粉土路基稳定理论与工程应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在粉土地区的高速公路建设中,从粉土的基本特性出发,寻求合适的稳定材料与稳定方法,分析交通荷载作用下稳定粉土路基变形特性,对高速公路设计与施工具有重要的理论意义和实际价值。
     本文结合江苏地区高速公路建设,对区域性粉土进行了大量室内试验工作,系统研究了粉土的工程特性。从提高粉土本身的强度着手,同时考虑粉土的水稳定性、抗收缩性等性能,深入研究了粉土的固化机理,提出了粉土固化材料的可能组分;通过室内初步选择试验、正交试验、优化试验和多种稳定材料的对比试验,结合固化剂与粉土相互作用的微观分析,得到高性能粉土固化剂(SEU-2型)的最佳配比;根据多种粉土稳定材料填筑路堤的实体试验,掺入4%SEU-2型固化剂的稳定粉土路基具有优良的物理力学性能和路用性能;针对粉土路基边坡的特性,通过室内外试验工作,研制成功既能有效地防治边坡冲刷破坏,又能有助于植物生长的液体固化剂(SEU-1型)。论文分析了交通荷载的特性,根据屈服面和加载面的概念和循环荷载下土体的变形特征改进了土体经典的弹塑性模型,以反映循环荷载作用下土体变形逐步累计的变化规律。运用FLAC3D中的FISH语言编制了相应的计算程序,分析了交通荷载作用下稳定粉土路基的三维动力响应,研究了土体参数对路基变形的影响。论文最后还分析了盐通高速公路采用不同路基设计方案时的变形和应力,确定了最优设计方案。
     论文主要研究成果包括:
     1.系统研究了区域性粉土的基本特性,针对粉土路基稳定出现的问题,从增强粉土稳定的胶凝效应和填充效应出发,深入研究了粉土的固化机理。通过大量的室内外试验,成功研制了适合于区域粉土稳定的新型固化剂(SEU-2型),该固化剂不仅具有良好的物理力学性能和路用性能,而且具有较高的性价比。
     2.成功研制了适合于粉土路基边坡防护的液体固化剂(SEU-1型),该固化剂不仅能有效地防护粉土路基边坡冲刷破坏,而且能有助于植物的生长。
     3.根据交通荷载作用下道路结构的基本特性,提出了能够反映土体在重复荷载作用下变形特性的弹塑性模型,并运用FLAC~(3D)软件中的FISH语言编制了相应的计算程序,分析了土体的阻尼参数ξ_(min)、f_(min)、弹性模量、粘聚力和内摩擦角等参数对土体位移的影响。在单次半正弦荷载作用下,残余位移和土体的最大位移及其比值都随土体的阻尼参数ξ_(min)、f_(min)、弹性模量、粘聚力和内摩擦角的增加而减小,在这些参数中,以粘聚力和内摩擦角对位移的影响最显著。在重复荷载作用下,土体在最初几次加卸载循环中的残余变形较大,随着循环次数的增加,加载压缩和卸载回弹变形逐渐接近,土体逐步表现出弹性变形的特点。
     4.对盐通高速公路稳定粉土路基的不同设计方案进行了动、静荷载下路基的变形和应力分析。在静力荷载下,路面位移和天然土层顶面处的应力在方案2时最小,其次为方案7,方案1、3、5计算结果相近;在压实土层顶面和天然土层顶面,不同方案的位移分布特征及大小顺序与路面相同,但数值较小;在荷载作用点应力最大,但随着深度应力很快衰减;在动力荷载下,由于阻尼的存在,路基中不同深度处的位移随时间迅速衰减,并具有相似的变化过程,不同方案的路基在2.5s后基本都达到应力稳定。综合分析,方案3(二灰土底基层+20cm 4%固化剂+40cm 6%石灰+压实土)为最优设计方案。
For highway construction in the area of silt soil, a stabilizing method and appropriate stabilizing materials, which are dependent on the characteristics of silt, have to be investigated in order to satisfy the requirements of engineering. The deformation features of stabilized silt subgrade under traffic loading has also to be analyzed. This has important theoretical and practical meanings for highway engineering.
     Based on highway constructions of Jiangsu province, engineering characteristics of regional silt are investigated systematically through laboratory tests in this paper. From the points of silt strength improving, water stability, and anti-shrinkage property, the stabilizing mechanism is studied and the possible components of stabilizing material are proposed. The optimum ratio for individual components of high performance stabilizing agent (SEU-2) are obtained from laboratory tests, including preliminary selection tests, orthogonal tests, optimization test, comparison tests of multiple stabilizing materials, and microscopic tests of interaction between stabilizing agent and silt. According to full-scale field tests of silt subgrades stabilized with different agents, it is considered that the silt subgrade stabilized with 4 percent of SEU-2 has satisfying physical and mechanical properties and pavement performance. Considering the features of silt slope, the liquid stabilizing agent (SEU-1) has been successfully developed through laboratory and field tests. SEU-1 can prevent erosion of slope, and be helpful for plants growing. After the analyses of features of traffic loading, a new modified elasto-plastic model is proposed to describe the change pattern of accumulative deformation of soil under cyclic loading according to the concepts of yielding surface and loading surface. The corresponding program, which is compiled by FISH language in FLAC~(3D), is used to calculate the 3D dynamic responses of stabilized silt subgrade under traffic loading and to discuss the effects of soil parameters on the deformation of subgrade. Finally, the deformation and stress in subgrade corresponding to different design schemes in Yan-Tong Highway are studied, and the optimal design scheme is proposed. The research results for this paper are as follows.
     (1) The fundamental characteristics of regional silt are investigated. From the points of gelling and filling effect of stabilized silt, the stabilization mechanism is studied. Through laboratory and field tests, a new stabilizing agent of silt (SEU-2) is developed successfully, which presents good physical and mechanical properties, pavement performance, and high performance-price ratio.
     (2) A new liquid stabilizing agent (SEU-1), which is suitable for silt slope protection, has been developed successfully. This agent can prevent erosion of slope, and is helpful for plants growing.
     (3) According to the fundamental features of traffic loading, a new modified elasto-plastic model is proposed to describe the deforming characteristics of soils under cyclic loading. A
引文
1.张登良.加固土原理[M].北京:人民交通出版社,1999。
    2.赵卫全,符平,杨晓东,郑亚平.新型土壤固化剂无侧限抗压强度试验研究.水利水电技术,2004,Vol 35, No.2, P86~88
    3.铁道部第四勘测设计院.高性能土壤固化剂及其在土木工程中的应用可行性研究报告[R].2000
    4.Simon A B, Giesecke J, Bicllo G. Use of lateritic soils for road construction in North Dahomey[J]. Engineering Geology, 1973, 7(3):197-218
    5.Samuel Akinlabi Ola. The potentials of lime stabilization of lateritic soils[J]. Engineering Geology, 1977, 11(4):305-317
    6.Medina J, Guida H N. Stabilization of lateritic soils with phosphoric acid[J]. Geotechnical and Geological Engineering, 1995,13(4), 199-216
    7.Frempong E M. A comparative assessment of sand and lime stabilization of residual micaceous compressible soils for road construction[J]. Geotechnical and Geological Engineering,1995,13(4), 181-198
    8.Rao S N, Mathew P K. Permeability studies in marine clays stabilized with lime column[J]. International Journal of Offshore and Polar Engineering, 1996, 6(3):234-239
    9.Bell F G. Cement stabilization and clay soils, with examples[J]. Environmental and Engineering Geoscience, 1995, 1(2):139-151
    10.Bell F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42: 223-237
    11.Aiban S A, Al-Abdul H I, Al-Amoudi O S B, Ahmed H R. Performance of a stabilized marl base: a case study[J]. Construction and Building Materials, 1998(12), 329-340
    12.Ariban S A. A study of sand stabilization in eastern Saudi Arabia[J]. Engineering Geology, 1994, 38(1):65-79
    13 . Xeidakis G S. Stabilization of swelling clays by Mg(OH)2. Factors affecting hydroxy-Mg-interlayering in swelling clays[J]. Engineering Geology, 1996,44(1-4):93-106
    14.Xeidakis G S. Stabilization of swelling clays by Mg(OH)2. Changes in clay properties after addition of Mg-hydroxide[J]. Engineering Geology, 1996,44(1-4):107-120
    15.Okagbue C O, Onyeobi T U S. Potential of marble dust to stabilize red tropical soils for road construction[J]. Engineering Geology, 1999, 53(3-4):371-380
    16.Lahalih S M., Ahmed N. Effect of new soil stabilizers on the compressive strength of dune sand[J]. Construction and Building Materials, 1998(12). 321-328
    17.Nalbantoglu Z, Gucbilmez E. Improvement of calcareous expansive soils in semi-arid environments[J]. Journal of Arid Environments, 2001,47:453-463
    18.Al-Abdul Wahhab A I, Asi I M. Improvement of marl and dune sand for highway construction in arid areas[J]. Building and Environment, 1997,32(3): 271-279
    19.Attom M F, Al-Sharif M M. Soil stabilization with burned olive waste[J]. Applied Clay Science, 1998,13: 219-230
    20.Miller G A, Azad S. Influence of soil type on stabilization with cement kiln dust[J]. Construction and Building Materials, 2000,14: 89-97
    21.Dermatas D, Meng X G. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3-4):377-394
    22.Jang A, Kim I S. Solidification and stabilization of Pb, Zn, Cd, and Cu in tailing wastes using cement and fly ash[J]. Minerals Engineering, 2000,13(14-15):1659-1662
    23.Rinehart T L, Schulze D G, Bricka R M, Bajt S, Blatchley E R. Chromium leaching vs. oxidation state for a contaminated solidified/stabilized soil[J]. Journal of Hazardous Materials, 1997, 52: 213-221
    24.Lin C F, Lo S S, Lin H Y, Lee Y. Stabilization of cadmium contaminated soils using synthesized zeolite[J]. Journal of Hazardous Materials, 1998,60: 217-226
    25.Reid J M, Brooks A H. Investigation of lime stabilized contaminated material[J]. Engineering Geology, 1999,53(2): 217-231
    26.Mckinley J D, Thomas H R, Williams K P, Reid J M. Chemical analysis of contaminated soil strengthened by the addition of lime[J]. Engineering Geology, 2001,60(1-4):181-192
    27.杨志宏,张炳宏.新型材料—奥特赛特(Aught-Set)土壤固化剂的应用技术[J] .铁道标准设计,2000,20(5):1-4
    28.董邑宁.固化剂加固软土试验研究[D].浙江大学硕士论文,2001。
    29.曹恒.NCS 固化剂改善膨胀土填筑路基施工技术[J].焦作工学院学报,2002(3):232-234
    30.柯劲松.EN-1 土壤路基固化剂及应用[J].新型建筑材料,1995(4):35-36
    31.王克义.EN-1 路面基层稳定剂及其路用性能介绍[J].公路,1996(11):40-42
    32.侯浩波.HAS 耐水土壤固化剂及其应用[J].新技术新工艺,1999(5):30-31
    33.王长梅,刘红卫,李国力,王利亚.FJY 系列土壤固化剂应用的试验研究[J].华北水利水电学院学报,2000(4):13-16
    34.刘松玉,朱志铎.粉质土砂土质边坡快速固化剂[P].中国专利. 2004-1-21
    35.潘学政.PSS 系列土壤固化剂在公路路面基层中的应用[J].东北公路,2002,25(4):19-21
    36.钱让清,曹树志,关飞,刘中平,刘必胜.改性 SST 固化剂在高等级公路工程中的应用研究[J].宁波大学学报,1998(3):41-46
    37.陈晓明,刘瑾,张峰军,朱文锋.高分子水溶性固化剂对改善土体耐水性的研究[J].安徽建筑工业学院学报,2003(1):72-75
    38.荀勇.含工业废料的水泥系固化剂加固软土试验研究[J].岩土工程学报,2000,22(3):210-213
    39.Al-Amoudi O S B, Asi I M, El-Naggar Z R.Stabilization of an arid, saline sabkha soil using additives[J]. Quarterly Journal of Engineering Geology,1995,28(4):369-379
    40.Indraratna B. Utilization of lime, slag and fly ash for improvement of a colluvial soil in New South Wales, Australia[J]. Geotechnical and Geological Engineering,1996,14(3):169-191
    41.Wild S, Kinuthia J M, Robinson R B, Humphreys I. Effects of ground granulated blast furnace slag on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates[J]. Clay Minerals. 1996,31(3): 423-433
    42.Wild S, Kinuthia J M, Jones G I, Higgins D D. Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilized sulphate-bearing clay soils[J]. Engineering Geology, 1998,52(1): 37-53
    43.刘顺妮,黄云,林宗寿.粘土含水量对固化剂配比的影响[J].材料科学与工程,1998,16(4):74-76
    44.刘顺妮,林宗寿,陈云波.高含水量粘土固化剂的研究[J].岩土工程学报,1998,20(4):72-75
    45.李翠华,张路,詹长久.固化剂对土的性能影响的试验研究[J].武汉大学学报(工学版),2003,36(4):92-94
    46.董邑宁,徐日庆,龚晓南.固化剂 ZDYT-1 加固土试验研究[J].岩土工程学报,2001,23(4):472-475
    47.梁文泉,何真,李亚杰,秦学优.GA 新型土壤固化剂的性能及其应用[J].防渗技术,1995,1(1):40-43
    48.张海燕,张传森,李元婷,李萍.采用土壤固化剂改善渠道基土性能初探[J].水利与建筑工程学报,2003,1(2),38-40
    49.彭波,李文瑛,陈忠达.固化剂加固土性能的研究[J].内蒙古公路与运输,2001(1),27-29
    50.彭波,原健安,戴经梁.固化剂加固土的研究[J].西安公路交通大学学报,1998,18(3),229-234
    51.侯吉安.CW 固化剂在软土地基上的应用[J].辽宁交通科技,1998,21(4),23-24
    52.刘淑娟,王长虎,付宗庆.浅析利用帕尔玛固化剂做路面基层技术应用[J].东北公路,2002,25(1):23-24
    53.张向东.风积砂土路面基层地固化研究[D].辽宁工程技术大学硕士论文,2000
    54.杨丽英.用加固剂加固北京地区粉土的应用研究.31-35
    55.申爱琴,马骉.含砂低液限粉土基层加固技术试验研究[J].华东公路,2001,5:42-46
    56.申爱琴,马骉,苏毅,何占军,马洪志,李志波.加固的含砂低液限粉土收缩性能研究[J].建筑材料学报,2000,3(4),335-339。
    57.申爱琴,郑南翔,苏毅,李祥文,宋新华.含砂低液限粉土填筑路基压实机理及施工技术研究[J].中国公路学报,2000,13(4),12-15。
    58.龚智辉.低液限粉土稳定方法的探讨[J].中外公路,2003,23(2),87-88
    59.姚占勇,商庆森,刘树堂.提高二灰稳定粉土早强的试验研究[J].公路,1997(3),27-31
    60. Craft J B. The structures of soils stabilized with cementitious agents[J]. Engineering Geology, 1967,2(2):63-80
    61.李迎春.粉土固化稳定机理与措施研究[D].东南大学硕士论文,2003
    62.Wang L. Cementitious stabilization of soils in the presence of sulfate. A Ph D dissertation of Louisiana University,2002
    62.林本海,李业茂.粉土工程性质探讨.见:中国土木工程学会土力学及岩土工程学会编.中国土木工程学会第八届土力学及岩土工程学术会议论文集.万国学术出版社,1999,181-184
    64.刘连喜.武汉地区粉土的工程特性的探讨[J].土工基础,1996,10(1):17-20
    65.张平,王法武.关于粉土分类及性质的探讨[J].沈阳大学学报,2000,12(2):41-45
    66.吴德純.燕郊地区粉土的工程特性[J].岩土工程界,2001,4(10),32-33
    67.阮永芬,刘岳东.昆明盆地粉土的特性研究与利用[J].岩土力学,2003,24(增):199-202
    68.王国强,吴道祥,岳涛,陈天虎,姜昆宁,赵华宏,李小江.安徽新近沉积粉土性质及其承载力的确定[J].地质与勘探,2000,36(6):73-75
    69.袁灿勤,韩爱民,严三保.南京地区漫滩相浅层粉土的承载力[J].南京建筑工程学院学报,1999(2),34-38
    70.Iravani S. Geotechnical characteristics of Penticton silt[D]. A Ph.D dissertation of University of Alberta, Edmonton, AB, Canada, 1999
    71.Smaadi M M. Lateral deformation and associated settlement resulting from embankment loading of soft clay and silt deposits[D]. Ph.D dissertation for University of Illinois at Urbanna- Champaign, 2001
    72.Zarling J C. Changes in the mechanical behavior of non-plastic silt due to drained aging[D].A Ph.D. dissertation for Michigan Technological University, 2002
    73.曹右生.粉土承载力评价探讨[J].勘察科学技术,1995(2):21-25
    74.黄博.粉土和粉砂的动力特性试验研究[D].浙江大学博士论文,2000
    75.王兰民,唐毅,袁中夏.第 4 届国际岩土工程和土动力学进展大会论文综述[J].世界地震工程,2001,17(3):9-20
    76.徐干成,郑颖人.饱和砂土动应力应变特性的试验研究[J].土木工程学报,1995,28(2):64-70
    77.阮永芬,巫志辉.饱和粉土若干动力特性研究[J].岩土工程学报,1995,17(4):100-106
    78.黄博等.粉土和粉砂的动力特性试验研究[J].浙江大学学报,2002(2):143-147
    79.叶银灿,来向华.杭州湾粉质土动强度特性研究[J].海洋科学,2003,27(2):56-59
    80.周云东,刘汉龙,高玉峰,余湘娟.砂土地震液化后大位移室内试验研究探讨[J].地震工程与工程振动,2002,22(1):152-156
    81.刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2):142-14
    82.陈跃庆,吕西林,侯建国,李大庆.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报,2003,36(1):59-63
    83.韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97
    84.凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59
    85.张建民.水平地基液化后大变形对桩基础的影响[J].建筑结构学报,2001,22(5):75-78
    86.余湘娟,房震,严蕴,郑少军,楼添良.震后饱和砂土的液化及边坡稳定问题述评[J].河海大学学报,2003,31(1):72-75
    87.牛琪英,裘以惠.粉土抗液化特性的试验研究[J].太原工业大学学报,1996,27(3):5-10
    88.杨秀竹,忘星华,雷金山.地震时饱和砂土液化机理及统计判别法[J].长沙铁道学院学报,2001,19(1):34-37
    89.王明洋,国胜兵,赵跃堂,杨海杰,赵毅.饱和砂土动力液化研究进展[J].理解放军工大学学报,2002,3(1):13-18
    90.阮永芬,侯克鹏.粉土地震液化判别方法研究的现状和实际存在的问题[J].昆明理工大学学报,2000,25(1):64-67
    91.张崇文,赵剑明,毕政根.粉土地基液化分析[J].天津大学学报,1997,30(4):459-464
    92.王建华,杨进良,王承春.随机地震荷载作用下饱和粉土的液化特性[J].岩土力学,1997,18(3):1-6
    93.汪幼江,王天龙.砂和粉土液化的振动箱试验[J].大坝观测与土工测试,1999,23(6):28-31
    94.高广运,水伟厚.上海苏州河故道砂质粉土液化综合判别[J].工程勘察,2002,(5):35-37
    95.江苏省高速公路建设指挥部,东南大学交通学院,国家地震局工程测防联合中心.高等级公路液化地基处理与桥梁地基抗震处理技术.1998
    96.刘松玉,方磊,李仁民.SASW 法在液化地基加固处理中的研究[J].东南大学学报,2000,30(5):86-90
    97.A.凯兹迪著,张起森,梁锡三等译.稳定土道路[M],北京:人民交通出版社,1989
    98.Mohamed A M O. The role of clay minerals in marly soils on its stability[J]. Engineering Geology, 2000(57):193-203
    99.申爱琴,马骉,李耕俭,何占军等.含砂低液限粉土底基层加固技术研究[J].东北公路,2002,36-38
    100.马魏,徐学祖,张立新.冻融循环对石灰粉土剪切强度特性的影响[J].岩土工程学报,1999,21(2),158-160
    101.Thomas Z G. Engineering properties of soil-fly ash subgrade mixtures. Report of Iowa State University,2002
    102.商庆森,刘树堂,姚占勇,迟洪格,林荣刚.二灰稳定黄河冲(淤)积粉土的研究[J].公路交通科技,1998,15(4):8-11
    103.刘树堂,商庆森,姚占勇.无机结合料稳定粉土的抗冻试验研究[J].山东交通科技,1999,(2):15-19
    104. Kaniraj S R, Havanagi V G. Compressive strength of cement stabilized fly ash-soil mixtures[J]. Cement Concrete Research,1999(29): 673-677
    105.Lin C J. et al. The stabilization of biosolid using fly ash and slag. Proc.Int.Conf. Solid Waste Technol.Manage. 1996
    106.孙进忠.岩土体动力学体系框架及若干问题的研究与应用.中国地质大学博士学位论文,2001
    107.Thiers G R, Seed H B. Cyclic stress-strain characteristics of clay[J]. Journal of soil mechanics and foundation engineering division ASCE, 1968,94(2):555-568
    108.Mitchell R J, King R D. Cyclic loading of an Ottawa area champlain sea clay[J]. Canadian Geotechnical Journal, 1977,14(1):52-63
    109 . Yasuhara K. Consolidation and settlement under cyclic loading. Proc.,Int.Symp.on Compression and Consolidation of Clay soils,Japan. 1995, 979-1001
    110.叶国铮.路面永久变形的实验研究[J].岩土工程学报,1987,9(1):113-116
    111.徐攸在,邢书兰.砂土振动蠕变的三轴试验研究[J].岩土工程学报,1987,9(3):71-79
    112.蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报,1996,10(6):36-41
    113.Samang L. Settlement of soft cohesive soils induced by cyclic loading. PhD Thesis,Sage University,Japan,1997
    114.凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报,2002,30(11),1315-1320
    115.沈珠江.理论土力学[M].北京:中国水利水电出版社,2000
    116.张学言.岩土塑性力学[M].北京:人民交通出版社,1993
    117.钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996
    118.殷宗泽.一个土体的双屈服面应力—应变模型[J].岩土工程学报,1988,10(4):64-71
    119. Eisenberg M A, Phillips A. A theory of plasticity with non-coincident yield and loading surfaces[J]. Acta Mech., 1971,11:247-260
    120. Morz Z.On the description of anisotropic workhardening[J]. J.Mech.Phys.Solids, 1967,15:163-175
    121. Morz Z.An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model[J]. Acta mech.,1969 7:199-212
    122. Mroz Z,Norris V A, Zienkiewicz O C. Application of an anisotropic hardeningn model in the analysis of elasto-plastic deformation of soils[J]. Geotechnique,1979,29(1): 1-34
    123. Mroz Z,Norris V A, Zienkiewicz O C. An anisotropic, critical state model for soils subject to cyclic loading[J].Geotechnique,1981,31(4): 451-469
    124.Prevost J H. plasticity theory for soil stess-strain behavior[J]. J.Geotech.Engrg.Div.,ASCE, 1978, 104(8):1177-1194
    125.Ramsamooj D V, Alwash A J. Model prediction of cyclic response of soils[J].J.Geotech.Engrg., 1990, 116(7):1053-1072
    126.王林玉.交通荷载作用下道面和软土共同作用的数值分析[D].浙江大学博士学位论文,1999
    127. Barker,W.R. Nonlinear finite element analysis of heavily loaded airfield pavement systems. Proc. Applications of the Element Method in Geotech.Engrg.,1972.657-693
    128. Subei N, Saxena S K, Mohammadi J. A BEM-FEM approach for analysis of distresses in pavements[J]. Int.J.Num.Anal.Meth.Geomech., 1991,15:103-119
    129. White R B,Zaghloul Pavement analysis for moving aircraft load[J]. Transportation Engineering. 1997,123(6): 436-446
    130.许金余.飞机—道面—土基动力耦合系统有限元分析[J].计算结构力学及其应用,1994,11(1):77-83
    131.俞建荣,陈荣生,金志强.半刚性基层与刚性面层联结状态对刚性路面荷载应力的影响分析[J].岩土工程学报,1996,18(4):34-39
    132.耿大新,钟才根,杨林德.行车荷载作用下刚性路面结构体系的动力响应[J].中南公路工程,2003(4),16-20。
    133.邱钰.软质粗粒土的工程力学特性与路基工程应用研究[D].东南大学博士学位论文,2002
    134.潘凤英.全新世以来苏南地区的海浸和古地理演变[A].中国第四纪海岸线学术讨论会论文集[C].1986
    135.通启高速公路工程建设指挥部,东南大学交通学院,江苏省交通科学研究院.长江口北侧高速公路软质土处置研究报告[R],2003
    136.中华人民共和国行业标准,1993,《公路土工试验规程》
    137.江苏省高速公路建设指挥部,东南大学交通学院.废黄河泛滥区高速公路建设技术研究报告[R],2003
    138.张雄,吴科如,韩继红.高性能混凝土矿渣复合掺合料生产工艺、特性与工程应用[J] .混凝土,1998(1):10-14
    139.潘钢华,孙伟,张亚梅.活性混合料微集料效应的理论和实验研究[J] .混凝土与水泥制品,1997(6):23-25
    140.陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1996
    141.魏五洲,李宁军,张铁福.粉土地区公路基层结构设计研究[J] .河南交通科技,2000,20(3):22-24
    142.中华人民共和国交通部,1994,公路工程无机结合料稳定材料试验规程 JTJ057-94
    143.江苏省高速公路建设指挥部,东南大学交通学院,泰州市高速公路建设指挥部.高等级公路稳定粉土底基层研究研究报告[R],2000
    144.南通市盐通高速公路建设指挥部,东南大学交通学院.高性能固化剂稳定粉质土技术研究报告[R],2006
    145.Hyodo M, Yasuhara K. Analytical procedure for evaluating pore-water pressure anddeformation of saturated clay ground subjected to traffic loads. Proc. 6th Int. Conf. On Num. Meth. In Geomech. 1988,653-658
    146.孙璐,邓学钧.路面动荷载数学模型与实验设计[J].西安公路交通大学学报,1996,16(4),50-53
    147.Masuda I, Ishida R. Source characteristics and generation mechanism of road traffic vibrations and some remarks for mitigation. Edited by Takemiya H., Proceedings of the 2nd International Symposium on Environmental Vibrations—prediction,monitoring, mitigation and evaluation (ISEV 2005), Leiden(The Netherlands): Taylor &Francis, 2005, 153~159
    148. Braja M Das 著,吴世明,顾尧章译.土动力学原理[M].杭州:浙江大学出版社,1984:184-197
    149.张东升,陶连金,李凤仪,吕志彬.拉格朗日元法及其应用软件 FLAC[J].矿山压力与顶板管理,1991,3-4:224-226
    150.魏继红,吴继敏,孙少锐.FLAC3D在边坡稳定性分析中的应用[J].勘察科学技术,2005,2,27-30
    151.Itasca Consulting Group, Inc. FLAC3D. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, Vol.1 user’s manual[R].USA: Itasca Consulting Group, Inc.,1997
    152.FLAC3D Version 3.0
    153. Itasca Consulting Group, Inc. FLAC3D. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, Vol.2 command and FISH reference[R].USA: Itasca Consulting Group, Inc.,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700