进气预热降低汽油机冷起动排放及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷起动排放控制是目前车用汽油机排放控制的关键环节之一。汽油机冷起动排放高的根本原因是燃油蒸发差,使混合气形成质量不良,进而导致燃烧质量下降,汽油机冷起动排放恶化。因此,减少冷起动排放可以从改善燃油蒸发入手。为减少汽油机冷起动排放,提出了采用快速加热进气空气来提高起动时进气温度的技术路线。在初期试验与理论论证的基础上,开发了快速空气加热器,并应用在发动机台架及整车上,进行了冷起动排放试验研究。
     在初期试验中,在发动机台架上研究了在不同进气温度情况下汽油机的冷起动排放规律。试验结果表明,提高进气温度有利于减少汽油机HC和CO冷起动排放,并存在一个最佳进气温度(70℃),当加热到这个温度时,排放最低。最初吸入发动机的新鲜空气的温度对HC排放有重要影响,对发动机进气歧管内的冷空气进行加热可以大幅度降低HC排放。这些研究结果为进一步研究冷起动排放提供了科学的依据。
     为了更有效地减少发动机在冷起动时排放及改善对应工况的燃烧质量,在模拟仿真中,基于燃油蒸发理论,使用计算流体力学软件对汽油机冷起动燃油蒸发进行计算。模拟结果表明,进气温度、燃油温度和发动机转速对燃油蒸发均有重要影响,其中属进气温度影响最大,油滴初直径和喷射定时对燃油蒸发率影响不大,油滴初速度对燃油蒸发率影响很小。提高进气温度,不仅可以提高进气道内的燃油蒸发,而且还能提高缸内温度,促进缸内燃油的蒸发,为可燃混合气的制备创造有利的条件。
     基于快速加热的策略,使用低压喷射高压点火的方案,采用空心圆锥并配以来自配风器的气流,开发了一种低成本的快速空气加热器用来提高低温环境下的进气温度,进而控制汽油机冷起动排放。加热器采用独立电子控制系统。使用计算流体力学软件对加热器燃烧及传热过程的数值模拟,对加热器进行结构优化,试验结果表明,加热器实现了快速加热和清洁燃烧,但排气温度升高。
     在台架试验中,通过对发动机进油管路进行简单改造以及暖风出口与发动机进气管的连接,空气加热器可燃烧来自于汽油泵的燃油并成为发动机进气系统的一部分。试验结果表明,加热器工作32 s,能达到较满意的进气初始温度,发动机起动后,在较几分钟内进气温度仍保持较高。燃用汽油和乙醇汽油均能使得HC和CO排放分别降低33%和11%以上。
     整车低温冷起动排放测试表明,对只能达到欧Ⅱ排放指标的微型汽车,使用空气加热器后,THC和CO排放均低于欧Ⅲ、Ⅳ冷起动排放限值,可以满足未来对汽油机的严格排放法规要求。此外,使用加热器还可以很好地改善发动机低温冷起动性能。
The emission control during cold start is one of the key processes of exhaust emissions from vehicle gasoline engines at present. The essential reason for high cold-start emissions can be traced to one factor: low fuel volatility, resulting in low quality of mixture and poor combustion. Therefore,reduction of cold-start emissions can start with improving fuel volatility.
     To reduce cold-start engine emissions, the method was presented to preheat the intake air rapidly during cold start. On the bases of the preliminary test and the simulation, a rapid air heater was developed and then applied to the engine bench and the vehicle. The tests were conducted to study the influence on cold-start emissions with the heater heating engine intake air.
     In the preliminary test, effects of engine emissions at different intake temperature were investigated. The testing results showed that increasing intake temperature was favorable to the decrease of HC and CO emissions. HC emissions were remarkably decreased by heating the cold air in the intake manifold. The optimal intake temperature of 70℃could reduce emissions most. The temperature of the initially inducted fresh air significantly influenced HC emissions. HC emissions were remarkably decreased by heating the cold air in the intake manifold. These results provide scientific evidence for further studying emissions during cold start.
     To reduce cold-start emission and improve combustion process more effectively, based on fuel evaporation theory, three-dimensional numerical simulation of fuel evaporation in a gasoline engine during cold start was employed using the CFD software. The simulation results indicated that the most influential parameters on the fuel evaporation were: intake temperature, fuel temperature and engine speed. The intake temperature was the most influential among the three. The initial droplet size and injection timing had some effect on the percentage of evaporated fuel. The initial droplet velocity had a relatively little effect on the fuel evaporation. Increasing intake temperature not only conduced to fuel evaporation in the intake port, but also increased in-cylinder temperature, which promoted the evaporation in the cylinder fuel. It also created a favorable condition for the formation of ignition mixture.
     Based on rapidly heating, adopting low pressure injection and high ignition, employing a hollow cone swirl nozzle with the flow from a swirler, a rapid air heater with low cost was developed to increase the intake temperature for the reduction of cold-start emissions of gasoline engines. The heater was independently controlled by an ECU. Through the numerical simulation of the combustion and heat transfer of the air heater using CFD software and the optimization of its construction, the testing result showed that the heater realized fast heating and clean burning, but the exhaust temperature was excessively high.
     Through the simple modification of the oil inlet pipe and the connection between the hot air outlet of the heater and the intake pipe of the engine, the heater consumed the fuel from the fuel pump of the engine and became part of the engine air inlet system. The results indicated that a satisfied intake air temperature before engine start was obtained in 32 seconds. After engine start, the intake temperature kept high for several minutes. Preheating intake air could reduce HC by more than 33% and CO more than 11% by fueling both gasoline and ethanol-gasoline during engine cold start.
     A test on low temperature start-up emissions from a micro subminiature car of EuropeⅡstandard was carried out. The vehicle test showed that both THC and CO emissions were lower than the emission limit value in the EuropeⅢandⅣby using the air heater, meeting more stringent gasoline exhaust limits. In addition, the heater substantially improved the low temperature start-up performance.
引文
[1] 张维,2003 年汽油发动机市场分析及发展趋势,汽车情报,2004,(6):10~12
    [2] 颜树泉,2006 年上半年车用汽油发动机市场分析及展望,汽车情报,2006,(21):26~31
    [3] http://business.sohu.com/20070130/n247937196.shtml
    [4] 凌建寿,汽油机汽车整车排放与燃油标准化管理,中国标准化,2005,(5):20~23
    [5] 蔡凤田,谢素华,王建昕,等,汽车排放污染物实用控制技术,北京:人民交通出版社,2000:12~13
    [6] 李兴虎,汽车排气污染与控制,北京:机械工业出版社,1999:7~11
    [7] 秦文新,程熙,叶蔼云,汽车排气净化与噪声控制,北京:人民交通出版社,1998:4~7
    [8] Piotr Bielaczyc,Jerzy Merkisz,Euro III / Euro IV Emissions – A Study of Cold Start and Warm Up Phases with a SI (Spark Ignition) Engine, SAE paper 1999-01-1073
    [9] 吴宁,王建昕,满足欧Ⅱ及欧Ⅲ排放法规的车用汽油机冷起动排放控制技术,汽车技术,2003,(3):16~20
    [10] Carter Robert,William C.Pfefferle,Laboratory Evaluation of Ultra-short Metal Monolith Catalyst,SAE paper 980672
    [11] Horie K,Hitoshi Takahashi,Shusuke Akazaki,Emission Reduction During Warm-Up Period by Incorporating a Wall-Wetting Fuel Model on the Fuel Injection Strategy During Engine Starting,SAE paper 952478
    [12] Kevin R. Lang,Wai K.Cheng,Effect of Fuel Properties on First Cycle Fuel Delivery in a SI Engine,SAE paper 2004-01-3057
    [13] 袁雄,汽车低温起动,北京:金盾出版社,1992:1~6
    [14] Santoso. H,Wai K.Cheng,Mixture Preparation and Hydrocarbon Emissions Behaviors in the First Cycle of SI Engine Cranking,SAE paper 2002-01-2805
    [15] Takeda, K.,Takehisa Yaegashi,Kiyonori Sekiguchi,et al,Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up,SAE paper 950074
    [16] Cheng, W.K.,Douglas Hamrin,John B. Heywood,An Overview of Hydrocarbon Emissions Mechanisms in Spark Ignition Engines,SAE paper 932708
    [17] E. Otto,J.Liebl,F. Albrecht,The Development of BMW Catalyst Concepts for LEV/ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst,SAE paper 980418
    [18] Shinji Yamamoto,Kenjirou Matsushita,Satomi Etoh,et al ,In-line Hydrocarbon (HC) Adsorber System for Reducing Cold-Start Emissions,SAE paper 2000-01-0892
    [19] Jesper Schramm,Spencer C.Sorenson,A Model for Hydrocarbon Emissions from SI Engines,SAE paper 902169
    [20] Wai K. Cheng,Douglas Hamrin,John B.Heywood,et al,An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines,SAE paper 932708
    [21] Henein N A,M.K.Tagomori,M.k.Yassine,et al,Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engine,SAE paper 952402
    [22] 郭海涛,黄佐华,周龙保,等,火花点火式发动机未燃 HC 排放形成机理及影响因素的研究,内燃机工程,1996,17(6):14~20
    [23] 栗工,李理光,汽油机冷起动 HC 排放的机理及控制策略,农业机械学报,2006,36(6):151~158
    [24] 刘巽俊,内燃机的排放与控制,北京:机械工业出版社,2003:17~25
    [25] 李理光,王振锁,邓宝清,等,基于可控循环着火的电控汽油机冷起动性能研究,汽车工程,2004,26(4):417~422
    [26] Henein N A,Cold-start hydrocarbon emissions in port-injected gasoline engines,Energy and Combustion Science,1999,25(6):563~593
    [27] Alkidas A C,Combustion-chamber crevices:the major source of engine-out hydrocarbon emissions under fully warmed conditions,Energy and Combustion Science,1999,25(3):253~273
    [28] S.K.Fulcher,B.F. Gajdeczko,P. G. Felton,et al,The Effects of Fuel Atomization, Vaporization, and Mixing on the Cold-Start Uhc Emissions of a Contemporary S.I. Engine With Intake-Manifold Injection,SAE paper 952482
    [29] Ather. A. Quader,Richard F. Majkowski,Cycle-By-Cycle Mixture Strength and Residual-Gas Measurements During Cold Starting,SAE paper 1999-01-1107
    [30] Jim Parks,Jeff Armfield,John Storey,et al,In Situ Measurement of Fuel Absorption into the Cylinder Wall Oil Film During Engine Cold Start,SAE paper 981054
    [31] Wolf Bauer,John B. Heywood,Oshin Avanessian,et al,Flow Characteristics in Intake Port Of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement,SAE paper 961997
    [32] K. R. Koederitz,Jim Drallmeier,Film Atomization from Valve Surfaces During Cold Start,SAE paper 1999-01-0566
    [33] Jehad R. Zughyer,Fu-Quan Zhao,Ming Chia Lai,et al,Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions,SAE paper 2000-01-0242
    [34] J Sergio Quelhas,Naresh Kumar,Hoisan Kim,Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes,SAE paper 2003-01-3240
    [35] Piotr Bielaczyc,Jerzy Merkisz,Cold Start Emissions Investigation at Different Ambient Temperature Conditions,SAE paper 980401
    [36] D. Ludykar,Cold start emissions at 22,-7, and -20 ℃ ambient temperatures from a three-way catalys(tTWC)car:regulated and unregulated exhaust components,The Science of the Total Environment,1999,(235):65~69
    [37] Martin Weilenmann,Patrik Stltic,Christian Saxer,et al,Regulated and nonregulated disel and gasoline cold start emissions at different temperature,Atmospheric Environment,2005,39(11):2433~2441
    [38] P. J. Shayler,Y. C. Teo,A. Scarisbrick,Fuel Transport Characterstics of Spark Ignition Engine for Transient Fuel Compensation,SAE paper 950067
    [39] Yqoz Y. Neyachenko,Method of A/F Control During SI Engine Cold Start,SAE paper 981171
    [40] Kenneth Leisenring,Bahman Samimy,Giorgio Rizzoni,IC Engine Air/Fuel Ratio Feedback Control During Cold Start,SAE paper 961022
    [41] Xiaoguo Tang,William Francis Stockhausen,An Artificial UEGO Sensor for Engine Cold Start -Methodology, Design, and Performance,SAE paper 2000-01-0541
    [42] Tongwon Lee,Choonqsik Bae,Stani V.Bohac,et al,Estimation of Air Fuel Ratio of a SI Engine from Exhaust Gas Temperature at Cold Start Condition,SAE paper 2002-01-1667
    [43] Thomas Winsel,Heinz J. Theuerkauf,Stefan Pischinger,et al,HiL-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model,SAE paper 2004-01-1362
    [44] A. C. McNicol,Hugo Figueroa,Chris J.Brace,et al,Cold Start Emissions Optimisation Using an Expert Knowledge Based CalibrationMethodology,SAE paper 2004-01-0139
    [45] Boyle R J,D. J. Boam,I. C. Finlay,Cold Start Performance of an Automotive Engine Using Prevaporized Gasoline,SAE paper 930710
    [46] Frank R. Zimmermann,Wei-Min Ren,John Bright,et al,An Internally Heated Tip Injector to Reduce HC Emissions During Cold-Start,SAE paper 1999-01-0792
    [47] Boyke Richter,Klaus Dullenkopf,Sigmar Wittiq, et al,Influence of Atomization Quality on Mixture Formation, Combustion and Emissions in a MPI-Engine Under Cold-Start Conditions, PartⅠ,SAE paper 2002-01-2807
    [48] Marcus Ashford,Ron Matthews,Matt Hall,et al, An On-Board Distillation System to Reduce Cold-Start Hydrocarbon Emissions,SAE paper 2003-01-3239
    [49] Kimiyoshi Nishizawa,Sukenori Momoshima,Masaki Koga,et al,Development of New Technologies Targeting Zero Emissions for Gasoline Engines,SAE paper 2000-01-0890
    [50] Williams Hertl,M.D. Patil,W.Hertl,By-Pass Hydrocarbon Adsorber System for ULEV,SAE paper 960343
    [51] Hideharu Yamazaki,Masaki Ueno,Tetsuo Endo,et al, Research on HC Adsorption Emission System,SAE paper 2004-01-1273
    [52] Noda Naomi,Hiroshige Mizuno,In-line Hydrocarbon (HC) Adsorber System for Cold-start Emissions,SAE paper 970266
    [53] Noda Naomi,Akira Takahashi,Yukinari Shibagaki,et al,In-Line Hydrocarbon Adsorber for Cold Start Emission,SAE paper 980423
    [54] Noda Naomi,Hiroshige Mizuno,Junichi Suzuki,et al,In-line Hydro Carbon Adsorber,SAE paper 1999-01-1230
    [55] M. D. Patil,Y.Lisa Peng,Kathleen E.Morse,Airless In-Line Adsorber System for Reducing Cold Start HC Emissions,SAE paper 980419
    [56] P. Corbo,F. Migliardini,D. Caputo ,et al,Hydrocarbon Adsorbers for Reducing Cold Start Emissions,SAE paper 2000-01-3094
    [57] Kosaburo Mukai,Hiroyuki Kanesaka,Hiroshi Akama,et al,Adsorption and Desorption Characteristics of the Adsorber to Control the HC Emission from a Gasoline Engine,SAE paper 2004-01-2983
    [58] Bernd Pfalzqraf,Georg Faltermeier,Achim Donnerstaq,et al,Design and Optimization of a Close-Coupled Catalyst Concept for Audi 4-Cylinder Engines,SAE paper 980417
    [59] Fumio Abe,Shigeharu Hashimoto,Masanori Katsu,An Extruded Electrically Heated Catalyst from Design Concept through Proven-Durability,SAE paper 960340
    [60] Oliver J. Murphy,Craiq C.Andrews,Rajesh Kukreja,Electrically Initiated Chemically Heated Catalytic Converter to Reduce Cold-Start Emissions from Automobiles,SAE paper 1999-01-1233
    [61] Lee G Dodge,Robert H Thring,Danierl J Podnar,Reduced Cold-Start Emissions Using a Rapid Exhaust Port Oxidation (REPO) in a Spark-Ignition Engine,SAE paper 970264
    [62] Myung-Sik Choi,The Study of HC Emission Characteristics and Combustion Stability with Spark Timing Retard at Cold Start in Gasoline Engine Vehicle,SAE paper 2000-01-1082
    [63] Masaki Ueno,A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing,SAE paper 2000-01-0551
    [64] Ahivik P,Jacob Almen,Roger N Westerholm,et al, Impact of a Block Heater on Regulated and Some Unregulated Emissions from a Gasoline Fueled Car at Low Ambient Temperatures. SAE paper 972908
    [65] Noriyuki Kishi,Shininchi Kikuchi,Norio Suzuki,et al,Technology for Reducing Exhaust Gas Emissions in Zero Level mission Vehicles(ZLEV) , SAE paper 1999-01-0772
    [66] Charles E. Roberts,Rudolf H.Stanglmaier,Investigation of Intake Timing Effects on the Cold Start Behavior of a Spark Ignition Engine,SAE paper 1999-01-3622
    [67] Ulrich Kramer,Patrick Phlips,Phasing Strategy for An Engine With Twin Variable Cam Timing,SAE paper 2002-01-1101
    [68] D.Morris,M. V. Twigg,N. R. Collins,et al,Catalyst strategies for meeting super-ultra-low emissions—vehicle standards,SAE paper,1999-01-3067
    [69] 郭海涛,黄佐华,周龙保,等,火花点火发动机燃烧室沉积物未燃碳氢排放的理论与实验研究,内燃机学报,1997,15(1):40~50
    [70] 黄佐华,苗海燕,周龙保,等,火花点火发动机燃用含氧燃料对冷起动和怠速时未燃碳氢排放影响的实验研究,小型内燃机,1998,27(5):1~4
    [71] 程勇,王建昕,庄人隽,电喷汽油机冷起动及暖机过程 HC 排放的测试分析,汽车工程,2002,24(4):331~335
    [72] 程勇,王建昕,吴宁,等,降低汽油机起动及暖机过程中 HC 排放的探讨,内燃机学报,2002,20(4):292~296
    [73] 王振锁,李理光,宫长明,等,基于循环控制的 LPG 电喷发动机冷起动初探,内燃机学报,2004,24(4):337~344
    [74] 王振锁,肖宗成,王惠萍,等,LPG 电控喷射冷起动循环的着火及 HC 排放影响因素分析,汽车工程,2004,26(2):157~161
    [75] 袁守利,颜伏伍,杜传进,等,降低汽油机冷起动过程 HC 排放的分级催化转化技术研究,小型内燃机与摩托车,2005,34(4):26~28
    [76] 周毅,刘新宇,高卫民,三元催化器冷起动研究分析,内燃机工程,2002,23(3):43~49
    [77] Lafyatis David S,Todd H.Ballinqer,Gregg Lammet,et al,Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards,SAE paper 980421
    [78] Wolfgang Samenfink,Hartmut Albrodt,Michael Frank,et al,Strategies to Reduce HC-Emissions During the Cold Starting of a Port Fuel Injected Gasoline Engine,SAE paper 2003-01-0627
    [79] 姚春德,倪培永,姚广涛,进气预热降低汽油机冷起动排放的研究,内燃机学报,2006,11(6):494~499
    [80] Jan Tribulowski,Ulrich Spicher,Influence of Atomization Quality on Mixture Formation , Combustion and Emissions in a MPI-Engine Under Cold-Start ConditionsPartⅡ,SAE paper 2002-01-2806
    [81] Makoto Nagaoka,Katsuyuki Ohsawa,Brent Crary,et al,Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine,SAE paper 970878
    [82] Hiroshi Miyagawa,Makoto Nagaoka, Katsuyuki Ohsawa,Toshio Yamada, Spray vaporization model for multi-component gasoline,JSAE Review,1998,19 (2):299~304
    [83] W. L. H. Hallett,A simple model for the vaporization of droplets with large numbers of components,Combustion and Flame,2000,121 (3):334~344
    [84] Nicos Ladommatos,W. Rose,A Model of Droplet Thermodynamic and Dynamic Behaviour in the Port of a Port-Injected Engine,SAE paper 960467
    [85] Nicos Ladommatos,W. Rose,Results of a Computer Model of Droplet Thermodynamic and Dynamic Behaviour in the Port of a Port-Injected Engine,SAE paper 960468
    [86] CD adapco Group.2001,STAR-CD Methodology (Version 3.15) ,Japan:Yokomaha Computational Dynamics Limited,1~20
    [87] Reitz.R.D,Diwakar R,Effect of Drop Breakup on Fuel Sparys,SAE Paper 860469
    [88] Bai C, Gosman A D,Development of Methodology for Spray Impingement Simulation,SAE paper 950523
    [89] Kevin R. Lang and Wai K. Cheng. Effect of Intake Cam Phasing on First Cycle Fuel Delivery and HC Emissions in an SI Engine,SAE paper 2004-01-1852
    [90] 姚春德,倪培永,宋金瓯,汽油机冷起动时燃油蒸发多参数影响研究,环境科学学报,2007,27(4):688~692
    [91] 张勇,申福林,赵重文,改进汽车燃油加热器的点火性能,长安大学学报(自然科学版),2002,23(2):77~79
    [92] 李俊,钟鼎华,胡云俊,高原暖风机点火燃烧系统的试验研究,工业锅炉,2005,(6):28~31
    [93] 戴锅生,传热学,北京:高等教育出版社,1999:253~254
    [94] 石惠娴,王勤辉,骆仲泱,等,动力工程,PIV 应用于气固多相流的研究现状,2002,22(1):1589~1593
    [95] 赵钦欣,惠世恩,燃油燃气锅炉,西安:西安交通大学出版社,2000:200~204
    [96] 陈志兵,宋亚强,四角切圆燃烧锅炉内过程热态数值模拟,江苏电机工程,2005,24(2):77~79
    [97] 蓝兴英,高金森,徐春明,等,乙烯裂解炉内传递及反应过程综合数值模拟Ⅰ.数学模型的建立,石油学报,2003,19(5):80~85
    [98] 周见广,臧述升,葛兵,等,大湿度旋流扩散燃烧的变工况特性,上海交通大学学报,2004,38(10):1617~1622
    [99] Fluent help documentation
    [100] R.K.Hanson and S Salimian, Survey of Rate Constants in H/N/O Systems,Combustion Chemistry,1984
    [101] 房树堂,黄刚,王勇,等,EQ491i 汽油机满足第Ⅲ阶段排放法规的研究开发,汽车工程,2006,28(8):711~714
    [102] 何邦全,闫小光,王建昕,等,电喷汽油机燃用乙醇-汽油燃料的排放性能研究,内燃机学报,2002,20(5):399~402
    [103] 何邦全,王建昕,郝吉明,等,乙醇-汽油电喷汽油机的排放及催化性能,内燃机学报,2002,20(6):529~533
    [104] 杜志良,申江华,朱自航,车用乙醇汽油实验研究,汽车科技,2003(1):6~9
    [105] 钱叶剑,谈健,左承基,等,车用乙醇汽油对电喷汽油机性能影响的实验研究,内燃机学报,2006,24(4):320~325
    [106] 刘圣华,魏衍举,吕胜春,等,乙醇汽油发动机排放特性研究,西安交通大学学报,2006,40(7):745~747
    [107] 高海洋,牟连嵩,戴春蓓, 乙醇汽油车辆性能试验研究,中国汽车工程学会燃料与润滑油分会第十二届年会论文集,2006:216~219
    [108] 中华人民共和国国家环境保护总局,国家质量监督检验检疫总局,GB18352.3-2005,中华人民共和国国家标准,北京:中国环境科学出版社,2005-04-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700