中药活性成分对肿瘤自杀基因旁杀伤效应及GJIC的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重危害人类健康和生命的重大疾病。基因治疗给恶性肿瘤患者带来了曙光,国外已把基因治疗作为恶性肿瘤常规治疗无效后的一种标准治疗尝试。但十多年来基因治疗的实验和临床研究结果表明,肿瘤基因治疗远未达到人们当初期望的那样有效。自杀基因治疗虽然存在旁杀伤机制,理论上能完全消除肿瘤细胞达到治愈的效果,但由于目前载体转染效率较低、靶向性不够等问题还没有解决,因而未能达到预期的效果,且因病毒载体的使用等带来了一定的毒副作用。如何有效地提高治疗效果,同时减少其毒副作用是目前仍须解决的关键问题。现有研究发现,几乎所有自杀基因系统都存在旁杀伤效应,增强旁杀伤效应能降低对高转染率的需求,减少载体及前体药物用量和毒性,增强基因治疗系统对肿瘤杀伤力。因此,增强旁杀伤效应目前已成为提高肿瘤基因治疗疗效的重要策略。产生旁杀伤效应的主要机制有:缝隙连接细胞通讯(Gap Junctional Intercellular Communication,GJIC)介导,细胞凋亡介导和免疫介导等。根据上述这几种机制,目前形成旁杀伤效应的增效策略主要有:促进GJIC、诱导癌细胞凋亡,提高患瘤机体免疫力等。常用的技术手段包括基因转染法及药物诱导法。中药是一个天然药物宝库,在促进肿瘤GJIC、诱导癌细胞凋亡或提高患瘤机体免疫功能等方面都有优势或潜力,且毒副作用相对较少,从中寻找自杀基因增效药物,建立中西医结合疗法具有可行性。
     研究目的意义:本课题选择被报道有促细胞GJIC或诱导癌细胞凋亡作用的抑癌中药成分芹黄素、白藜芦醇、姜黄素,研究其对自杀基因系统是否有协同增效作用,获得有肯定作用的中药成分,探讨其通过GJIC或细胞凋亡机制增强自杀基因旁杀伤效应的药理靶点,阐明其增效的机理,为建立肿瘤基因治疗联合中医药疗法,推进肿瘤基因治疗的临床应用和抗癌中药新药开发打下基础。
     1.实验方法:
     1.1 中药活性成分对自杀基因旁观者效应影响的体外筛选:MTT法体外检测大鼠肝癌细胞CBRH7919对芹黄素、白藜芦醇、姜黄素的敏感程度,以确定用药浓度。选择对细胞抑制率低的浓度进行实验。上述三种中药活性成分各自以不同浓度与GCV分别或共同作用于大鼠肝癌CBRH7919的tk~-细胞,以及含10%tk~+细胞的tk~+、tk~-混合细胞,MTT检测各组存活率,两两比较分析各组存活率的差异和旁观者效应大小,并用金正钧Q值分析中药与自杀基因系统联合的相互作用是否具有协同性。Q值为联合用药时实测药效与理论药效的比值,Q≤0.85为拮抗作用,0.85≤Q<1.15为相加作用,q≥1.15为协同作用。
     1.2 对有效中药成分对自杀基因治疗系统增效机制研究:分别用不同浓度的白藜芦醇、姜黄素与GCV分别或共同作用于大鼠肝癌CBRH7919的tk~-细胞以及含10%tk~+细胞的
The suicide-gene therapy is a promising project of treating tumor, but the problem in this remedy is insufficient killing ability, low efficiency of transfection and uncertain safety. It's reported that increasing the bystander effect is a good approach to resolve this problem. Considering the mechanism of bystander effect conducted by the Gap junction intercellular communication (GJIC) of cell, apoptosis of cell and immune factors, researchers today enhance the bystander effect by methods of twin genes transfection and medical inducement to elevate GJIC, induce apoptosis and raise the function of immune system. The method of two genes transfection means that we should transfer the suicide gene with another effect-increasing gene at the same time, but in actual practice there is a low efficiency of transfection in vivo, so the difficulty of transfection practice of two genes simultaneously is far high, and the potential side-effect is much high either. In comparison, much merit such as simple practice, small expense, aiming much more target cells, etc. existed in the later method. So we adapted it.There were not many medicines especially natural medicine with this effect had been found until today, but we knew some advantages and potentials have been illustrated by in apoptosis inducing, cell communication and adjustment of immune system, even some ingredients of TCM had been proved by the clinic or basic investigations on the effects of inducing apoptosis of tumor cells and increasing immunity of the patients. But few articles were released about the investigation on increasing bystander effect and cooperating the tumor gene therapy with TCM or their ingredients.Therefore, according to the development and trend of the studies in the mechanism of bystander effect and bystander effect-increasing induced by medicine, we presented the following hypothesis, there were some active ingredients in the Traditional Chinese Medicine could improve the GJIC, induce the apoptosis of tumor cells, improve the local inflammatory immune environment of tumor or enhance the function of immune system, and exert the effect of anti-tumor cooperated with other components by the manner of increasing bystander effect of suicide-gene which maybe increase GJIC, induce apoptosis
    of tumor cells and immunity so on. ObjectiveIn our research, all above served as the purpose to investigate the possibility improving the effect of suicide gene therapy cooperated with Traditional Chinese Medicine. After getting the several effective components of TCM on the cell level, we would validate them on the whole level repeatedly to find the real effective ingredients of TCM. And at the same time, we wanted to compose those ingredients acted on different mechanism a complex dose with known components, clarify pharmacology, stable quantity and maybe have a higher effect.During the research, we hoped to explore the possible mechanism of adjusting cell GJIC and inducing of cell apoptosis with TCM, then we could get the further comprehension about the mechanism of increasing bystander effect with TCM and constructed the foundation of investigating the pharmacology effect in signal transduction of tumor-cell, regulating the cell cycle, communication of cell and immunity of tumor cell etc. with the ingredients of TCM. Methods1. Screening active compounds of TCM in vitro. The sensibilities of rat hepatocarcinoma cell CBRH7919 to apigenin, resveratrol and curcumin were detected by MTT assay. Then the cell CBRH7919, and the mixed cell with 5%or 10% tk+ and tk' are treated separately by apigenin, resveratrol, curcumin in were treated with diverse concentrations of apigenin, resveratrol, curmin and GCV separately, or apigenin plus GCV , resveratrol plus GCV , curmin plus GCV (n = 3,6). Viability of cells was determined by MTT assay. The Q-value analysis was used to estimate the synergistic effects of the active components on the suicide gene system. The Q-value was equal to the ratio of the actual effect of combined treatment to its theoretical effect. The effect was classified into three categories: antagonistic effect( Q <0.85), additive effect(0.85 1.15).2. Exploring the mechanism of the synergistic effects of the active components: The cell CBRH7919, and the mixed cell with 5%or 10% tk+ and tk" are treated separately by apigenin, resveratrol, curcumin in were treated with diverse concentrations of apigenin, resveratrol, curmin and GCV separately, or apigenin plus GCV , resveratrol plus GCV , curmin plus GCV ( n = 3,).Then the cell cycle analysis and cell apoptotic index were performed using a FACScan cell analyzer. AGA was added in the combination therapeutic system in vitro and cell viability in every group was detected by MTT assay. The effects of resveratrol or curcumin on the GJIC of CBRH7919 were detected by SL/DT. The expression of Cx43 in cells were determined by FITC indirect immuno-fluorescent assay.
    3. Cloning of the tkgfp Fusion Gene and its expression: The cDNA encoding the thymidine kinase gene of HSV-1 was obtained by digestion of pLXSN-tk withEcoR I /BamHI. Thel.7-kb tk fragment was isolated and digested with Xma I. Xmal cuts 22 bp in front of the STOP codon. The resulting 1.3-kb tk fragment was isolated and ligated to the 4.7-kb DNA fragment obtained after plasmid pEGFP-Nl was digested sequentially with BamH I and Xmal. After ligation, the open reading frames of both tk and gfp are in-frame within the pTKGFP expression plasmid 6.0 kb, placing the tkgfp cDNA under control of the cytomegalo-virus CMV immediate early IE 1 promoter. Cells of B16, CBRH7919 and NIH3T3 were transfected with the plasmid pTKGFP or pEGFP-Nlor pDsRed2-Nl, with polyfect transfection reagent, according to the manufacturer's protocol. For fluorescent detection of g#>-expressing cells or DsRed2-expressing cells, culture plates were examined with a standard fluorescence microscope 24 hours after transfection. For determination of the ganciclovir sensitivity, GCV-treatment was carried out at different final concentrations of medium for half of the dishes starting 24 hours after transfection. Three days later, surviving cells were determined as a percentage of non - GCV-treated transfected cells. 2. Result 2.1 The results of screening active compounds of TCM in vitro.Apigenin showed an inhibition effect on CBRH7919 when the final concentration was higher than 50uM but showed low inhibiting effect at 50uM.When combining with HSV-tk/GCV system, apigenin showed a synergistic effect at 50uM(Q value >1.15) but showed an additive effect on HSV-tk/GCV therapeutic system at 25uM(0.851.15).Curcumin showed a distinct inhibition effect on CBRH7919 in a range of concentration from lOuM to 50uM. IC50 was 24uM .And the effect showed in a dose-dependent manner. When combining with HSV-tk/GCV system, curcumin showed a synergistic effect at 5uM and 10pM(Q values >1.15).2.2 The results of the mechanisms researchs of the synergistic effects of the active components:Results of FACS showed that when combining with HSV-tk/GCV system resveratrol showed an apoptotic rate-elevating effect on CBRH7919 but showed no effect on cells cell cycle. Curcumin showed an apoptotic rate-elevating effect on CBRH7919 when combining
    with HSV-tk/GCV system.Furthermore, it showed a S-phase lagging effect on CBRH7919 cell cycle. GJ inhibitor AGA showed a down-regulation effect on the killing effect in the combination group of resveratrol or curcum with tk/GCV system. These results indicated that mechanisms of the augmentation effect of resveratrol or curcum on tk/GCV system were related to GJIC. The result of SL/DT showed that ability of GJIC function of CBRH7919 was up-regulated by resveratrol or curcumin. The result of Cx43 expression detection by FTTC indirect-immuofluorescent assay showed a low expression of Cx43 in CBRH7919 control groups and a higher expression of Cx43 in resveratrol or curcumin treated groups.2.3 The levels of ^-expression were assessed days after transfection with a standard fluorescence mi croscope and were visually of similar intensity in tkgfp and native gfp transfected cells . The data indicate that tkgfp transduced cells can be readily identified by fluorescent light at least to the same extent as gfp transduced cells. The intracellular expression pattern of the TKGFP seems different than the native GFP. TKGFP is mostly concentrated in the nucleus, whereas the native GFP and DsRed displays a predominantly cytoplasmic distribution. GCV sensibility examination showed that the pTKGFP transfected cells were much more sensitive to GCV than the pEGFP-Nl transfected cells in a dose-dependent manner. Cone I us i onWe explore the effects of resveratrol, apigenin and curcumin on tumor HSV-TK /GCV suicide gene therapy system. Results show that all of them exibit synergistic killing effects on suicide gene system. Both of the effective concentration of resveratrol and curcumin are lower than apigenin. Mechanisms of the synergistic effect of resveratrol and curcum are related to the restoration of GJIC, or/and the apoptotic inducement or the regulation of cellular cycle.We construct a TKGFP fusion protein expression vector which is transfected into CBRH7919, B16, and NIH3T3 and expressed in these cells successively. The expressed fusion protein exibit the activity of thymidine kinase(TK) and green fluorescence of EGFP. The tkgfp fusion gene itself may be useful in developing novel cancer gene therapy approaches. Valuable information about the efficiency of gene transfer and expression could be obtained by non-invasive imaging of tkgfp expression with direct visualization of gfp expression in situ by fluorescence microscopy or endoscopy.
引文
1.邓洪新,田聆,魏于全.基因治疗的发展现状、问题和进展.生命科学,2005:17(3):196-199.
    2. Check E. Gene-therapy trials to restart following cancer risk review. Nature, 2005;434(7030): 127
    3.朱诚,卢亦成,王驹等.胸苷激酶基因治疗脑胶质瘤25例报告.中华神经外科疾病研究杂志.2002;1(2):111-115
    4. Niculescu-Duvaz I, Springer CJ. Introduction to the background, principles, and state of the art in suicide gene therapy. Mol Biotechnol 2005 May;30(1): 71-88.
    5. Mesnil M, Yamasaki H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclvir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res, 2000;60(15): 3989
    6.孙华,刘耕陶.细胞间隙连接通讯与肿瘤.中国药理学通报.2004Nov;20(11):1205~8
    7.刑毅飞,肖亚军,鲁功成.连接蛋白介导的GJIC与肿瘤自杀基因治疗时旁观者效应的关系.国外医学.生理、理科学与临床分册.2001:21(4):246-248
    8.王卫东综述,陈正堂,王志新审阅 缝隙连接与自杀基因旁观者效应研究进展.中国肿瘤生物治疗杂志.2001:8(3):231~233.
    9.袁慧,浦跃朴.细胞间隙连接通讯与癌变关系的研究进展.中国预防医学杂志2004:15(11):67-68
    10. Nielsen M, Ruch RJ, Vang O. Resveratrol reverses tumor-promoter-induced inhibition of gap-junctional intercellular communication. Biochem Biophys Res Commun. 2000;275(3): 804-9[PMID: 10973802]
    11. Li Y, Fu Z, Chen X, Han R. Effects of curcumin derivatives on the GJIC of normal and tumor cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1996 Apr;18(2): 111-5[PMID: 9208599]
    12.谭宇蕙,吴映雅,杜标炎,胡岳山,赵鹏,李杰芬.大鼠肝癌细胞HSV—tk/GCV自杀基因系统的构建及其旁观者效应.世界华人消化杂志.2005年9月;13(17):2069—2073
    13. Revel JP, Karnovsky MJ. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3): CT-C12. [PMID: 6036535]
    14. JUAN C. S AEZ, VIVIANA M. BERTHOUD, MARIA C. BRANES, et al. Plasma Membrane Channels Formed by Connexins. : Their Regulation and Functions. Physiol Rev. 2003;83: 1360-1400
    15. Sullivan R, Ruangvoravat C, Joo D, Morgan J, Wang BL, Wang XK, and LoCW. Structure, sequence and expression of the mouse Cx43 gene encoding connexin 43. Gene. 1993;130: 191-199.
    16. Hennemann H, Kozjek G, Dahl E, Nicholson B, and Willecke K. Molecular cloning of mouse connexins26 and -32: similar genomic organization but distinct promoter sequences of two gap junction genes. 1992;Eur J Cell Biol 58: 81-89.
    17. Kiang DT, Jin N, Tu ZJ, and Lin HH. Upstream genomic sequence of the human connexin26 gene. Gene. 1997;199: 165-171.
    18. Gabriel HD, Strobol B, Hellmann P, Buettner R, and Winterhager E. Organization and regulation of the rat Cx31 gene. Implication for a crucial role of the intron region. Eur J Biochem. 2001;268: 1749-1759.
    19. Trosko JE, Chang CC. Mechanism of up-regulated gap junction: an intercellular communication during chemoprevention and chemotherapy of cancer[J]. MutatRes, 2001, 480(1): 219-29.
    20. Kang KS, Yun JW, Yoon Bet al. Preventive effect of germanumdioxideon the inhibition of gap junctional intercellular communication by TPA[J]. CancerLett, 2001, 166 (2): 147-53.
    21. Edgar R, Hanne O. Role of PKC and MAPK kinase in EGF and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication inratliver epithelial cells[J]. Carcinogenesis, 2001, 22(9): 1543-50.
    22. Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I. Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curt Biol. 2004 Apr 20;14(8): 650-8.
    23.姚庆华,郭勇.细胞间隙连接通讯、连接蛋白与肿瘤的抑制.肿瘤研究与临床.2005:17(1):67-70
    24. Omori Y, Zaidan Dagli ML, Yamakage K, et al . Involvement of gap junctions in tumor suppression: analysis of genetically2manipulated mice [J]. Mutat Res, 2001, 477 (122): 1912196.
    25.毛丽敏,王勤,王菊芳.肿瘤细胞的间隙连接.国外医学肿瘤学分册.2003:30(4):266
    26. King TJ, Lampe PD. Altered tumor biology and tumorigenesis in irradiated and chemical carcinogen-treated single and combined connexin32/p27Kip1-deficient mice. Cell Commun Adhes. 2005 Jul-Dec;12(5-6): 293-305.
    27. Ale Agha N, Stahl W, Sies H. (-)2Epicatechin effects in rat liver epithelial cells: stimulation of gap junctional communication ang counteraction of its loss due to the tumor promoter 12-0-tetradecanoylphorbo12132acetate[J]. Biochem Pharmacol. 2002, 63 (12): 2145-2149.
    28. Kwak BR, van VeenTA, Analbers LJ, et al. TPA increases conductance by decreases permeability in neonatal rat cardiomyocyte gap junction channels[J]. Exp Cell Res, 1995, 220 (2): 456-463.
    29. Edward Leithe, Edgar Rivedal. Ubiquitination and Down-regulation of Gap Junction Protein Connexin-43 in Response to 12-0-Tetradecanoylphorbol 13-Acetate Treatment. THE JOURNAL OF BIOLOGICAL CHEMISTRY. 2004;279(48): 50089-50096,
    30. Roberts PC, Mottillo EP, Baxa AC, Heng HH, Doyon-Reale N, Gregoire L, Lancaster WD, Rabah R, Schmelz EM. Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia. 2005 Oct;7(10): 944-56.
    31. King TJ, kampe PD. Altered tumor biology and tumorigenesis in irradiatedand chemical carcinogen-treated single and combined connexin32/p27Kipl-deficient mice. Cell Commun Adhes. 2005 Jul-Dec;12 (5-6): 293-305.
    32. Sheen IS, Jeng KS, Wang PC, Shih SC, Chang WH, Wang HY, Chen CC, Shyung LR. Are gap junction gene connexins 26, 32 and 43 of prognostic values in hepatocellular carcinoma? A prospective study. World J Gastroenterol. 2004 Oct 1;10(19): 2785-90.
    33. Mesnil M. Gap junctions and cancer: implications and perspectives. Med Sci (Paris). 2004 Feb;20(2): 197-206.
    34. Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli Mk, Omori Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci Ⅲ. 1999 Feb-Mar;322(2-3): 151-9. [PMID: 10196667]
    35. Hamada J, Takeichi N, Kobayashi H. Metastatic capacity and intercellular communication between normal cells and metastatic cell clones derived from a rat mammary carcinoma. Cancer Res. 1988;48(18): 5129
    36. King TJ, Bertram JS. Connexins as targets for cancer chemoprevention and chemotherapy. Biochim Biophys Acta. 2005;1719(1-2):146-60. [PMID: 16263076]
    37.林仲翔,张志谦,王耐勤.间隙连接基因Cx43表达对肺癌细胞体内成瘤生长的抑制.中华肿瘤杂志,1997,19(4):253-255.
    38.夏之柏:浦佩玉:王广秀:黄强:王春艳:尤永平:转染连接蛋白基因对胶质瘤细胞细胞间隙连接通讯及其生长变化的研究.中华实验外科杂志2003:7:161-167
    39. Tanaka M, Grossman HB. Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with Cisplatin. Hum Gene Ther. 2001 Dec 10;12(18): 2225-36. Erratum in: Hum Gene Ther 2002 Jan 20;13(2): 344. [PMID: 11779406]
    40. Zatloukal K, Schmidt W, Cotten M. Somatic gene therapy for cancer:the utility of transferrinfection in generating 'tumor vaccines'. Gene, 1993;135(1-2): 199
    41. Kobayashi H, Takemura Y, Miyachi H. Novel approaches to reversing anti-cancer drug resistance using gene-specific therapeutics. Hum Cell, 2001;14(3): 172.
    42. Sorrentino BP, McDonagh KT, Woods D, et al. Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood, 1995;86(2): 491.
    43. Im SA, Gomez-Manzano C, Fueyo J, et al. Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res, 1999;59(4): 895.
    44.蔡洪培,邓志华,李石,等。反义核酸抗肿瘤治疗研究中靶基因的选择.中国肿瘤生物治疗杂志,1998;5(2):148.
    45.陈建发,黄宗海.前药转换酶/前药体系的研究进展.肿瘤防治杂志.2004:11(4):417-421
    46.孙春晓,何荣根.恶性肿瘤自杀基因治疗研究进展.实用肿瘤杂志,1999;14(4):255.
    47. Greco O, Dachs GU. Gene directed enzyme/ prodrug therapy of cancer: historical appraisal and future prospectives [J]. J Cell Physiol, 2001, 187(1): 22-36.
    48. Culver KW. Ram Z, Wallbridge S, etal. In vivo gene transfer With retroviral vector-producer cells for treatment brain tumors. Sceence. 1992;256(5063): 1550-1556.
    49. Frank Mc, Cormick.. Cancer gene therapy fringe or cutting edge? Nature Review (cancer), 2002, Nor(1): 1-12
    50.梁智勇,史景泉.缝隙连接细胞间通讯与肿瘤的关系.临床与实验病理学杂志2001:17(5):432-434
    51. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5): 1831-5. PMID: 8700844
    52. Tanaka T, Yamasaki H, Mesnil M. Induction of a bystander effect in HeLa cells by using a bigenic vector, carrying viral thymidine kinase and connexin32 genes. Mol Carcinog. 2001 Mar;30(3): 176-80. PMID: 11301478
    53. Touraine RL, Vahanian N, Ramsey WJ, Blaese RM. Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum Gene Ther. 1998 Nov 1;9(16): 2385-91. PMID: 9829537
    54. Ramesh R, Marrogi AJ, Munshi A, et al. In vivo analysis of the 'bystander effect': a cytokine cascade. Exp Hematol, 1996;24(7): 829
    55. Pizzato M, Franchin E, Calvi P, et al. Productionand characterization of a bicistronic Moloney-based retroviral vector expressing human interleukin 2 and herpes simplex virus thymidine kinase for gene therapy of cancer. Gene Ther, 1998;5(7): 1003
    56. Dilber MS, Abedi MR, Bjorkstrand B, et at. Suicide gene therapy for plasma cell tumors. Blood, 1996;88(6): 2192
    57. Hirschowitz EA, Ohwada A, Pascal WR, et al. In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther, 1995;6(8): 1055
    58. Denning C, Pitts JD. Bystander effects of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum Gene Ther, 1997;8(15): 1825
    59. Bouvet M, Ellis LM. Nishizaki M, et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res, 1998;58(11): 2288
    60. Trinh QT, Austin EA, Murray DM, et al.Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res, 1995;55(21): 4808
    61. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res, 1995;55(22): 5283
    62. Suzuki S, Tadakuma T, Kunitomi M, et al. Liposome-mediated gene therapy using HSV-tk/ganciclovir under the control of human PSA promoter in prostate cancer cells. Urol Int, 2001;67(3): 216
    63. Chen L, Chen D, Manome Y, et al. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. J Clin Invest, 1995;96(6): 2775
    64. Braiden V, Nagayama Y, Iitaka M, et al. Retrovirus-mediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter. Endocrinology, 1998;139(9): 3996
    65. Inase N, Horita K, Tanaka M, et al.Use of gastrin-releasing peptide promoter for specific expression of thymidine kinase gene in small-cell lung carcinoma cells. Int J Cancer, 2000;85(5): 716
    66. IshiwataN, Inase N, Fujie T, et al. Suicide gene therapy using keratin 19 enhancer and promoter in malignant mesothelioma cells.Anticancer Res, 2003;23(2B): 1405
    67. Xu D, Falke D, Juliano RL.p53-dependent cell-killing by selective repression of thymidine kinase and reduced prodrug activation. Mol Pharmacol. 2003;64(2): 289
    68. Paul D. Boucher, Donna S. Shewach. In Vitro and in Vivo Enhancement of Ganciclovir-Mediated Bystander Cytotoxicity with Gemcitabine. MOLECULAR THERAPY 2005;12(6): 1064-1071
    69. Wang AX, Huang HZ. All-trans retinoic acid augments the bystander effect of herpes simplex virus thymidine kinase/ganciciovir system in the treatment of tongue carcinoma cell line. Zhonghua Kou Qiang Yi Xue Za Zhi. 2003 Jan;38(1): 24-6.
    70.张阿丽,卢运萍,王世宣等.卵巢癌自杀基因治疗的旁观者效应及其于间隙连接蛋白43表达的关系.中华妇产科杂志,2001,36(9):542-545.
    71. Cirenei N, Colombo BM, Mesnil M, et al. In vitro and in vivo effects of retrovirus-mediated transfer of the connexin 43 gene in malignant gliumas: consequences for HSVtk/GCV anticancer gene therapy. Gene Ther. 1998;5(9): 1221.
    72. Chaumontet C, Droumaguet C, Bex V, Heberden C, Gaillard-Sanchez I, Martel P. Flavonoids (apigenin, tangeretin) counteract tumor promoter-induced inhibition of intercellular communication of rat liver epithelial cells. Cancer Lett. 1997 Mar 19;114(1-2): 207-10. [PMID: 9103293]
    73. Nakumura Y, Chang CC, Mori T, Sato K, Ohtsuki K, Uphum BL, TroskoJE. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Carcinogenesis. 2005 Mar;26(3): 665-71. Epub 2004 Dec 23. [PMID: 15618237]
    74. Kang KS, KangBC, Lee BJ, Che JH, Li GX, Trosko JE, Lee YS. Preventive effect of epicatechinand ginsenoside Rb(2) on the inhibition of gap junctional intercellular communication by TPA and H(2)0(2). Cancer Lett. 2000 Apr 28;152(1): 97-106.[PMID: 10754211]
    75. Ale-Agha N, Stahl W, Sies H. (-)-Epicatechin effects in rat liver epithelial cells: stimulation of gap junctional communication and counteraction of its loss due to the tumor promoter 12-0-tetradecanoylphorbol-13-acetate. Biochem Pharmacol. 2002 Jun 15;63(12): 2145-9. [PMID: 12110373]
    76. Takahashi H, Nomata K, Mori K, Matsuo M, Miyaguchi T, Noguchi M, Kanetake H. The preventive effect of green tea on the gap junction intercellular communication in renal epithelial cells treated with a renal carcinogen. Anticancer Res. 2004 Nov-Dec;24(6): 3757-62. [PMID: 15736408]
    77. Banoub RW, Fernstrom M, Ruch RJ. Lack of growth inhibition or enhancement of gap junctional intercellular communication and connexin43 expression by beta-carotene in murine lung epithelial cells in vitro. Cancer Lett. 1996 Nov 12;108(1):35-40. [PMID: 8950206]
    78. Livny O, Kaplan I, Reifen R, Polak-Charcon S, Madar Z, Schwartz B. Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. J Nutr. 2002 Dec;132(12):3754-9. [PMID: 12468619]
    79. Livny O, Kaplan I, Reifen R, Polak-Charcon S, Madar Z, Schwartz B. Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. J Nutr. 2002 Dec;132(12):3754-9. [ PMID: 12468619]
    80. Aust O, Ale-Agha N, Zhang L, Wollersen H, Sies H, Stahl W. Lycopene oxidation product enhances gap junctional communication. Food Chem Toxicol. 2003 Oct;41(10):1399-407. [PMID: 12909274]
    81. Hix LM, Lockwood SF, Bertram JS. Upregulation of connexin 43 protein expression and increased gap junctional communication by water soluble disodium disuccinate astaxanthin derivatives. Cancer Lett. 2004 Jul 28;211(1):25-37. [PMID: 15194214]
    82. NakamuraY, Trosko JE, Chang CC, Upham BL. Psyllium extracts decreased neoplastic phenotypes induced by the Ha-Ras oncogene transfected into a rat liver oval cell line. Cancer Lett. 2004 Jan 8;203(1):13-24. [PMID: 14670613]
    83. Nakamura Y, Yoshikawa N, Hiroki I, Sato K, Ohtsuki K, Chang CC, Upham BL, Trosko JE. Beta sitosterol from psyllium seed husk (Plantago ovata Forsk) restores gap junctional intercellular communication in Ha-ras transfected rat liver cells. Nutr Cancer. 2005;51(2):218-25. [PMID: 15860444]
    84. Hwang JW, Park JS, Jo EH, Kim SJ, Yoon BS, Kim SH, Lee YS, Kang KS. Chinese cabbage extracts and sulforaphane can protect H202-induced inhibition of gap junctional intercellular communication through the inactivation of ERK1/2 and p38 MAP kinases. J Agric Food Chem. 2005 Oct 19:53(21):8205-10. [ PMID: 16218665]
    85. Huard C, Druesne N, Guyonnet D, Thomas M, Pagniez A, Le Bon AM, Martel P, Chaumontet C. Diallyl disulfide (DADS) enhances gap-junctional intercellular communication by both direct and indirect mechanisms in rat liver cells. Carcinogenesis. 2004 Jan;25(1):91-8. Epub 2003 Oct 10. [PMID: 14555610]
    86. Abdullah KM, Abdullah A, Johnson ML, Bilski JJ, Petry K, Redmer DA, Reynolds LP, Grazul-Bilska AT. Effects of Aloe vera on gap junctional intercellular communication and proliferation of human diabetic and nondiabetic skin fibroblasts. J Altern Complement Med. 2003 Oct;9(5):711-8. [ PMID: 14629848]
    87. Nielsen M, Ruch RJ, Vang 0. Resveratrol reverses tumor-promoter-induced inhibition of gap-junctional intercellular communication. Biochem Biophys Res Commun. 2000 Sep 7;275(3):804-9. [PMID: 10973802]
    88. Chen X, ShuzoO, Li Y, Han R. Effect of d-limonene, Salviamiltiorrhiza and turmeric derivatives on membrane association of Ras gene product and gap junction intercellular communication. Yao Xue Xue Bao. 1998 Nov;33(11): 821-7. [PMID: 12016941]
    89.陈华,杨守峰,杨雪琴.癌平口服液含药血清对人胃癌细胞分化的影响.中国医药学报.2002,17(10):598-640
    90.李晓光,谢锦玉,李文梅,赵敏,崔建涛,吕有勇.大蒜油对人胃癌细胞间通讯的影响.中国中医基础医学研究.1998,4(2):40-42
    91.罗阳,吴耕书,张荔彦,杜晶.大蒜素改善G J I C功能及抗氧化作用的实验研究.癌变·畸变·突变.1998年,10(6):359-361
    92.肖军花,林先明,周全军,陈剑锋,王征,向继洲,王嘉陵.当归A3活性部位抑制子宫平滑肌收缩机制的研究.华中科技大学学报(医学版).2003,32(5):471-473,477
    93.李燕,付招娣,陈晓光,韩锐.姜黄素类似物对正常动物细胞和肿瘤细胞间通讯传递的影响.1996,18(2):111-115
    94.曲迅,杨美香,郑广娟等.罗勒多糖对肿瘤移行行为的影响.2004,11(1):31-35
    95. Lee YN, Yeh HI, Tian TY, Lu WW, Ko YS, Tsai CH. 2',5'-Dihydroxychalcone] down-regulates endothelial connexin43 gap junctionsand affects MAP kinase activation. Toxicology. 2002 Sep 30;179(1-2): 51-60. [PMID: 12204542]
    96. Touraine RL, Yahanian N, Ramsey WJ, Blaese RM. Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum Gene Ther. 1998 Nov 1;9(16): 2385-91. [PMID: 9829537]
    97. Huang GQ, Song Y, Zhang J, Lu YR, Xiao L, Yang Y, Guo YB. Enhancement of the bystander effect by tanshinone IIA in HSV-tK/GCV system is related to expression of connexin 43 mRNA. Zhonghua Zhong Liu Za Zhi. 2004 Mar;26(3): 146-9. [PMID: 15196433]
    98.邢毅飞,肖亚军,鲁功成,曾甫清,张齐钧,熊平.芹黄素提高胸苷激酶基因系统治疗前列腺癌疗效的研究.中华实验外科杂志.2003,20(11):1023-1024
    99.谭宇蕙;吴映雅;王慧峰;岳文玲;杜标炎;丹参注射液对自杀基因tk/GCV系统的协同增效作用.中国药理学通报。2006,(3):40-44
    100.李旭芬,李天琅.丹参及复方丹参注射液的体外抗肿瘤作用.浙江中西医结合杂志.1999;9(5):291-292
    101. Wang X, BastowKF, Sun CM, Lin YL, Yu HJ, Don MJ, Wu TS, Nakamura S, Lee KH. Antitumor Agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J Med Chem. 2004;47(23): 5816-9. [PMID: 15509181]
    102.睦建,林枫.丹参素对胃腺癌NGCC细胞株的作用.镇江医学院学报.1997:7(4):384-385
    103.方杰.丹参素对乳腺癌MCF细胞株的作用.中国老年学杂志.2003:23(3):168~169
    104.戈升荣,俞一心,谢更新.丹酚酸的药理作用研究进展.中药材,2002;25(9):683-686
    105. Zhang SH, Su J, Zhen YS. Salvianolic acid A inhibits nucleoside transport and potentiates the antitumor activity of chemotherapeutic drugs. Yao Xue Xue Bao. 2004;39(7): 496-9. [PMID: 15493835]
    106.洪志哲,唐明增,杨子峰,李向阳,王新华,朱宇同.虎杖中白藜芦醇成分研究新进展.实用中医内科杂志.2005;19(3):200-201
    107. BertelliA. A., GiovanniniL., GiannessiD., etal. Antiplatelet activity of synthetic and netural resveratrol in red wine. [J]. Int J Tissue React, 1995, 17(1): 1-3
    108.陈鹏:沈志强:杨丽川;雷伟亚.白藜芦醇甙抗血栓作用及对中性粒细胞与血小板之间粘附的影响.中国医学杂志 2004.05.25:2(5):238—241
    109. Wang Z., ZenJ., Huang Y., etal. Effects of resveratrol on oxidative modification of human low density lipoprotein [J]. ChinMed J(Eng 2000, 113(2), 99-102
    110.徐小燕:潘林梅.天然植物中白藜芦醇及其苷类的医疗保健作用.时珍国医国药 2004.01.20;15(1):49-50
    111.白金叶:陈洁:程桂芳:林茂:朱秀嫒.白藜芦醇对白三烯类化合物生成抑制作用.海峡药学 2003.08.15:15(4):19-20
    112.郝捍东.白藜芦醇抗心血管疾病作用的研究进展.国外医学·心血管疾病分册 2003.09.25:30(5):300-302
    113.莫志贤,邵红霞.白藜芦醇苷体外对过氧化氢导致小鼠肝细胞损伤的保护作用132.中国药理学通报,2000,16(5):519~521
    114.黄兆胜.虎杖苷对CC14损伤原代培养大鼠肝细胞的保护作用1J2.中国药理学通报,1998,14(6):543~546
    115. Kawada N, Seki S, Inoue M, Kuroki T. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology. 1998 May;27(5): 1265-74
    116.唐明增;洪志哲;李向阳;杨子峰;王艳芳;王新华;朱宇同.白藜芦醇对小鼠免疫系统调节作用的研究.现代中西医结合杂志 2005.09.20:14(18):2381-2382
    117.安利峰:胜利:何烨:范桂香:袁育康.白藜芦醇对免疫受抑小鼠免疫功能的影响.现代中医药 2005.09.25:25(5):1-2
    118. de la Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005 May;49(5): 405-30. Review. PMID: 15832402.
    119.刘兆平:于波:李文仙:孙静:黄建:霍军生:刘长兴.白藜芦醇的雌激素样作用研究.卫生研究 2002.06.15:31(3):188-190
    120. Bowers JL, Tyulmenkov W, Jernigan SC, Klinge CM. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology. 2000 Oct;141(10):3657-67. PMID: 11014220
    121. Ramsey TL, Risinger KE, Jernigan SC, Mattingly KA, Klinge CM. Estrogen receptor beta isoforms exhibit differences in ligand-activated transcriptional activity in an estrogen response element sequence-dependent manner. Endocrinology. 2004 Jan;145(1):149-60. Epub 2003 Sep 18. PMID: 14500565
    122. Kim YA, Lim SY, Rhee SH, Park KY, Kim CH, Choi BT, Lee SJ, Park YM, Choi YH. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. Int J Mol Med. 2006 Jun;17(6) -.1069-75. PMID: 16685418
    123. Seaver B, Smith JR. Inhibition of COX isoforms by nutraceuticals. J Herb Pharmacother. 2004;4(2):11-8. PMID: 15364641
    124. Piver B, Berthou F, Dreano Y, Lucas D. Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett. 2001 Dec 15:125(1-3):83-91. PMID: 11701226
    125. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer. 2002 Mar 4;86(5):774-8. PMID: 11875742
    126. Clement MV, Hirpara JL, Chawdhury SH, Pervaiz S.. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood. 1998 Aug 1;92(3):996-1002. PMID: 9680369
    127. Dorrie J, GerauerH, WachterY, ZuninoSJ. Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells.Cancer Res. 2001 Jun 15;61(12):4731-9. PMID: 11406544
    128. Ulrich S, Wolter F, Stein JM. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol Nutr Food Res. 2005 May;49(5):452-61. Review. PMID: 15830333
    129. Atten MJ, Godoy-Romero E, Attar BM, Milson T, Zopel M, Holian O. Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs. 2005 Mar;23(2):111-9. Review. PMID: 15744586
    130. Opipari AW Jr, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res. 2004 Jan 15,64(2): 696-703.
    131. Holian O, Wahid S, Atten MJ, Attar BM. Inhibition of gastric cancer cell proliferation by resveratrol: role of nitric oxide.Am J Physiol Gastrointest Liver Physiol. 2002 May;282(5): G809-16. PMID: 11960777
    132.杜强.白藜芦醇的抗肿瘤机制研究进展.福建医科大学学报 2005.08.15:39(S):23-26
    133. Srivastava KC, Bordia A, Verma SK. Curcumin, a major component of food spice turmeric (Curcuma tonga) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins keukot Essent Fatty Acids. 1995 Apr;52(4): 223-7. PMID: 7784468
    134.许东晖;王胜;金晶;梅雪婷;许实波.姜黄素的药理作用研究进展.中草药 2005.11.12:36(11):1737-1740
    135. Barthelemy S, Vergnes L, Moynier M, Guyot D, Labidalle S, Bahraoui E. Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol. 1998 Jan-Feb;149(1): 43-52. PMID: 9561563
    136.程书权.中草药活性成分治疗慢性肝病的现代研究.国外医学·中医中药分册 2004.07.30:26(4):209-213
    137.鲍华英;陈荣华;潘晓勤;黄文彦;孙骅;吴元俊.姜黄素对肾小球系膜细胞增殖的影响及其意义.南京医科大学学报 2003.05.05:23(3):238-239
    138. Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Left. 1985 Nov;29(2): 197-202. PMID: 4075289
    139.李剑明.姜黄色素抗肿瘤作用研究进展.第三军医大学学报 2004.08.15;26(15):1410-1411
    140. Atsumi T, Fujisawa S, Tonosaki K. Relationship between intracellular ROS production and membrane mobility in curcumin-and tetrahydrocurcumin-treated human gingival fibroblasts and human submandibular gland carcinoma cells. Oral Dis. 2005 Jul;11(4): 236-42. PMID: 15984955
    141. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. BiochemPharmacol. 2006 May 14;71(10):1397-421. Epub 2006 Feb 23. PMID: 16563357
    142. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS throughsuppression of NF-kappa B activation. Murat Res. 2001Sep 1;480-481: 243-68. Review. PMID: 11506818
    143. Lin JZ. Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin. Arch Pharm Res. 2004 Jul;27(7): 683-92. Review. PMID: 15356994
    144. Sreejayan, RaoMN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol. 1997 Jan;49(1): 105-7. PMID: 9120760
    145. Furness MS, Robinson TP, Ehlers T, Hubbard RB 4th, Arbiser JL, Goldsmith DJ, Bowen JP. Antiangiogenic agents: studies on fumagillin and curcumin analogs. Curr Pharm Des. 2005;11(3): 357-73.
    146. Lin LI, Ke YF, Ko YC, Lin JK. Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology. 1998 Jut-Aug;55(4): 349-53.
    147.薛启汉.绿色荧光蛋白(GFP)的特性及其在分子生物学研究中的应用.江苏农业学报;1999,15(1):52-58
    148.徐飞虎;龚兴国.绿色荧光蛋白应用研究进展.细胞生物学杂志2002.12.15;24(6):332-334
    149.孙安赛,黄广明.报告基因在监测基因转移中的应用新进展.动物医学进展.2002;23(6):52-55
    150. Andreas Jacobs, Michael Dubrovin, Jeff Hewett, et al. Functional Coexpression of HSV-1 Thymidine Kinase and Green Fluorescent Protein: Implications for Noninvasive Imaging of Transgene Expression. Neoplasia. 1999, 1(2): 154-161
    151. Ammerpohl O, Thormeyer D, Khan Z, Appelskog IB, Gojkovic Z, et al. HDACi phenylbutyrate increases bystander killing of HSV-tk transfected glioma cells. Biochem Biophys Res Commun. 2004 Nov 5;324(1): 8-14.
    152. Ariane So linga;Andreas Simmb, Nikolai G. Rainova;Intracellular localization of Herpes simplex virus type 1 thymidine kinasefused to dilerent fluorescent proteins depends on choice of fluorescent tag. FEBS Letters . 2002 (527): 153-158
    153.戴体俊.合并用药的定量分析[J].中国药理学通报1998,14(5):479-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700