MB15-RE镁合金半固态等温组织演变及流变性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MB15-RE属于高强度镁合金,在航天领域有着广泛应用。目前,镁合金的成形方法有压铸、锻造和挤压等。然而,压铸方法不能保证结构件的力学性能要求;锻造、挤压方法不能满足形状复杂结构件的形状要求。半固态金属加工是一种新发展的一次近净成形复杂形状制件技术,其制件力学性能接近锻件,其制件形状复杂程度接近压铸件。半固态金属加工技术的出现为镁合金复杂结构件成形开辟了一条新路。在镁合金半固态成形中,制备半固态镁合金非枝晶组织和获得半固态镁合金触变成形的最佳工艺是关键。基于此,本文研究了三种不同状态MB15-RE镁合金(铸态、等径道角挤压态和液相线模锻态)触变组织的生成及其特征、在高固相率下等温压缩过程中的力学行为和流变特性。
     本文以实验室制备的三种不同状态(铸态、等径道角挤压态和液相线模锻态)MB15-RE镁合金为原材料,采用等温热处理法分别制备了具有半固态非枝晶组织的坯料。借助光学显微镜研究了它们重熔后的组织。结果表明,三种不同状态的MB15-RE镁合金在等温热处理过程中都能形成非枝晶的半固态球状组织;随着加热温度的提高或保温时间的延长,晶粒形状变得更加圆整;与液相线模锻态和铸态MB15-RE镁合金相比,ECAE态镁合金在半固态温度下可获得更细小、更圆整的球状组织。
     通过半固态等温压缩实验,研究了在高固相率下三种不同状态的MB15-RE镁合金在半固态下的力学行为。结果表明,三种不同状态合金的真应力—真应变曲线都具有三个阶段:应力上升阶段、应力下降阶段和应力稳定阶段;三种状态的镁合金的峰值应力随着应变速率的增大而升高,而稳态应力随着应变速率的增大而下降;在相同应变速率下,铸态镁合金的峰值应力和稳态应力都随加热温度的升高而降低;当加热温度、应变速率和保温时间一定时,ECAE态合金的峰值应力和稳态应力分别都比铸态和液相线模锻态的峰值应力和稳态应力低;当加热温度、应变速率一定时,随着保温时间的延长,ECAE态镁合金的峰值应力和稳态应力先下降后上升。
     利用三种不同状态合金在高固相率下的稳态应力和相关公式分别得到了表观粘度随不同参数(固相率、剪切速率、晶粒大小和保温时间)的变化曲线。结果表明,铸态镁合金的表观粘度随着固相率的减小而降低;三种不同状态的镁合金在半固态下的表观粘度随着剪切速率的增大而降低;在固相
MB15-RE, which belongs to high strength magnesium alloy, has been widely used in the field of astronavigation. At present, forming technologies of magnesium alloys include die-casting, forging and extrusion, and so on. However, the mechanical properties of magnesium alloy can’t be satisfied by means of die casting technology. As for forging and extrusion, they can’t satisfy the shape requirement of work piece with complex shape. Semi-solid metal processing is a new net-shape forming technology, in which complex shape close to cast parts and high mechanical properties close to forge piece can be obtained. The arrival of Semi-solid metal forging has established a new way for magnesium alloy work pieces with complex shape. Generally speaking, preparing non-dendritic structure in Semi-solid state and obtaining the best thixotropic process parameters are key factors for Semi-solid metal processing. Based on this, by means of three different kinds MB15-RE magnesium alloy (as-cast,as-ECAEed and as-liquidus forged)prepared by experimental methods, the formation and the character of thixo-structure, mechanical behavior and rheological characteristic of MB15-RE magnesium alloy with high solid fraction have been investigated in this paper.
     In this study, Semi-solid isothermal heat treatment is employed to prepare the non-dendritic structure in Semi-solid state for three different kinds’billets. In addition, with the help of optical microscope, their partial remelting microstructures are also studied. The results demonstrate that non-dendritic structures in Semi-solid state of three different kinds billets have been obtained; the higher the temperature is or the longer the holding time is, the smoother the boundary of grains turn; in comparison with those of as-cast and as-liquidus forged MB15-RE magnesium alloy, as-ECAEed MB15-RE magnesium alloy can get the smaller and the smoother spheroidized structure.
     The experiment of Semi-solid state isothermal compression is employed to investigate the mechanical behavior of three kind’s billets in semi-solid state with high solid fraction. From the results obtained it can be concluded that the true stress-true strain curves of three states are characterized by three stages, those are
引文
1. 陈振华, 严红革, 陈吉华等. 镁合金. 化学工业出版社, 2004: 1~2
    2. 陈振华. 变形镁合金. 化学工业出版社, 2005: 1~6
    3. 毛卫民. 半固态金属成形技术. 机械工业出版社, 2004: 2~6
    4. 康永林, 毛卫民, 胡壮麒. 金属材料半固态加工理论与技术, 2004: 5~6
    5. M. C. Flemings. Behavior of Metal Alloys in the Semi-Solid State. Metall A, 1991, 22A (5): 957~981
    6. 于平, 吴炳尧, 李子全等. 旋转磁场对 ZA27 合金组织的影响. 特种铸造及有色合金, 1997, (4): 1~2
    7. 李子全, 吴炳尧. 旋转磁场作用下 ZA27 合金初生相形貌演变过程及机理. 铸造, 1997, (10): 1~5
    8. C. Vives. Elaboration of Semisolid Alloys by means of New Electromagneti Rheocasting Process. Metal Trans, 1992, 23B(2): 189~206
    9. M. P. Kenny, J. A. Courtois, R. D. Evans, et al. Metals Handbook, 9th .ed ASM International, Metals Park, OH, 1998, 15: 327~338
    10. S. P. Midson. The Commercial Status of Semi-Solid Casting in the USA. In: Kirkwood DH and Kapranos P. Proc. of the 4th Int. Conf. on Semi-Solid Processing of Alloys and Composites, University of Sheffield. England. 1996: 19~21. UK: Department of Engineering Materials, University of Sheffield. England. 1996: 251~255
    11. K. P. Young, C. P. Kyonka and J. A. Courtois. Fine Grained Metal Composition. US Patent, 4415374, 1983
    12. 闫洪, 张发云, 揭小平等. AZ61 镁合金在形变诱导法中的组织演变. 中国机械工程, 2005, 16(8): 719~722
    13. 姚亮宇, 袁森, 王武孝等. SIMA 法处理 AZ91D 镁合金压缩形变及半固态等温组织的特征. 中国有色金属学报, 2004, 14(4): 660~664
    14. 单巍巍.半固态镁合金组织成分演变及流变特性分析. 兰州理工大学硕士学位论文. 2004: 2~9
    15. 李元东, 郝远, 闫峰云等. AZ91D 镁合金在半固态等温热处理中的组织演变. 中国有色金属学报, 2001, 11(4): 571~575
    16. 杨明波, 代兵, 李晖. 半固态等温处理制备非枝晶组织 YL112 压铸铝合金的研究. 铸造技术, 2004, 8(25): 620~625
    17. 杨光昱, 郝启堂, 介万奇. Mg-5Al-1.5Ca-0.4Zn 基镁合金的等温法半固态压铸组织和性能. 中国有色金属学报, 2005, 15(4): 614~620
    18. J. L. Wang, Y. H. Su and C. Y. A. Tsao. Structure Evolution of Conventional Cast Dendritic and Spray-Cast Non-Dendritic Structures during Isothermal Holding in the Semi-Solid State. Scripta Material, 1997, 37(12): 2003~2007
    19. V. M. Segal, V. I.Reznikov, Drobyshevshi AE, et al. Plasticheskaya Obrabotka Metallov Prostym Sdvigom. Metally, 1981, 1:115
    20. Y. Akihiro, H. Zenji, G. L. Terence. Improving the Mechanical Properties of Magnesium and a Magnesium Alloy Through Severe Plastic Deformation. Materials Science and Engineering A, 2001, 300(1): 142
    21. Y. Iwahashi, Z. Horita, N. Nemoto, et al. An Investigation of Microstructural Evolution during Equal Channel Angular Pressing. Acta Materials, 1997, 45(1): 4733
    22. 魏伟, 陈光. ECAP 等径角挤压变形参数的研究. 兵器材料科学与工程, 2002, 25(6): 61
    23. S. Raghavan. Computer Simulation of the Equal Channel Angular Extrusion (ECAE) Process. Scripta Materiala, 2001, 44(1): 91
    24. K. Nakashima, Z. Horita, M. Nemoto, et al. Influence of Channel Angular on the Development of Ultrafine Grains in Equal-Channel Angular Pressing. Acta Materials, 1998, 46(5): 1589
    25. Y. Iwahashi, Z. Horita, N. Nemoto, et al. The Process of Grain Refinement in Equal-Channel Angular Pressing. Acta Materialia, 1998, 46(9): 3317
    26. Y. Iwahashi, Z.Horita, M. Furukawa, et al. Microstructural Characteristics of Utrafinegrained Aluminum Produced using Equal-Channel Angular Pressing. Metallurgical and Metallurgical and Materials Transactions A, 1997, 28(4): 2245
    27. S. Ferrasse, V. M. Segal, K. T. Hartwig, et al. Microstructure and Properties of Copper and Aluminum Alloy 3033 Heavily Worked by Equal Channel Angular Extrusion. Metallurgical and Materials Transaction A, 1997, 28(4): 1047
    28. 李金山, 曹海涛, 胡锐等. 等径角挤压制备细晶的研究现状. 特种铸造及有色合金, 2004, 3:1
    29. 徐平娇. 等径弯角挤压工艺研究现状. 南方金属, 2003, (3): 9
    30. A. Gholinia, P. B. Prangnell, M. V. Markushev. The Effect on Strain Path on theDevelopment of Deformation Structures in Severely Deformed Aluminum Alloys Processed by EACE. Acta Materialia, 2000, 48(5): 1115~ 1130
    31. W. J. Kim, H. G. Jeong. Mechanical Properties and Texture in ECAP Processed AZ61 Mg Alloys. Materials Science Forum, 2003, 419~422
    32. W. Hiroyuki, M. Toshiji, I. Koichi, et al. Superplastic Behavior of an ECAE Processed ZK60 Magnesium Alloy. Materials Science Forum, 2003, 32(1): 419~422
    33. W. J. Kim, S. I. Hong, Y. S. Kim, et al. Texture Development and its Effect on Mechanical Properties of an AZ61 Mg alloy Fabricated by Equal Channel Angular Pressing. Acta Materials, 2003, 51: 3293~3307
    34. Y. Yoshida, L. Cisar, S. Kamado, et al. Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy. Materials Transactions, 2003, 44(4): 468
    35. Hiroyuki Waatanabe, Toshiji Mukai, Shigeharu Kamado, et al. Mechanical Properties of Mg-Y-Zn Alloy Processed by Equal-Channel-Angular Extrusion. Materials Transactions, 2003, 44(4): 463
    36. R. Z. Valiev, N. A. Kragilnikov and N. K. Tsenev. Plastic Deformation of Alloys with Submicron-Grained Structure. Materiale Science and Engineering, 1991, A137: 35~40
    37. 罗守靖, 何绍元, 王尔德等. 钢质液态模锻. 哈尔滨工业大学出版社, 1990:260~282
    38. 罗守靖, 杜之明. 液相线模锻制备半固态坯料方法. 中国发明专利. 申请号: 01116406.9
    39. 吴其哗, 巫静安. 高分子材料流变学. 高等教育出版社, 2004: 40~48
    40. 林伯年. 铸造流变学. 哈尔滨工业大学出版社, 1991: 1~10
    41. 罗守靖. 半固态金属成形讲义. 哈尔滨工业大学出版社, 2003: 13~20
    42. 谢水生, 黄声宏. 半固态金属加工技术及其应用. 冶金工业出版社, 1999: 1~12
    43. 罗守靖, 田文彤. 半固态金属塑性加工力学的研究进展. 塑性工程学报, 2000, 32(5): 78~83
    44. 陈晓阳, 毛卫民, 钟学友. 剪切速率增稠半固态合金浆料的流变力学模型. 金属学报, 1998,34(2): 179~183
    45. P. A. Joly, R. Mehrabian. The Rheology of a Partially Solid Alloy, MaterialsScience, l976 (11): 1393~1418
    46. D. Brabazon, D. J. Browne, A .J. Carr. Experimental Investigation of the Transient and Steady State Rheological Behavior of Al-Si Alloys in the Mushy State. Materials Science And Enginnering, 2003: 69~80
    47. 张艳菊, 毛卫民, 赵振铎. 半固态 A356 铝合金的温态流变性能. 金属学报, 2006, 42(2): 163~166
    48. 周志华, 毛卫民, 刘政等. 半固态 AlSiMg2 铝合金的稳态流变性能. 材料研究学报, 2006, 20(1): 5~7
    49. Xiangjie Yang, Yuhai Jing and Jin Liu. The Rheological Behavior for Thixcasting of Semi-solid Aluminum Alloy (A356). Journal of Materials Processing Technology, 2002: 569~573
    50. 王顺成, 石路, 陈彦博等. 连续冷却搅拌 A2017 半固态合金流变行为研究. 材料科学与工艺, 2005, 13(6): 561~563
    51. 许跃, 康永林, 王朝辉. 半固态 AZ91D 镁合金稳态与瞬态表观粘度的研究. 铸造技术, 2006, 27(1): 1~4
    52. 刘伯超, 郎业方, 杨长贺等. 铸造手册. 机械工业出版社, 2002: 35
    53. 肖纪美. 合金相与相变. 冶金工业出版社,2003: 300~309
    54. 罗中华, 张质良. 半固态固相体积分数的拟合公式. 铸造技术, 2005, 26(7): 557
    55. 张颂阳, 耿茂鹏, 谢水生等. 半固态金属金相图片的计算机定量分析. 铸造技术,2005, 26(11): 1070
    56. 王渠东, 吕宜振, 曾小勤等. 稀土在铸造镁合金中的应用. 特种铸造及有色合金, 1999: 40~43
    57. J. C. Gebelin. Characterization of the Rheological Behavior in the Semi-Solid state of Grain-refined AZ91 Magnesium Alloys. Materials Science and Engineering, 1999, A272: 134~144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700