生.半固态过共晶铝硅合金浆料制备工艺研究.昆明理工大学硕士论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700