新型超枝化嵌段共聚物在药物控释体系中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子在作为药物载体方面的应用是目前的科学前沿,它们可以通过吸附和包埋的方式将活性药物装载到其基质上,对提高药物利用率和保持药物活性起到至关重要的作用。两亲性嵌段共聚物纳米粒子作为给药载体,在药物控释、靶向器官和组织、运送蛋白质和基因药物等方面作用巨大,引起了人们的广泛关注。本文合成了超枝化聚缩水甘油醚(HPG)-聚乳酸(PLA)两亲性共聚物,制备了纳米粒子,评价了其物理化学性质。材料合成方法简单,纳米粒子的载药量高、释药速率可控性强,有望成为新型的给药系统。
     一、共聚物的合成
     合成了一系列生物可降解和相容性好的超枝化聚缩水甘油醚-聚乳酸两亲性嵌段共聚物(HPG-PLA)。材料制备条件温和;改变反应过程中HPG和PLA的投料比,可以控制共聚物的结构。
     二、共聚物纳米粒子的物化性质
     1.共聚物纳米粒子的载药量
     共聚物纳米粒子对小分子疏水性药物(槲皮素为药物模型)载药量在优化的条件下可达26.5%。药物不仅能够和疏水的PLA片段通过分子间相互作用相结合,而且能够进入支化的HPG当中,所以载药量较高。
     共聚物纳米粒子对大分子蛋白质药物(BSA为药物模型)载药量在优化的条件下可达23.0%。蛋白不仅能够和疏水的PLA片段通过亲疏水相互作用形成复合体,而且能够通过静电相互作用和HPG相连接,同时蛋白表面的氨基酸残基可以和支化的HPG相互作用,因此载药量较高。
     2.载药纳米粒子的释放行为
     载大分子类蛋白和小分子疏水性药物的纳米粒子,释放行为都分为两个阶段。起初的突释阶段,由纳米粒子表面附近的药物释放导致;随后的缓释阶段,由纳米粒子内部包埋的药物释放导致。蛋白类物质总释放时间达到4天,小分子药物总释放时间可达10天;共聚物纳米粒子可作为药物的缓释载体。
     随着共聚物结构、分子量、释放介质pH值和纳米粒子载药量的不同,药物释放行为的差异性较大;通过改变或调节上述因素,可以精确调控载药系统的释放行为,从而开发出能够满足特定释放需要的药物载体。
     为了认识载药纳米粒子的释放机制,本文以载蛋白类纳米粒子为例,用多种数学模型对其释放的实验数据进行了拟合。结果显示,蛋白的扩散和组成纳米粒子共聚物的松弛共同决定着载药纳米粒子的释放行为;而共聚物的降解并未对释放产生明显的影响。这为设计出能够满足特定释放需要的药物载体提供了理论基础。
Nanoparticle research is currently an area of intense scientific research, due to a wide variety of potential applications. As a drug carrier, it can both entrap guest molecules in and adsorb them on the surface of the matrix, which is important for increasing drug efficiency and protecting its bioactivity. Amphiphilic biodegradable block copolymer nanoparticles play an important role in controlled release of drugs, targeting a tissue or organ, transporting biomolecules and generic drug as drug carriers. They have attracted increasing attention. In the present study, a novel poly lactic acid (PLA) functionalized hyperbranched polyglycerol (HPG) had been prepared and physicochemically characterized with the prospect of its application as a drug delivery system. Specifically, functional polymers derived from HPG were prepared that bear at the external surface PLA chains. Nanoparticles fabricated from the copolymer had nontoxic, biocompatible and biodegradable characteristics and high encapsulation capacity. Therefore, they have a promising potential as a novel drug delivery system.
     Ⅰ, Synthesis of copolymers
     The amphiphilic copolymers were synthesized by a typical coupling reaction of PLA chains onto modified HPG in the existence of coupling agents. The number of PLA chains grafted onto HPG could be controlled by changing the feeding ratio of PLA to HPG. A series of copolymers were synthesized by using HPG and PLA with different molecular weight. The experimental results suggested that the biodegradable products have good biocompatibility.
     Ⅱ, Physicochemical Characterization of the copolymer nanoparticles
     1. The loading capacity of the copolymer nanoparticles
     The loading capacity of the copolymer nanoparticles to small hydrophobic molecules (quercetin as model drug) could reach to 26.5% under optimized conditions. Quercetin dispersed both into HPG and formed an amorphous complex with intermolecular interaction occurring within the matrices, which were favorable for increasing loading capacity.
     The loading capacity of the copolymer nanoparticles to biomacromolecules (BSA as model drug) could reach to 23.0% under optimized conditions. BSA dispersed both on the surface of nanoparticles by electrostatic interaction and formed a complex within the matrices by hydrophilic and hydrophobic interactions, which were favorable for increasing loading capacity.
     2. In vitro drug release
     In all curves (both BSA and quercetin) a burst effect was observed followed by a slowly continuous release phase. The initial release burst corresponded to the diffusion of drugs located on the nanoparticle surfaces. The slow release profile corresponded to the release of drugs entrapped in the nanoparticles. The release time could reach 4 days for BSA and 10 days for quercetin, respectively. The copolymer nanoparticles could be used as sustained-release carriers.
     The release profiles could be influenced significantly by many factors (polymer composition, molecular weight, pH and drug loading capacity). The relevant relationship that existed between the characteristics of nanoparticles and the release behavior could be exploited to develop unique drug delivery system with exclusively defined release properties.
     In order to understand the release mechanism of nanoparticles, BSA release profiles from nanoparticles were investigated. Based on the experimental results, mathematical models were proposed to predict protein release mechanism from nanoparticle populations. The results obtained during experimental and mathematical analysis showed that two mechanisms of BSA release, namely protein diffusion and macromolecular relaxation, combined to control the release process. The degradation rate was quite low and the protein release may not be an erosion control process. The relevant relationship that existed between the characteristics of nanoparticles and the release behavior could be exploited to develop unique protein delivery system with exclusively defined release properties.
引文
[1]Isaac L, Mireille A, Marinos P, et al. Reversible Morphological Transitions of Polystyrene-b-polyisoprene Micelles. Macromolecules,2006,39:309-314.
    [2]Lifeng Z and Adi E. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J Am Chem Soc,1996,118:3168~3181.
    [3]Markus A, Stephan F, Jul rgen H, et al. Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids:Macromolecules, 1996,29:3800-3806.
    [4]Webber S E. Polymer Micelles:An Example of Self-Assembling Polymers. J Phys Chem B, 1998,102:2618~2626.
    [5]Bouillot P, Patit A, Dellacherie E. Protein encapsulation in biodegradable amphiphilic microspheres.1. Polymer synthesis and characterization and microsphere elaboration. J Appl Polym Sci,1998,68:1695~1702.
    [6]Youxin L, Volland C, Kissel T. In vitro degradation and bovine serum albumin release of the ABA triblock co-polymers consisting of poly (L(+) lactic acid), or poly(L(+) lactic acid-co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-blocks. J Controlled Release,1994,32:121~128.
    [7]Li X, Xiao J, Deng X, et al. Preparation of biodegradable polymer microspheres encapsulating protein with micron sizes. J Appl Polym Sci,1997,66:583~590.
    [8]Li X, Deng X, Yuan M et al. Investigation on process parameters involved in preparation of poly-DL-lactide-poly (ethylene glycol) microspheres containing Leptospira interrogens antigens. Int J Pharm,1999,178:245~255.
    [9]Kissel T, Li Y X, Volland C, et al. Pareteral protein delivery systems using biodegradable polyester of ABA block structure, containing hydrophobic poly (lactide-co-glycdlide) A blocks and hydrophilic poly (ethylene oxide) B blocks. J Controlled Release,1996,'39:315-326.
    [10]Morlock M, Kissel T, Li Y X, et al. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers:Protein stabilization and in vitro release properties. J Controlled Release,1998,56:105~115.
    [11]Mader K, Bittner B, Li Y, et al. Monitoring microviscosity and microacidity of the albumin misynthesis:croenvironment inside degrading microparticles from polyposition, poly (lactide-co-glycolide) (PLG) or ABA triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethylene oxide) B blocks. Pharm Res, 1998,15:787~793.
    [12]Cha Y, Choi Y K, Bae Y H. Thermosensitive biodegradable polymers based on poly(ether-ester) block copolymers, U.S. Patent No.5 702 717,1997.
    [13]Bazemer J M, Radersma R, Grijpma D W, et al. Zero order release of lysozyme from poly(ethylene glycol)/poly(butylene terphthalate) matrices. J Controlled Release,2000,64: 179~192.
    [14]Li Y Q, You Han B. Polymer Architecture and Drug Delivery. Pharm Res,2006,23:1-30.
    [15]McKee M G, Unal S, Wilkes G L et al. Branched polyesters:recent advances in synthesis and performance. Prog Polym Sci,2005,30:507~539.
    [16]Liu C, Zhang Y, Huang J L. Well-Defined Star Polymers with Mixed-Arms by Sequential Polymerization of Atom Transfer Radical Polymerization and Reverse Addition-Fragmentation Chain Transfer on a Hyperbranched Polyglycerol Core. Macromolecules,2008,41:325~331.
    [17]Adeli M, Haag R. Multiarm Star Nanocarriers Containing a Poly(ethylene imine) Core and Polylactide Arms. Polym Sci Part A:Polym Chem,2006,44:5740~5749.
    [18]Carsten G, Florian W, Holger F, Multi-Arm Star Poly(L-lactide) with Hyperbranched Polyglycerol Core. Macromol Chem Phys,2007,208:1657~1665.
    [19]高分子学会编.新版高分子辞典.日本东京:朝倉书店,1988.
    [20]童身毅,万敏,张良均.两亲性高聚物及其应用.材料导报,1999,5:46~68.
    [21]Neeraj K, Majeti N V R, Domba A J. Biodegradable block copolymers. Adv Drug Deliv Rev, 2001,53:23~44.
    [22]张邦华,朱常英,郭天瑛.近代高分子科学.北京:化学工业出版社,2006.73~77。
    [23]Cheng Z, Zhu X, Fu G D, et al. Dual-Brush-Type Amphiphilic Triblock Copolymer with Intact Epoxide Functional Groups from Consecutive RAFT Polymerizations and ATRP. Macromolecules,2005,38:7187~7192.
    [24]Boisse S, Rieger J, Aurelie D C, et al. Synthesis via RAFT of Amphiphilic Block Copolymers with Liquid-Crystalline Hydrophobic Block and Their Self-Assembly in Water. Macromolecules,2009,42:8688~8696.
    [25]Natalie A H, Theodora K C, Elena L, et al. Alternating Amphiphilic Multiblock Copolymers: Controlled Synthesis via RAFT Polymerization and Aqueous Solution Characterization. Macromolecules,2010,43:2713~2720.
    [26]Kong X, Kawai T, Abe J, et al. Amphiphilic Polymer Brushes Grown from the Silicon Surface by Atom Transfer Radical Polymerization. Macromolecules,2001,34:1837~1844.
    [27]Mir M A, Harald D H S. Well-Defined Amphiphilic Thermosensitive Copolymers Based on Poly(ethylene glycol monomethacrylate) and Methyl Methacrylate Prepared by Atom Transfer Radical Polymerization. Macromolecules,2004,37:5219~5227.
    [28]Elkin A, Christian A, Karsten M. Amphiphilic Water Soluble Triblock Copolymers Based on Poly(2,3-dihydroxypropyl methacrylate) and Poly(propylene oxide):Synthesis by Atom Transfer Radical Polymerization and Micellization in Aqueous Solutions. Macromolecules,2006,39: 9486~9496.
    [29]Hoogenboom R, Wiesbrock F, Huang H. Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines:A Powerful Method for the Synthesis of Amphiphilic Triblock Copolymers. Macromolecules,2006,39:4719~4725.
    [30]Kotaro S, Masami K, Mitsuo S. Direct Synthesis of Amphiphilic Random and Block Copolymers of p-Hydroxystyrene and p-Methoxystyrene via Living Cationic Polymerization with BF3OEt2/ROH Systems. Macromolecules,2000,33:5830-5835.
    [31]Zhao J, Mountrichas G, Zhang G, et al. Amphiphilic Polystyrene-b-poly(phydroxystyrene-g-ethylene oxide) Block-Graft Copolymers via a Combination of Conventional and Metal-Free Anionic Polymerization. Macromolecules,2009,42: 8661-8668.
    [32]Zhang H, Ruckenstein E. Selective Living Anionic Polymerization of a Novel Bifunctional Monomer 4-(Vinylphenyl)-1-butene and the Preparation of Uniform Size Functional Polymers and Amphiphilic Block Copolymers. Macromolecules,1999,32:5495~5500.
    [33]Coulembier O, Degee P, Sandrine C M, et al. New Amphiphilic Poly[(R,S)-a-malic acid-b-E-caprolactone] Diblock Copolymers by Combining Anionic and Coordination-Insertion Ring-Opening Polymerization. Macromolecules,2002,35:9896-9903.
    [34]Gao H, Wang Y N, Fan Y G, et al. Synthesis of a biodegradable tadpole-shaped-polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-h-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Release,2005,107: 158~173.
    [35]范瑞兰,李保国,边占喜.二茂铁丙烯酰氯及其酰胺衍生物的合成与表征.化学试剂,2001,23:333~334;337.
    [36]杜敬星,黄宪.钯催化下芳基磺酰氯与丙烯酰胺的偶联反应.合成化学,1994,2:135~139.
    [37]梁月洁;孟庆国,孙海军等.混合酸酐法合成内吗啡肽-1.中国新药杂志,2008,17:1405~1407.
    [38]何谷,黄维,郭丽.混合酸酐法合成CCK-4.华西药学杂志,2005,20:518~520.
    [39]McDermott J R, Benoiton N L. N-Methylamino Acids in Peptide Synthesis:Ⅱ. A New Synthesis of N-Benzyloxycarbonyl, N-Methylamino Acids. Can J Chem,.1973,51:1915-1919.
    [40]李荣清.室温下N-羟基琥珀酰亚胺活化酯法合成吡咯-2,5-二乙酰胺.江西师范大学学报(自然科学版),2005,6:509~511.
    [41]Shioiri T, Ninomiya K, Yamada S. Diphenylphosphoryl azide. A new convenient reagent for a modified Curtus reaction and for the peptide synthesis. J Am Chem Soc,1972,94:6203~6205.
    [42]Michal P, Karel U, Vladimir S. Poly(ethylene glycol) Multiblock Copolyme as a Carrier of Anti-Cancer Drug Doxorubicin. Bioconjugate Chem,2000,11:132-139.
    [43]Jeong K B, Koki H, Toru K. Synthesis of an olefin-containing cyclic peptide using the solid-phase Horner-Emmons reaction. Tetrahedron Letters,2004,45:99~102.
    [44]Li P, Xu J C.1-Ethyl 2-Halopyridinium Salts, Highly Efficient Coupling.Reagents for Hindered Peptide Synthesis both in Solution and the Solid-Phase. Tetrahedron,2000,56: 8119-8131.
    [45]Nicolaou K C, Snyder S A, Huang X et al. Studies toward Diazonamide A:Initial Synthetic Forays Directed toward the Originally Proposed Structure. J Am Chem Soc,2004,126: 10162~10173.
    [46]Biot C, Bauer H, Schirmer R H et al.5-Substituted Tetrazoles as Bioisosteres of Carboxylic Acids. Bioisosterism and Mechanistic Studies on Glutathione Reductase Inhibitors as Antimalarials. J Med Chem,2004,47:5972~5983.
    [47]Kim D, Wang L, Beconi M et al. (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-tr ifluorophenyl)butan-2-amine:A Potent, Orally Active Dipeptidyl Peptidase Ⅳ Inhibitor for the Treatment of Type 2 Diabetes. J Med Chem,2005,48:141~151.
    [48]Bailey F E, Koleske J V. Poly(Ehtylene Oxide). Academic Press, New York,1976.
    [49]Veronese F M. Peptide and protein PEGylation:a review of problems and solutions. Biomaterials,2001,22:405~417.
    [50]胡海梅,潘仕荣.聚乙二醇单甲醚2聚L2赖氨酸嵌段共聚物的合成及其表征.功能高分子学报,2005,18:623~629.
    [51]Fuertges F, Abuchowski A. The clinical efficacy of poly(ethylene glycol)-modified proteins. J Control Release,1990,11:139~148.
    [52]Zalipsky S. Chemistry of Polyethylene-Glycol Conjugates with Biologically-Active Molecules. Adv Drug Deliver Rev,1995,16:157~182.
    [53]Dreborg S, Akerblom E B. Inununotherapy with Monomethoxypolyethylen Glyeol Modified Allergens. Crit Rev Ther Drug,1990,6:315~365.
    [54]Harris J M, Zalipsky S. Polyethylene Glycol Chemistry and Biological Applications. American Chemical Society, Washington DC,1997,45.
    [55]Mahato R I. Biomaterials for delivery and targeting of proteins and nucleic acids. CRC Press, 2005, Ald Cat, No. Z705102.
    [56]Andrea L, Jorg T, Edith S et al. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials. Biomaterials,2000,21:2361~2370.
    [57]Yi-Yan Y, Jin-Ping W, Tai-Shung C et al. POE-PEG-POE triblock copolymeric microspheres containing protein I. Preparation and characterization. J Control Release,2001,75: 115~128.
    [58]Hong K K, Tae G P. Surface Stabilization of Diblock PEG-PLGA Micelles by Polymerization of N-Vinyl-2-pyrrolidone. Macromol Rapid Commun,2002,23:26~31.
    [59]Paul D, Adam J E, Ranganath P et al. Targeted Worm Micelles. Biomacromolecules,2004,5: 1714~1719.
    [60]Eun K P, So Y K, Sang B L et al. Folate-conjugated methoxy poly(ethylene glycol)/poly(q-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release,2005,109:158~168.
    [61]Zhigang X, Tiancheng L, Xuesi C et al. Triblock Poly(lactic acid)-b-Poly(ethylene glycol)-b Poly(lactic acid)/Paclitaxel Conjugates:Synthesis, Micellization, and Cytotoxicity. J Appl Polym Sci,2007,105:2271~2279.
    [62]朱宝库,赵永红,孔力等.超支化聚缩水甘油醚研究进展.高分子通报,2007,4: 23~28.
    [63]Sunder A, Hanselmann R, Frey H et al. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules,1999,32:4240-4246.
    [64]Kautz H, Sunder A, Frey H. Control of the molecular weight of hyperbranched polyglycerols. Macromol symp,2001,163:67~74.
    [65]Sunder A, Frey H, Mlhaupt R. Hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromol Symp,2000,153:187-196.
    [66]Rajesh K K, Johan J, Elena L et al. Biocompatibility Testing of Branched and Linear Polyglycidol. Biomacromolecules,2006,7:703~709.
    [67]Po-Ying J Y, Rajesh K K, Yuquan Z et al. Self-Assembled Monothiol-Terminated Hyperbranched Polyglycerols on a Gold Surface:A Comparative Study on the Structure, Morphology, and Protein Adsorption Characteristics with Linear Poly(ethylene glycol)s. Langmuir,2008,24:4907~4916.
    [68]Irvine D J, Mayes A M, Griffith-Cima L. Self-Consistent Field Analysis of. Grafted Star Polymers. Macromolecules,1996,29:6037~6043.
    [69]Ajikumar P K, Ng J K, Tang Y C et al. Carboxyl-Terminated Dendrimer-Coated Bioactive Interface for Protein Microarray:High-Sensitivity Detection of Antigen in Complex Biological Samples. Langmuir,2007,23:5670~5677.
    [70]Pathak S, Singh A K, McElhanon J R et al. Dendrimer-Activated Surfaces for High Density and High Activity Protein Chip ApplicationsDentinger. Langmuir,2004,20:6075~6079.
    [71]Park J W, Jung Y, Young H J et al. Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency. Bull Korean Chem Soc,2004,25: 1667~1670.
    [72]Fischer D, Li Y, Ahlemeyer B et al. In vitro cytotoxicity testing of polycations:influence of polymer structure on cell viability and hemolysis.Biomaterials,2003,24:1121~1131.
    [73]Rajesh K K, Samuel R H, Elena L. In vitro biological evaluation of high molecular weight yperbranched polyglycerols. Biomaterials,2007,28:4581~4590.
    [74]Armin B, Alexander S, Ingo N et al. Multi-arm star block copolymers based on e-caprolactone with hyperbranched polyglycerol core. Macromol Chem Phys,2000,201: 792~797.
    [75]Carsten G, Florian W, Holger F. Multi-Arm Star Poly(L-lactide) with Hyperbranched Polyglycerol Core. Macromol Chem Phys,2007,208:1657-1665.
    [76]Alexander S, Michael K, Ralf H et al. Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. Angew Chem Int Ed,1999,38:3552-3555.
    [77]Yi S, Min K, Zhong S et al. Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte:Towards Smart Temperature and pH Nanosensors. Angew Chem Int Ed,2008,47:2227~2230.
    [78]王思光,程海星,周永丰等.烷基链封端的两亲性超支化聚缩水甘油的合成及自组装.功能高分子学报,2008,21:128~132.
    [79]Munk P. Equilibrium and nonequilibrium polymer micelles. NATO ASI series, serie E: applied sciences, Dordrecht:Kluwer Academic Publisher,1996:19~32.
    [80]Anna S, Thomas G B, Steven PS. The Acidic Microclimate in Poly (lactide-co-glycolide) Microspheres Stabilizes Camptothecins. Pharm Res,1999,16:241~248.
    [81]Jose M B, Mariko M, Kozo T et al. Encapsulation of Hydrophilic and Lipophilic Drugs in PLGA Nanoparticles by the Nanoprecipitation Method. Drug Dev Ind Pharm,1999,25:471~476.
    [82]Martine L V, Laurence F, Young K et al. Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm,1998,46:137~143.
    [83]Hombreiro P M, Zinutti C, Lamprecht A. The preparation and evaluation of poly(epsilon-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J Control Release,2000,65:429~438.
    [84]Passerini N, Craig D Q. Characterization of ciclosporin A loaded poly (D,L lactide-coglycolide) microspheres using modulated temperature differential scanning calorimetry. J Pharm Pharmacol,2002,54:913~919.
    [85]Arshady R. Preparation of biodegradable microspheres and microcapsules:2. Polylactides and related polyesters. J Control Release,1991,17:1-22.
    [86]Crotts G, Park T G. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres:release kinetics and stability issues. J Microencapsul,1998,15:699~713.
    [87]Okochi H, Nakano M. Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv Drug Deliv Rev,2000,45:5-26.
    [88]Yeo Y, Basaran O A, Park K. A new process for making reservoir-type microcapsules using ink-jet technology and interfacial phase separation. J Control Release,2003,93:161~173.
    [89]Yeo Y, Chen AU, Basaran OA et al, Solvent exchange method:a novel microencapsulation technique using dual microdispensers. Pharm Res,2004,21:1419~1427.
    [90]Murillo M, Gamazo C, Goni M et al. Development of microparticles prepared by spray-drying as a vaccine delivery system against brucellosis. Int J Pharm,2002,242:341~344.
    [91]Blanco-Prieto M J, Campanero M A, Besseghir K et al. Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres. J Control Release,2004,96:437-448.
    [92]Burke P A, Klumb L A, Herberger J D et al. Poly (lactide-co-glycolide) microsphere formulations of darbepoetin alfa:spray drying is an alternative to encapsulation by spray-freeze drying. Pharm Res,2004,21:500~506.
    [93]Takada S, Uda Y, Toguchi H et al. Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers, PDA J. Pharm Sci Technol,1995,49:180-184.
    [94]Mishima K, Matsuyana K, Tanabe D, et al. Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. AIChE J,2000,46:857~865.
    [95]Mauson S, Johnston K P, Combes J R et al. Formation of Poly (1,1,2,2-tetrahydroperfluorodecyl acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions. Macromolecules,1994,28:3182-3191.
    [96]查刘生,高海峰,杨武利等.聚合物纳米粒子用于给药载体.高分子通报,2002,3:24-32.
    [97]National Nanotechnology Initiative. USA:National Science and Technology Council, July, 2000.
    [98]朱振峰 杨菁.药物纳米控释系统的最新研究进展.国外医学生物医学工程分册,1998,6:327~332.
    [99]Mark P B, Omer A, Sandra G S et al. Biodistribution of HPMA Copolymer-Aminohexylgeldanamycin-RGDfK Conjugates for Prostate Cancer Drug Delivery. Mol Pharmaceut,2009,6:1836~1847.
    [100]X Ying, H Wen, W L Lu et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release,141,2002,183-192.
    [101]Derakhshandeh K, Erfan M, Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles:Factorial design, characterization and release kinetics. Eur J Pharm Biopharm,2007,66:34~41.
    [102]Bennis S, Chapey C, Couvreur P et al. Enhanced cytotoxicity of doxorubicin encapsulated in polyhexylcyanoacrylate nanospheres against multi-drug-resistant tumour cells in culture. Eur J Cancer,1994,30 A:89~93.
    [103]Gaspar R, Opperdo se FR, Preat V et al. Drug targeting with polyalkylcyanoacrylate nanoparticles:in vitro activity of primaquine-loaded nanoparticles against intracellular Leishmania donovani. Ann Trop Med Parasitol,1992,86:41~49.
    [104]Massimo F, Giovanni P, Gaetano G et al. Pefloxacine mesilate- and ofloxacin loaded polyethylcyanoacrylate nanoparticles:Characterization of the colloidal drug carrier formulation. J Pharm Sci,1995,84:895~902.
    [105]Andreas Z, Ernst M, Gunter L et al. Pharmacokinetic and Pharmacodynamic Aspects of an Ophthalmic Pilocarpine Nanoparticle-Delivery-System. Pharm Res,2004,11:1435-1442.
    [106]Allemann E, Leroux JC, Gurny R et al. In vitro extended-release properties of drug-loaded poly (DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res,1993,10: 1732~1737.
    [107]Labhasetwar V, Song C, Levy R J et al. Nanoparticle drug delivery system for restenosis. Adv Drug Deliver Rev 1997,24:63~85.
    [108]Gautier J C, Grangier J L, Barbier A et al. Biodegradable nanoparticles for subcutaneous administration of growth hormone releasing factor (hGRF). J Control Release,1992,20:67~77.
    [109]常津,刘海峰,姚康德.医用纳米控释系统的研究进展.中国生物医学工程学报,2000.4:423~431.
    [110]Damge C, Michel C, Aprahanian M et al. New approch for oral administration of insulin with polyalkycyanoacrylate nanopart icles as drug carrier. Diabetes,1988,37:246~258.
    [111]Jani P, Halbert GW, Langridge J et al. Nanoparticle uptake by the rat gastrointestinal mucosa:quantitation and particle size dependency. J Pharm Pharmacol,1990,42:821~826.
    [112]Kreuater J. Nanoparticles and microparticles for drug andvaccine delivery.J Anat,1996, 189:503~505.
    [113]O'Hagan D T. The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat,1996,189(Pt 3):477~482.
    [114]Christine C, Trung L D, Patrick C. Polyalkylcyanoacrylate Nanoparticles as Polymeric Carriers for Antisense Oligonucleotides. Pharm Res,1992,9:441~449.
    [115]Chee G K, Xulang Z, Shujun L et al. Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release, 2010,141:62~69.
    [116]Li D, Li G, Li P et al. The enhancement of transfection efficiency of cationic liposomes by didodecyldimethylammonium bromide coated gold nanoparticles. Biomaterials,2010,31: 1850~1857.
    [117]Moore A, Marecos E, Bogdanov A et al. Tumor distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology,2000,214:568-574.
    [118]Irene B, Catherine D, Patrick C et al. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev,2002,54:631~651.
    [1]Discher D E, Ahmed F. Polymersomes. Annu Rev Biomed Eng,2006,8:323~341.
    [2]Chen C, Yu C H. Cheng Y C et al. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly (3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers. Biomaterials.2006,27:804~814.
    [3]Layre A, Couvreur P, Chacun H et al. Novel composite core-shell nanoparticles as busulfan carriers. J Control Release,2006,111:271~280.
    [4]Gao H, Yang Y W, Fan Y G et al. Conjugates of poly (DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis((3-cyclodextrin)s and their nanoparticles as protein delivery systems. J Control Release,2006,112:302~311.
    [5]Qiu L Y, Bae Y H. Polymer Architecture and Drug Delivery. Pharm Res,2006,23:1-30.
    [6]Sinha V R, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003,90:261-280.
    [7]Yang Y Y, Wan J P, Chung T S et al. POE-PEG-POE triblock copolymeric microspheres containing protein I. Preparation and characterization. J Control Release,2001,75:115~128.
    [8]Garlotta D. A literature review of poly (lactic acid). J Polym Environ,2001,9:63~84.
    [9]Chen G. X, Kim H S, Kim E S et al. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. Eur Polym J,2006, 42:468~472.
    [10]Mooney D J, Baldwin D F, Suh N P et al. Novel approach to fabricate porous sponges of poly (lactic-co-glycolic acid) without the use of organic solvents. Biomaterials,1996,17:1417~1422.
    [11]Albertsson A C, Varma I K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules,2003,4:1466~1486.
    [12]Kainthan R K, Janzen J, Levin E et al. Biocompatibility Testing of Branched and Linear Polyglycidol. Biomacromolecules,2006,7:703~709.
    [13]Kainthan R K. Brooks D E. In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials,2007,28:779~787.
    [14]Kautz H, Sunder A, Frey H. Control of the molecular weight of hyperbranched polyglycerols. Macromol Symp.2001.163:67~73.
    [15]Garamus V M, Maksimova T V, Kautz H et al. Hyperbranched Polymers:Structure of Hyperbranched Polyglycerol and Amphiphilic Poly (glycerol ester)s in Dilute Aqueous and Nonaqueous Solution. Macromolecules,2004.37:8394~8399.
    [16]Sunder A. Hanselmann R, Frey H et al. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules,1999,32: 4240~4246.
    [17]Yates C R. Hayes W. Synthesis and applications of hyperbranched polymers.2004,40: 1257~1281.
    [18]Voit B I. Hyperbranched polymers:a chance and a challenge.2003,6:821~832.
    [19]Gottschalk C, Wolf F, Frey H. Multi-Arm Star Poly (L-lactide) with Hyperbranched Polyglycerol Core. Macromol Chem Phys,2007,208:1657~1665.
    [20]Zhao Y L, CAI Q, Jiang J et al. Synthesis and thermal properties of novel star-shaped poly (L-lactide)s with starburst PAMAM-OH dendrimer macroinitiator. Polymer,2002,43: 5819~5825.
    [21]Sunder A, Mulhaupt R. Frey H. Hyperbranched Polyether-Polyols Based on Polyglycerol: Polarity Design by Block Copolymerization with Propylene Oxide. Macromolecules,2000,33: 309~314.
    [22]Matsumoto J. Nakada Y, Sakurai K et al. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Int J Pharm. 1999,185:93~101.
    [23]Sun Y, Wang J, Zhang X et al. Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres:In vitro and in vivo studies. J Control Release,2008. 129:192~199.
    [24]Fessi H, Puisieux F, Devissaguet J P et al. Nanocapsules formation by interfacial polymer deposition following solvent displacement. Int J Pharm,1989,55:R1-R4.
    [25]Barichello J M, Morishita M, Takayama K et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm.1999,25: 471~476.
    [26]Heald C R, Stolnik S, Kujawinski K S et al. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles:NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir,2002,18:3669~3675.
    [27]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976,72:248~254.
    [28]Biot C, Bauer H. Schirmer R H et al.5-Substituted Tetrazoles as Bioisosteres of Carboxylic Acids. Bioisosterism and Mechanistic Studies on Glutathione Reductase Inhibitors as Antimalarials. J Med Chem,2004.47:5972~5983.
    [29]Nicolaou K C. Snyder S A, Huang X et al. A. Bigot, Studies toward Diazonamide A:Initial Synthetic Forays Directed toward the Originally Proposed Structure. J Am Chem Soc,2004,126: 10162~10173.
    [30]Virta P, Katajisto J, Niittymaki T et al. Solid-supported synthesis of oligomeric bioconjugates. Tetrahedron,2003.59:5137~5174.
    [31]Jahno V D, Mendes Ribeiro G. B, Santos L A et al. Chemical synthesis and In vitro biocompatibility tests of poly (L-lactic acid). J Biomed Mater Res A,2007,83:209~215.
    [32]Peng H. Xiao Y, Mao X et al. Amphiphilic Triblock Copolymers of Methoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) for Enhancement of Osteoblast Attachment and Growth. Biomacromolecules,2009,10:95~104.
    [33]Zeng J B. Li Y D, Li W D et al. Synthesis and Properties of Poly(Ester Urethane)s Consisting of Poly(L-Lactic Acid) and Poly(Ethylene Succinate) Segments. Ind Eng Chem Res,2009,48: 1706~1711.
    [34]Jin X, Zhang X, Wu Z et al. Amphiphilic Random Glycopolymer Based on Phenylboronic Acid:Synthesis, Characterization, and Potential as Glucose-sensitive Matrix. Biomacromolecules, 2009,10:1337~1345.
    [35]Agarwal M, Koelling K W, Chalmers J J. Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment. Biotechnol Prog,1998,14:517~526.
    [36]Kim Y S, Gil E S, Lowe T L. Synthesis and Characterization of Thermoresponsive-co-Biodegradable Linear-Dendritic Copolymers. Macromolecules,2006,39: 7805~7811.
    [37]Sosnowski S, Gadzinowski M. Slomkowski S, Poly (L,L-lactide) Microspheres by Ring-Opening Polymerization. Macromolecules,1996,29:4556~4564.
    [38]Cai Q, Zhao Y, Bei J et al. Synthesis and Properties of Star-Shaped Polylactide Attached to Poly(Amidoamine) Dendrimer. Biomacromolecules,2003,4:828~834.
    [39]Crotts G, Sah H, Park T G. Adsorption determines in-vitro protein release rate from biodegradable microspheres:quantitative analysis of surface area during degradation. J Control Release,1997.47:101~111.
    [40]Heald C R. Stolnik S, Kujawinski K S et al. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles:NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir,2002,18:3669~3675.
    [41]Malzert A. Boury F, Saulnier P et al. Interfacial properties of a PEG2000-PLA50 diblock copolymer at the air/water interface. Langmuir,2001,17:7837~7841.
    [42]Cai Q, Zhao Y, Bei J et al. Synthesis and Properties of Star-Shaped Polylactide Attached to Poly(Amidoamine) Dendrimer. Biomacromolecules,2003,4:828~834.
    [43]Gao H, Wang Y N. Fan Y G et al. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-h-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Release,2005,107: 158~173.
    [44]Anon. Biological Reactivity Tests In Vitro. United States Pharmacopeia,24th Revision,2000, 1813-1831. Rockville, MD:United States Pharmacopeial Convention, Inc.
    [45]Gao H, Wang Y N, Fan Y G et al. Interactions of some modified mono- and bis-β-cyclodextrins with bovine serum albumin. Bioorgan Med Chem,2006,14:131~137.
    [46]Molina I. Li S. Martinez M B et al. Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials.2001,22:363~369.
    [47]Yang Y Y Wan J P, Chung T S et al. POE-PEG-POE triblock copolymeric microspheres containing protein 1. Preparation and characterization. J Control Release,2001.75:115~128.
    [1]Berchane N S, Carson K H, Rice-Ficht A C et al. Effect of mean diameter and polydispersity of PLG microspheres on drug release:Experiment and theory. Int J Pharm,2007,337:118~126.
    [2]Mooney D J, Baldwin D F, Suh N P et al. Novel approach to fabricate porous sponges of poly(o.klactic-co-glycolic acid) without the use of organic solvents. Biomaterials,1996,17, 1417~1422.
    [3]Garlotta D. A literature review of poly (lactic acid). J Polym Environ.2001,9:63~84.
    [4]Albertsson A C, Varma I K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules,2003.4.1466~1486.
    [5]Chen G X. Kim H S, Kim E S et al. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. Eur Polym J,2006, 42:468~472.
    [6]Kainthan R K, Janzen J, Levin E et al. Biocompatibility Testing of Branched and Linear Polyglycidol. Biomacromolecules,2006,7:703~709.
    [7]Sunder A, Hanselmann R, Frey H et al. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules,1999.32:4240~4246.
    [8]Adeli M, Haag R. Multiarm Star Nanocarriers Containing a Poly (ethylene imine) Core and Polylactide Arms. J Polym Sci Pol Chem,2006,44:5740~5749.
    [9]Gottschalk C, Wolf F, Frey H. Multi-Arm Star Poly (L-lactide) with Hyperbranched Polyglycerol Core. Macromol Chem Phys,2007.208:1657~1665.
    [10]Raman C, Berkland C, Kim K K et al. Modeling small-molecule release from PLG microspheres:effects of polymer degradation and nonuniform drug distribution. J Control Release, 2005,103:149-158.
    [11]Costa P, Lobo J M S. Modeling and comparison of dissolution profiles. Eur J Pharm Sci, 2001,13:123~133.
    [12]Derakhshandeh K. Erfan M. Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles:Factorial design, characterization and release kinetics. Eur J Pharm Biopharm,2007,66:34-41.
    [13]Matsumoto J, Nakada Y, Sakurai K et al. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Int J Pharm 1999,185:93~101.
    [14]Gao H, Yang Y W, Fan Y G. et al. Conjugates of poly(DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(P-cyclodextrin)s and their nanoparticles as protein delivery systems. J Control Release,2006,112:301~311.
    [15]Fessi H, Puisieux F, Devissaguet J Ph et al. Nanocapsules formation by interfacial polymer deposition following solvent displacement. Int J Pharm,1989,55:R1-R4.
    [16]Barichello J M, Morishita M. Takayarna K et al. Encapsulation of Hydrophilic and Lipophilic Drugs in PLGA Nanoparticles by the Nanoprecipitation Method. Drug Dev Ind Pharm,1999,25: 471~476.
    [17]Gao H, Wang Y N, Fan Y G et al. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2 aminoethyl)amino-6-deoxy)-h-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Release,2005,107: 158~173.
    [18]Bradford M M.A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem,1976,72:248~254.
    [19]Zalfen A M, Nizet D, Jerome C et al. Controlled release of drugs from multi-component biomaterials. Acta Biomater,2008,4:1788~1796.
    [20]Siepmann J, Peppas N A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliver Rev,2001,48:139~157.
    [21]Serra L, Domenech J, Peppas N A. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) Hydrogels. Biomaterials,2006,27: 440~451.
    [22]Pitarresi G, Craparo E F, Palumbo F S et al. Composite Nanoparticles Based on Hyaluronic Acid Chemically Cross-Linked with r,a-Polyaspartylhydrazide. Biomacromolecules,2007,8: 1890~1898.
    [23]Sheehan J C, Hess G P. A new method of forming peptide bonds. J Am Chem Soc.1955,77: 1067~1068.
    [24]Virta P. Katajisto J. Niittymaki T et al. Solid-supported synthesis of oligomeric bioconjugates. Tetrahedron,2003,59:5137~5174.
    [25]Biot C. Bauer H, Schirmer R H et al.5-Substituted Tetrazoles as Bioisosteres of Carboxylic Acids. Bioisosterism and Mechanistic Studies on Glutathione Reductase Inhibitors as Antimalarials. J Med Chem,2004,47:5972~5983.
    [26]Nicolaou K C. Snyder S A. Huang X et al. Studies toward Diazonamide A:Initial Synthetic Forays Directed toward the Originally Proposed Structure. J Am Chem Soc,2004,126: 10162~10173.
    [27]Guo Z X. Yu J. Grafting of dendritic polyethers onto nanometre silica surface. J Mater Chem, 2002.12:468~472.
    [28]Narita M. Itoh J, Kikuchi T et al. A high sensitivity fluorescent chemo-sensory system based on (-cyclodextrin dimer modified with dansyl moieties. J Incl Phenom Macrocycl Chem.2002,42: 107~114.
    [29]Kakuchi T, Narumi A, Matsuda T et al. Glycoconjugated polymer.5. Synthesis and characterization of a seven-arm star polystyrene with a β-cyclodextrin core based on tempomediated living radical polymerization. Macromolecules,2003.36:3914~3920.
    [30]Liu Y, Song Y, Wang H et al. Selective binding of steroids by bridged bis(P-cyclodextrin) with 2,2-biquinoline-4,4'-dicarboxylate:fluorescence enhancement induced by guest inclusion. J Org Chem,2003.68:3687~3690.
    [31]Jin X, Zhang X, Wu Z et al. Amphiphilic Random Glycopolymer Based on Phenylboronic Acid:Synthesis, Characterization, and Potential as Glucose-sensitive Matrix. Biomacromolecules. 2009,10:1337~1345.
    [32]Peng H, Xiao Y, Mao X et al. Amphiphilic Triblock Copolymers of Methoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) for Enhancement of Osteoblast Attachment and Growth. Biomacromolecules,2009,10:95~104.
    [33]Zeng J B. Li Y D, Li W D et al. Synthesis and Properties of Poly(Ester Urethane)s Consisting of Poly(L-Lactic Acid) and Poly(Ethylene Succinate) Segments. Ind Eng Chem Res.2009,48: 1706~1711.
    [34]Agarwal M, Koelling K W. Chalmers J J. Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment. Biotechnol Prog,1998.14:517~526.
    [35]Crotts G, Sah H. Park T G. Adsorption determines in-vitro protein release rate from biodegradable microspheres:quantitative analysis of surface area during degradation. J Control Release,1997.47:101~111.
    [36]Anon, Biological Reactivity Tests In Vitro, United States Pharmacopeia,24th Revision,2000. 1813-1831. Rockville. MD:United States Pharmacopeial Convention, Inc.
    [37]Molina I, Li S, Martinez M B et al. Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials,2001,22:363~369.
    [38]Eijsink V G, Gaseidnes S, Borchert T V et al. Directed evolution of enzyme stability. Biomol Eng,2006,22:21-30.
    [39]Sriamornsak P, Thirawong N. Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm,2007,66:435~450.
    [40]Stulzer H K, Lacerda L, Tagliari M P et al. Synthesis and characterization of cross-linked malonylchitosan microspheres for controlled release of acyclovir. Carbohyd Polym,2008,73: 490~497.
    [41]Zhang M, Yang Z, Chow L L et al. Simulation of Drug Release from Biodegradable Polymeric Microspheres with Bulk and Surface Erosions. J Pharm Pharm Sci,2003,92: 2040~2056.
    [42]Munday D L, Cox P J. Compressed xanthan and karaya gum matrices:hydration, erosion and drug release mechanisms. Int J Pharm,2000,203:179~192.
    [43]Zhou W, Feijen J. Biodegradable polymersomes for controlled drug release. J Control Release,2008,132:e35-e36.
    [44]Ubrich N, Bouillot P, Pellerin C et al. Preparation and characterization of propranolol hydrochloride nanoparticles:a comparative study. J Control Release,2004,97:291~300.
    [45]Zhang X, Zhang H, Wu Z et al. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm,2008,68:526~534.
    [1]Kaldas M 1, Walle U K, Woude H V D et al. Covalent Binding of the Flavonoid Quercetin to Human Serum Albumin. J Agric Food Chem,2005,53:4194~4197.
    [2]Kandaswami C, Lee L T, Lee P P et al. The Antitumor Activities of Flavonoids. In Vivo,2005, 19:895-909.
    [3]Comalada M, Camuesco D, Sierra S et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-jB pathway. Eur J Immunol,2005,35:584~592.
    [4]Ratnam D V, Ankola D D, Bhardwaj V et al. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release,2006,113:189~207.
    [5]Park C H, Chang J Y, Hahm E R et al. Quercetin, a potent inhibitor against b-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Bioph Res Co,2005,328:227~234.
    [6]Vijayababu M R, Kanagaraj P, Arunkumar A et al. Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. J Cancer Res Clin Oncol,2005,131: 765~771.
    [7]Yang J H, Hsia T C, Kuo H M et al. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos,2006,34:296~304.
    [8]Lee L T, Huang Y T, Hwang J J et al. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res,2002,22:1615~1627.
    [9]Park C H, Chang J Y, Hahm E R et al. Biochem. Biophys. Res. Commun., Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells.2005,328:227~234.
    [10]Kuo S M. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett,1996,110:41~48.
    [11]Jakubowicz-Gil J. Paduch R, Piersiak T et al. The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochem Pharmacol,2005,69:1343~1350.
    [12]Asaum J. Matsuzaki H, Kawasak S et al. Effects of quercetin on the cell growth and the intracellular accumulation and retention of adriamycin. Anticancer Res 2000,20,2477~2483.
    [13]Cipak L, Rauko P, MiadokovaE et al. Effects of flavonoids on cisplatin-induced apoptosis of HL-60 and L1210 leukemia cells. Leuk Res,2003,27:65~72.
    [14]Chan M M, Fong D, Soprano K J et al. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Phvsiol.2003.194:63~70.
    [15]Li H L, Zhao X B. Ma Y K et al. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release,2009,133:238~244.
    [16]Chattopadhyay P. Shekunov B Yim Y D et al. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev,2007,59:444~453.
    [17]Kumar V V, Chandrasekar D, Ramakrishna S et al. Development and evaluation of nitrendipine loaded solid lipid nanoparticles:Influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm,2007,335:167-175.
    [18]Zhang Y, Yang Y, Tang K et al. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles.1 Appl Polym Sci,2008,107:891-897.
    [19]Xing J. Zhang D, Tan T. Studies on the oridonin-Ioaded poly(D,L-lactic acid) nanoparticles in vitro and in vivo. Macromol,2007.40:153~158.
    [20]Derakhshandeh K, Erfan M Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles:Factorial design, characterization and release kinetics. Eur J Pharm Biopharm,2007,66:34~41.
    [21]Gottschalk C, Wolf F, Frey H. Multi-Arm Star Poly (L-lactide) with Hyperbranched Polyglycerol Core. Macromol Chem Phys,2007,208:1657~1665.
    [22]Gao X. Zhang X, Wu Z et al. Synthesis and physicochemical characterization of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery. J Control Release.,2009.140:141~147.
    [23]Rakesh K T, Palanirajan V K, Narendra K J. Dendrimers in Oncology:An Expanding Horizon. Chem Rev,2009,109:49~87.
    [24]Marubayashi H, Akaishi S, Akasaka S et al. Crystalline Structure and Morphology of Poly(1-lactide) Formed under High-Pressure CO. Macromolecules,2008,41:9192~9203.
    [25]Peng H, Xiao Y, Mao X et al. Amphiphilic Triblock Copolymers of Methoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) for Enhancement of Osteoblast Attachment and Growth. Biomacromolecules,2009,10:95~104.
    [26]Kim Y S, Gil E S, Lowe T L. Synthesis and Characterization of Thermoresponsive-co-Biodegradable Linear-Dendritic Copolymers. Macromolecules,2006,39: 7805~7811.
    [27]Xie Z, Lu T, Chen X et al. Triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates:Synthesis, micellization, and Cytotoxicity. J Appl Polym Sci,2007, 105:271~279.
    [28]Kainthan R K, Janzen J, Levin E et al. Biocompatibility Testing of Branched and Linear Polyglycidol. Biomacromolecules,2006,7:703~709.
    [29]Sunder A, Hanselmann R, Frey H et al. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules,1999,32:4240~4246.
    [30]Fessi H, Puisieux F. Devissaguet J Ph et al. Nanocapsules formation by interfacial polymer deposition following solvent displacement. Int J Pharm,1989,55:R1-R4.
    [31]Barichello J M, Morishita M, Takayama K et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev. Ind Pharm,1999,25: 471~476.
    [32]Cheng J, Teply B A, Sherifi I et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials,2007,28:869~876.
    [33]Gao H, Wang Y N, Fan Y G et al. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-h-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Release,2005,107: 158~173.
    [34]Scalia S, Mezzena M. Incorporation of quercetin in lipid microparticles:Effect on photo- and chemical-stability. J Pharmaceut Biomed,2009,49:90~94.
    [35]Ye J, Wang Q, Zhoua X et al. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm,2008,352:273~279.
    [36]Huo D, Deng S, Li L et al. Studies on the poly (lacticco-glycolic) acid microspheres of cisplatin for lung-targetin. Int J Pharm,2005,289:63~67.
    [37]Peng H, Xiao Y, Mao X et al. Amphiphilic Triblock Copolymers of Methoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) for Enhancement of Osteoblast Attachment and Growth. Biomacromolecules,2009,10:95~104.
    [38]Kim Y S, Gil E S, Lowe T L. Synthesis and Characterization of Thermoresponsive-co-Biodegradable Linear-Dendritic Copolymers. Macromolecules,2006,39: 7805~7811.
    [39]Gao H, Yang Y W, Fan Y G et al. Conjugates of poly(DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems. J Control Release,2006,112:302~311.
    [40]Shi Q. Sua Y, Zhu S et al. A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. J Membrane Sci,2007,303: 204~212.
    [41]Wu T H, Yen F L, Lin L T et al. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm,2008.346:160~168.
    [42]Khoee S. Hassanzadeh S, Goliaie B. Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles. Nanotechnology,2007, 18:175602 (9p).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700