纤维素溶液行为及新材料构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,由于石油、煤炭等不可再生资源短缺问题日益突出,可再生能源得到高度重视。作为地球上储量最大的天然高分子,纤维素以其来源丰富、生物可降解、生物相容性和易于衍生化等优点倍受人们青睐。但是,由于纤维素分子间和分子内存在强烈的氢键作用,使纤维素难以熔融或溶解于普通溶剂,利用纤维素生产高值化产品受到限制。因此,研究与开发简便快速且有效的纤维素溶剂是纤维素科学与技术领域的重要目标。本实验室开发了一系列水溶剂体系能在低温下快速、简便的溶解纤维素。纤维素在该体系中的溶解是纤维素、水分子与溶剂小分子共同参与的动态自组装的过程,通过破坏纤维素的分子内和分子间氢键并形成包合物结构,促使纤维素链分散,从而达到溶解。然而,该体系中纤维素溶液的稳定性受外界影响较多,这是因为动态自组装形成的纤维素包合物结构处于亚稳态结构,因此溶液的稳定性对时间、温度、纤维素浓度以及分子量较为敏感,且具有独特的溶液-凝胶转变行为。本工作系统研究了纤维素在NaOH/尿素水体系中的分散状态、溶液行为及稳定性,在此基础上用流变学手段表征了纤维素溶液的化学和物理交联过程,并利用再生纤维素微孔结构为微反应器合成了新型复合材料,为更加深入的开发新溶剂并利用新溶剂构建新型功能化材料提供全面的理论依据。
     本文的主要创新有以下几点:(1)揭示NaOH、尿素和温度在增强纤维素溶液稳定性的影响和作用机理。(2)弄清搅拌因素对纤维素溶解度的影响,成功绘制搅拌速率与时间的溶解相图。(3)利用流变实时监测的方法考察交联剂环氧氯丙烷(ECH)对纤维素溶液溶胶-凝胶转化的影响,并阐明纤维素/ECH复合凝胶的结构与性能。(4)利用原位聚合法制备出纤维素/聚吡咯(PPy)复合导电膜,解决PPy难以加工成型的问题,赋予纤维素膜导电性能。
     本论文的主要研究内容和结论包括以下几个部分。首先,利用动态激光光散射(DLS)和静态激光光散射(SLS)结合,观察溶剂配比和温度改变后纤维素在NaOH/尿素水体系中的聚集行为,研究它们对纤维素溶液稳定性的影响。结果表明,纤维素在7wt%NaOH/12wt%尿素水溶剂体系中为纤维素包合物(ICs)以及IC聚集体共存。适当增加NaOH的浓度能够增加纤维素单分散ICs比例,减少表观平均聚集数Ngg,说明聚集程度有所减少。尿素的增加能在一定程度上减少纤维素IC聚集体的数目,但其减少聚集的能力比NaOH弱,这是由于二者在纤维素溶解过程中的作用不同而造成的。通过实验,我们发现了最优化配比的溶剂体系为9wt%NaOH/13wt%尿素水溶剂体系,此时纤维素单分散ICs的比例得到很大提高,Ngg值最小为3.6,此时聚集体数目极少,纤维素接近于单分散。温度对纤维素溶液也有很大影响,在10°C下,纤维素在9wt%NaOH/13wt%尿素水溶剂体系主要以纤维素单分散ICs存在。
     利用光学显微镜、流变学方法和DLS技术,通过改变搅拌棒的有效搅拌面积、搅拌时间、搅拌速度以及搅拌的环境温度等,研究纤维素在7wt%NaOH/12wt%尿素水溶剂体系中的溶解度。结果表明:未达到饱和溶解度cmax时,有效搅拌面积的增加、搅拌时间的延长和搅拌速率的增加都有利于纤维素溶解。当饱和溶解度cmax达到最大值时,延长搅拌时间和加快搅拌速率将不再产生影响。cmax受环境温度的影响极大,溶解环境温度为–5~–10℃时,纤维素分散较好,cmax可达到6.5wt%。通过实验,我们得到了最佳的溶解条件并优化了纤维素溶解步骤。
     我们利用流变监测了以环氧氯丙烷为交联剂的纤维素溶液溶胶-凝胶转变行为,并考察了纤维素/ECH复合水凝胶的性能。结果表明:纤维素/ECH复合体系的凝胶化过程是时间、温度、ECH含量和纤维素浓度的函数。随着纤维素或交联剂ECH浓度的增加,单位体积内的分子数目增加,缠结现象严重,凝胶时间缩短。相对于交联剂ECH的浓度,体系的凝胶化时间对纤维素的浓度更为敏感。同时,溶液温度升高,凝胶时间也会降低。纤维素/ECH复合水凝胶的力学强度取决于纤维素浓度和ECH含量,同时复合水凝胶的溶胀率可以通过调节纤维素浓度和ECH含量进行调控。该方法具有明显的可控性,通过改变纤维素浓度和ECH含量可以调节纤维素溶液的溶液-凝胶转变过程及水凝胶的力学性能的参数,有望设计出满足人体理化功能的注射型水凝胶。
     以FeCl3为氧化剂和掺杂剂,再生纤维素膜的微孔结构为微反应器,成功地聚合吡咯单体,制备出纤维素/PPy导电复合材料。利用该法制备的聚吡咯呈球形颗粒状,尺寸大小和分布与吡咯单体浓度有关。红外光谱结果显示:PPy与纤维素存在一定的相互作用力,能够吸附在纤维素基体中。PPy的加入赋予了复合材料优异的导电性能,且电导率与PPy含量、分布及掺杂剂FeCl3有关,测试发现介电常数较高,能够吸收较强电磁波。本工作解决了聚吡咯难以加工成型的问题,并为具有生物降解性的高分子复合导电材料的制备提供了一种较为简单和环保的方法。
     本论文取得的系列科学数据可以为纤维素绿色新溶液的发展提供理论支持,符合可持续发展战略以及发展绿色纤维的国家目标,因此将具有重要的学术价值和应用前景。
Nowadays, global interests in renewable energy are increasing because oflack of coal and oil. As the most abundant natural polymers on the earth, cellulosehas attracted great attention by its unique superiority, such as environmentallyfriendly property, biocompatible and so on. Moreover, many functional cellulosematerials were successfully prepared from the doped cellulose. However, theinter-and intra-molecular hydrogen bonds have made the dissolution of cellulosea difficult process in common solvents, and it limits its potential applications. Inour laboratory, novel solvents such as NaOH/thiourea, NaOH/urea and LiOH/ureaaqueous solution that can dissolve cellulose rapidly after being precooled to lowtemperatures (–12~–5°C) have been developed. We have proved that thecellulose dissolution at–12°C can arise as a result of a fast dynamicself-assembly process among solvent small molecules (NaOH, urea, and water)and cellulose macromolecules. NaOH―hydrates‖can be more easily attracted tocellulose chains through the formation of new hydrogen-bonded networks at lowtemperature, while the urea hydrates can possibly be self-assembled at the surfaceof the NaOH hydrogen-bonded cellulose to form an inclusion complex (IC),leading to dissolution of cellulose. However, cellulose ICs are unstable and can bedestroyed probably, leading to the cellulose IC aggregates. Therefore, the singleICs co-exist with IC aggregates in this system. As a result, the cellulose solution isrelatively unstable and sensitive to temperature, polymer concentration, andstorage time. The aim of this dissertation is to investigate the aggregate behaviorof cellulose single ICs and IC aggregates in NaOH/urea system to optimize thedissolution procedure, as well as the chemical cross-linking rheological behaviorto supply useful information for the industrialization of the green cellulosesolvent.
     The innovation of this dissertation are as follows:(1) for the first time, theeffect of the proportion of NaOH and urea on the aggregation behavior ofcellulose was investigated, and the mechanism of the solvent small molecules andtemperature on the cellulose solution stability was established.(2) The effect ofstirring conditions on dissolution of cellulose in NaOH/urea system was studiedsystematically, and a schematic diagram of the cellulose solubility was plotted.(3)The chemical cross-linking process of cellulose/epichlorohydrin (ECH) was monitored by rheological, and the characteritics of cellulose/ECH hydrogels wasrevealed.(4) A conducting hybrid composite of cellulose/polypyrrole (PPy) wassuccessfully prepared by in situ synthesized by using the micropores in cellulosefilms as micro-reactors.
     The main research contents and conclusions are divided into several parts.For the7wt%NaOH/12wt%urea solvent, a small increase of NaOH couldincrease the amount of singe cellulose ICs and weaken the aggregationphenomenan, as a result of the reinforcement of hydrogen bond between celluloseand NaOH hydrates. Increase of urea decreased the IC aggregates percentageslightly because urea could form more complete shell of the ICs structure.Furthermore, the portion of NaOH/urea solvent has been optimized to be9/13, inwhich the proportion of cellulose single ICs was0.96. Temperature also exhibitedgreat influence on the aggregation phenomenon, and cellulose solution wasrelatively stable at low temperature.
     Influences of the stirring area, stirring time, stirring rates of different stirringblade and environment temperature on the cellulose solubility in NaOH/urea wereinvestigated comprehensively. Lager stirring area, longer stirring time and higherstirring rate could enhance the saturation solubility (cmax) value, and after the cmaxvalue reached a maximum, further increase of stirring time and rates made littleinfluence on the dissolution, indicating a completed dissolution has been achieved.Moreover, a schematic diagram of the cellulose solubility was plotted, as aninstruction of cellulose dissolution in NaOH/urea. The results from DLSexperiments manifested that increase of rates could improve dispersion anddissolution of cellulose. On the other hand, the cmaxvalues could be significantlycontrolled by varying the stirring environment temperature, and the favorableenvironment temperature range was from–5to–10°C.
     Rheological properties of gelation process and mechanical properties ofbiomass hydrogels prepared from cellulose in NaOH/urea aqueous solutions byusing ECH as cross-linker were studied. Oscillatory frequency, time andtemperature sweeps were performed on an ARES-RFS III rheometer to monitorthe effect of convent of cross-linker, cellulose concentration and temperature onsol-gel rheology. The results indicated that the concentration of cross-linker andthe polymer could influence the crosslinking process. The higher concentration ofECH and cellulose could accelerate the gelatin, because of the entanglement among the polymer. Compare with ECH, the rheological behavior was moresensitive to the cellulose concentration. Temperature also played an important role,and higher temperature could result in a lower gelatin time. The mechanicalproperties of the cellulose/ECH hydrogels was adjusted to the concentration ofECH and cellulose. ECH/cellulose hydrogels exhibited excellent mechanicalproperties. Equilibrium swelling degrees of the ECH/cellulose hydrogensenhanced markedly with the cellulose concenstration.
     Cellulose/PPy conducting hybrid films were fabricated successfully by in situsynthesis of pyrrole with FeCl3as the oxidant and dopant in the micropores ofcellulose films as micro-reactors. The morphology of the resultant PPy wasspherical, and the size and distribution could be controlled by the pyrroleconcentration. The results from the IR spectroscopy indicated the hydrogen bondexited between PPy and cellulose. The cellulose films were planted conductivityafter combination of PPy, and the conductivities were affected by the size,distribution of PPy and the dopant FeCl3. The dielectric constant of the hybridfilms wwere high, which resulted in the strong absorption of the electromagneticwaves. This work solved the problem in molding PPy, and provided a simple andenvironmentally friendly method to prepare biodegradable and conductivepolymer composite material.
     In this dissertation, the dissolution process and stability of cellulose inNaOH/urea aqueous solution were studied systematically. The dissolvingprocedure of cellulose were optimized to promote the development of―green‖cellulose solvent and it provids important scientific proofs for cellulose materialfabrication in industry. The mechanism of chemical and physical cross-linking incellulose/ECH was explored, and a conductive composite film was prepared by insitu synthesis method. This research will enrich and improve the development andapplication of other natural polymers and functional materials, promoting thebasic research and application of biomass materials in our country. Thus, weprovided important scientific proofs to realize the low-cost, nontoxic and rapidprocess for fabrication cellulose materials on industry. Therefore, there were greatscientific significance and prospects of applications and it well accords with thetarget of our country and has the great importance for a sunstainable development.
引文
[1] Glasser W. G., Atalla R. H., Blackwell J., Brown M., Burchard W., French A. D.,Klemm D. O., Nishiyama Y. About the structure of cellulose: debating the Lindmanhypothesis. Cellulose2012,19,589–598.
    [2] Liebert T. Cellulose Solvents–Remarkable History, Bright Future. CelluloseSolvents: For Analysis, Shaping and Chemical Modification, Chapter1,2010,1033,3-54.
    [3] Linder AP., Bergman R., Bodin A., Gatenholm P. Mechanism of assembly of xylanonto cellulose surfaces. Langmuir2003,19,5072–507.
    [4] Bogolitsyna A., Becker M., Dupont A., Borgards A., Rosenau T., Potthast A.Determination of carbohydrate-and lignin-derived components in complex effluentsfrom cellulose processing by capillary electrophoresis with electrosprayionization-mass spectrometric detection. J. Chromat. A2011,1218,8561-8566.
    [5]吕昂,张俐娜.纤维素研究进展.高分子学报,2007,10:937-944.
    [6] Karlsson J. O., Henriksson A., Michalek J., Gatenholm P. Control ofcellulose-supported hydrogel microstructures by three-dimensional graftpolymerization of glycol methacrylates. Polymer2000,41,1551–1559.
    [7] Muller M., Zentel R. Artificial Opals as Effect Pigments in Clear‐Coatings.Macromol. Chem. Phys.2000,201,2055–2063.
    [8] Kraessig H., Schurz J., Steadman R., Schliefer K., Albrecht W. Ullmann’sEncyclopedia of Industrial Chemistry,5th ed.; Wiley-VCH: Weinheim, Germany,2002.
    [9] Hinterstoisser B., Salmen L. Application of dynamic2D FTIR to cellulose. Vib.Spectrosc.2000,22,111-118.
    [10] Murakami M., Kaneko Y., Kadokawa J. Preparation of cellulose-polymerizedionic liquid composite by in-situ polymerization of polymerizable ionic liquid incellulose-dissolving solution. Carbohydr. Polym.2007,69,378-381
    [11] Klemm D., Heublein B., Fink H.-P., Bohn A., Cellulose: fascinating biopolymerand sustainable raw material. Angew. Chem.(Int. ed.)2005,44,3358-3393.
    [12]张俐娜,天然高分子改性材料及应用,化学工业出版社,北京,2006
    [13]张俐娜,天然高分子科学与材料,科学出版社,北京,2007.
    [14] Kim H., Lee K. Application of Insoluble Cellulose Xanthate for the Removal ofHeavy Metals from Aqueous Solution. Korean Z Chem. Eng.1999,16,298-302.
    [15] Wing R. E., Doane W. M. Russel C. R., Insoluble Starch Xanthates: Use inHeavy Metal Removal. J Appl. Polym Sci.1975,19,847-856.
    [16] Hudson, S., Cuculo, J. The solubility of cellulose in liquid ammonia/saltsolutions. J. Polym. Sci. Polym. Chem. Ed.1980,18,3469-3481.
    [17] Heard C. M., Suedee R. Stereoselective adsorption and trans-membrane transferof propranolol enantiomers using cellulose derivatives. International Journal ofPharmaceutics1996,139,15-23
    [18] Vehvil inen, M.; Nousiainen, P. Cellulosic Man-made Fibres. Proceedings of theSingapore Viscose Chemistry`s Seminar. Akzo-Nobel, April22-24,1997.
    [19] Xu Q., Chen L. F. Ultraviolet spectra and structure of zinc-cellulose complexes inzinc chloride solution. J. Appl. Polym. Sci.1999,71,1441-1446.
    [20] Edgar J., Bogan T. A direct process of production of the cellulose esters.European Patent WO96/20960,1996.
    [21] Takaragi A., Minoda M., Miyamoto T., Liu H., Zhang L. Reaction characteristicsof cellulose in the LiCl/1,3‐dimethyl‐2‐imidazolidinone solvent system.Cellulose1999,6,93-102.
    [22] Turbak A. F., El-Katrawy A., Synder F., Auerbach A. Solvent system for cellulose.US Patent4302252,1981.
    [23] McCormick C., Callais P.A. Derivatization of cellulose in lithium chloride andNN-dimethylacetamide solutions. Polymer1987,28,2317-2323.
    [24] Graenacher G., Sallmann R. Cellulose solutions and process of making same. USPatent2179181,1939.
    [25] Franks N.E., Varga S.K. Process for making precipitated cellulose. US Patent4145532,1979.
    [26] Chanzy H., Nawrot S., Peguy A., Smith P. Phase behavior of the quasiternarysystem N-methylmorpholine N-oxide, water and cellulose. J. Polym. Sci., Polym.Phys. Ed.1982,20,1909-1924.
    [27] Cuculo J.A., Smith C., Sangwatanaroj U., Stejskal, E., Sankar S. A study on themechanism of dissolution of the cellulose/ammonia/ammonium thiocyanate system. II.J. Polym. Sci., Part A: Polym. Chem.1994,32,241-247
    [28] Kamide K., Okajima K., Kowsaka K., Matsui T. CP/MASS[cross-polarization/magic angle sample spinning] carbon-13NMR spectra of cellulosesolids: an explanation by the intramolecular hydrogen bond concept. Polym. J.1985,17,701-706.
    [29] Dawsey T. R., McCormick C. L. The lithium chloride/dimethylacetamide solventfor cellulose: a literature review. J. Macromol. Sci., Rev. Macromol. Chem. Phys.1990,30,405-440.
    [30] Chanzy H., Nawrot S., Peguy A., Smith P. Phase behavior of the quasiternarysystem N-methylmorpholine N-oxide, water and cellulose. J. Polym. Sci., Polym.Phys. Ed.1982,20,1909-1924.
    [31] G tze K. Chemiefasern nach dem Viskoseverfahren,3rd ed.,Vol.1, Springer,Heidelberg,1967, pp.1-778.
    [32] G Yamashiki T., Kamide K., Okajima K., Kowsaka K., Matsui T., Fukase T.Some characteristic features of dilute aqueous solution, alkali solutions of specificalkali concentration (2.5mol L-1) which possess maximum solubility power againstcellulose. Polym.1988,20,447-457.
    [33] Vehvil inen M., Nousiainen P. Cellulosic Man-made Fibres, Proceedings of theSingapore Viscose Chemistry`s Seminar, Akzo-Nobel, April22-24,1997.
    [34] Isogai A., Atalla R. H. Dissolution of Cellulose in Aqueous NaOHSolutions.Cellulose. Cellulose1998,5,309-319.
    [35]邢宗,陈均志.天然纤维素溶剂体系的研究进展.纸和造纸2009,28,26-31.
    [36]周刚,纤维素无水磷酸溶解体系的研究.博士论文,北京:北京服装学院.2008.
    [37]钱旭红.有机化学(第二版).化学工业出版社.北京,2006.
    [38] Boerstoel H., Maatman H., Westerink J.B., Koenders B.M. Liqiud crystallinesolution of cellulose in the phosphoric acid. Polymer2001,42,7371-7379.
    [39] Pagliaro M. New iodination of cellulose in phosphoric acid. Carbohyd Res.1999,315,350–353.
    [40] Sun Y., Lin L., Pang C., Deng H., Peng H., Li J., He B., Liu S. Hydrolysis ofcotton fber cellulose in formic acid. Energ Fuel2007,21,2386–2389.
    [41] Butera G., Pasquale C. D., Maccotta A., Alonzo G., Conte P. Thermaltransformation of micro-crystalline cellulose in phosphoric acid. Cellulose2011,18,1499–1507.
    [42]张军平.稻壳纤维素衍生物的合成及其应用研究.硕士论文,西安:西北大学,2002.
    [43] Hi11J.W.,Jaeobsen R.A.,U.S.Pat.2134825,1938.
    [44]王渊龙,氨基甲酸酯法绿色纤维素纤维的研究,硕士论文,天津:天津工业大学,2001.
    [45] Dupont A. L., Mortha G. Comparative evaluation of size-exclusionchromatography and viscometry for the characterisation of cellulose. J. Chromatogr A2004,1026,129-141
    [46] Graenacher G., Sallmann R. Cellulose solutions and process of making same, USPatent2179181,1939.
    [47] Johnson D.L. Improvements in solutions, Brit. Patent1144048,1969.
    [48] F lt S., Wagberg L., Vesterlind E.L., Larsson P.T. Model films of cellulose ID–improved preparation method and characterization of the cellulose film. Cellulose2004,11,151-162.
    [49]张耀鹏,邵惠丽,沈弋弋.环境友好的NMMO工艺纤维素薄膜.国外纺织技术,2000,(4),124-129.
    [50] Lang H., Laskowski I., Lukanoff B., Schleicher H., Mertel H., Franz H. et al.Untersuchungen on Cellulose in N-Methylmorpholin-N-oxid (MMNO). Cell. Chem.Technol.1986,20,289–301.
    [51] Buijtenhuis F.A., Abbas M. and Witteveen A.J. The degradation of andstabilization of cellulose dissolved in N-methyl-morpholine-N-oxide (NMMO).Papier1986,40,615–619.
    [52] Henniges U., Kostic M., Borgards A., Rosenau T., Potthas A. DissolutionBehavior of Different Celluloses. Biomacromolecules2011,12,871–879.
    [53]程博闻.纤维素在LiCl/极性溶剂体系中溶解性能的研究.天津纺织工学院学报.2000,19,1-3.
    [54] Stryuk S., Eckelt J., Wolf B A. Solutions of cellulose in DMAc+LiCl: migrationof the solute in an electrical field. Cellulose,2005,12,145-149.
    [55] El-Kafrawy A. Investigation of the cellulose/LiCl/dimethylacetamide andcellulose/LiCl/N‐methyl‐2‐pyrrolidinone solutions by13C NMR spectroscopy. JAppl. Polym. Sci.1982,27,2435-2443.
    [56] Yanagisawa M., Shibata I., Isogai A. SEC–MALLS analysis of cellulose usingLiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose2004,11,169-176.
    [57] Rousselle M. A. Determining the molecular weight distribution of cottoncellulose: a new GPC solvent. Textile Res. J.2002,72,131-134.
    [58] Turner M. B., Spear S. K., Holbrey J. D., Rogers D. Production of BioactiveCellulose Films Reconstituted from Ionic Liquids. Biomacromolecules2004,5,1379–1384.
    [59] Fukaya Y., Hayashi K., Wada M., Ohno H. Cellulose dissolution with polar ionicliquids under mild conditions: required factors for anions. Green Chem.2008,10,44-46.
    [60] Tristan G. Youngs A., Holbrey J. D., Deetlefs M., Nieuwenhuyzen M.,Margarida F. Gomes C., Hardacre C. A Molecular Dynamics Study of GlucoseSolvation in the Ionic Liquid1,3-Dimethylimidazolium Chloride. ChemPhysChem.2006,7,2279–2281.
    [61] Yamamoto M., Kuramae R., Yanagisawa M., Ishii D., Isogai A. Light-ScatteringAnalysis of Native Wood Holocelluloses Totally Dissolved in LiCl DMI Solutions:High Probability of Branched Structures in Inherent Cellulose. Biomacromolecules2011,12,39823988.
    [62] Yanagisawa M., Isogai A. SEC-MALS-QELS Study on the MolecularConformation of Cellulose in LiCl/Amide Solutions. Biomacromolecules2005,6,1258-1265.
    [63] Wang Z., Liu S., Matsumoto Y., Kuga S. Cellulose gel and aerogel fromLiCl/DMSO solution. Cellulose2012,19,393–399.
    [64] Graenacher C. Cellulose Solution. U.S. Patent1,943,176,1934.
    [65] Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D., Dissolution of cellosewith ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [66] Plechkova N. V., Seddon K. R. Applications of ionic liquids in the chemicalindustry. Chem. Soc. Rev.,2008,37,123-150.
    [67] Branco L. C., Rosa J. N., Ramos J. M. Preparation and characterization of newroom temperature ionic liquids. Chem. Eur. J.2002,8,3671-3677.
    [68] Kamide K., Okajima K., Matsui T., Manabe S. Dissolution process and dissolvedcellulose in dimethylformamide-chloral-pyridine system. Polym. J.1980,12,531-534.
    [69] Heinze T., Schwikal K., Banhel S., Ionic liquids as reaction medium in cellulosefunctionalization. Macromol. Biosci.2005,5,520-525
    [70] Barthel S., Heinze T. Acylation and carbanilation of cellulose in ionic liquids.Green Chem.2006,8,301-306.
    [71] Luo H.M., Li Y.Q., Zhou C.R. Study on the dissolubility of the cellulose in thefunctionalized ionic liquid. Polym. Mater. Sci. Eng.2005,21,233-235.
    [72] Wu J., Zhang J., Zhang H., He J., Ren Q., Guo M., Homogeneous acetylation ofcellulose in a new ionic liquid. Biomacromolecules2004,5,266-268.
    [73] Kilpel inen I., Xie H., King A., Granstrom M., Heikkinen S., Argyropoulos D S.Dissolution of Wood in Ionic Liquids. J. Agric. Food Chem.2007,55,9142-9148.
    [74] Feng L., Chen Z.-l. Research progress on dissolution and functional modificationof cellulose in ionic liquids. J. Mol. Liq.2008,142,1-5.
    [75]张金明,吕玉霞,罗楠,武进,余坚,何嘉松,张军.离子液体在纤维素化学中的应用研究新进展,高分子通报,2011,138-153.
    [76] Leipner H., Fischer S., Brendler E. Structural changes of cellulose dissolved inmolten salthydrates.Macromol. Chem. Phys.2000,201,2041-2049.
    [77] Jung H. Z., Benerito R. R., Berni, R. J.; Mitcham D. Effect of low temperatureson polymorphic structures of cotton cellulose. J. Appl. Polym. Sci.1977,21,1981-1988.
    [78] Okano T., Sarko A. Mercerization of cellulose. I. X-ray diffraction evidence forintermediate structures. J. Appl. Polym. Sci.1984,29,4175-4182.
    [79] Yamashiki T., Kamide K., Okajima K., Kowsaka K., Matsui T. Fukase H. Somecharacteristic features of dilute aqueous alkali solutions of specific alkaliconcentration (2.5molL1) which possess maximum solubility power againstcellulose. Polym. J.1988,20,447-457.
    [80] Egal M., Budtova T., Navard P. Structure of Aqueous Solutions ofMicrocrystalline Cellulose/Sodium Hydroxide below0°C and the Limit of CelluloseDissolution. Biomacromolecules2007,8,2282-2287.
    [81] Zhang L., Cai J., Zhou J., Li C., Qi H., Mao Y PCT:PCT/CN2006/00757.
    [82] Zhang L., Ruan D., Zhou J., Lue A., Li C. PCT:PCT/CN2006/00756.
    [83] Cai J., Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/ureaaqueous solutions. Macromol. Biosci.2005,5,539-548.
    [84] Lue A., Zhang L., Ruan D. Inclusion Complex Formation of Cellulose inNaOH-Thiourea Aqueous System at Low Temperature, Macromol. Chem. Phys.2007,208,2359-2366.
    [85] Lue A., Liu Y., Zhang L., Potthas A. Light scattering study on the dynamicbehaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polym.2011,52,3875-3864.
    [86] Zhou J., Zhang L., Deng Q., Wu X. Synthesis and characterization of cellulosederivatives prepared in NaOH/urea aqueous solutions. J. Polym. Sci. Polym. Chem.2004,42,5911-5920.
    [87] Qi H., Chang C., Zhang L. Properties and applications of biodegradabletransparent and photoluminescent cellulose films prepared via a green process. GreenChemistry2009,11,177-184.
    [88] Cai J., Kimura S., Wada M., Kuga S., Zhang L. Cellulose aerogels from aqueousalkali hydroxide-urea solution. ChemSusChem2008,1,149-154.
    [89] Zhou Q., Zhang L., Li M., Wu X., Cheng G. Homogeneous hydroxyethylation ofcellulose in NaOH/urea aqueous solution. Polym. Bull.2005,53,243-248.
    [90] Chang C., Peng J., Zhang L.Pang D. Strongly fluorescent hydrogels withquantum dots embedded in cellulose matrices. J. Mater. Chem.2009,19,7771-7776.
    [91] Nehls I., Wagenknecht W., Philipp B.13C-NMR-spektroskopischeUntersuchungen zur Aufl sung von Cellulose im System N2O4/DMF und anschlieende Sulfatierung unter Homogenbedingungen. Acta Polymerica1986,37,610-613.
    [92] Kamide K., Okajima K., Matsui T., Manabe S. Dissolution process and dissolvedcellulose in dimethylformamide-chloral-pyridine system. Polym. J.1980,12,531-534.
    [93] Hudson S., Cuculo J. The solubility of cellulose in liquid ammonia/salt solutions.J. Polym. Sci. Polym. Chem. Ed.1980,18,3469-3481.
    [94] Amikoshi H. Method for dissolving cellulose. Japan Kokai Patent1984,59-124933.
    [95] Cross C. F., Bevan B. T., Beadle C. The interaction of alkali-cellulose and carbonbisulphide: cellulose thiosulphocarbonates. Ber. Deutsch. Chem. Ges.1893,63,837-845.
    [96]芦长椿,粘胶纤维现状的思考及建议.化纤与纺织技术.2004,31-33.
    [97] Bandurjan S., Iovleva M. M., Papkov S. Electron microscopic investigation ofthe coagulated viscose structure in different stages of the ripening process.Faserforschg. Textilchem.1971,22,477-481.
    [98] Ivanov A. A., Kogan E. G., Kim V. P., Mazhirina G. S., Zaltseva L. A. Effect ofurea on the properties of viscose. Fibre Chemistry1986,18,27-29.
    [99] Philipp, B.; Chu, C. H. Distribution of xanthate groups in the viscose process. I.Homogeneous and heterogeneous hydrolytic decomposition of organic xanthateseiburg. Faserforschg. Textilchem.1965,16,244-249.
    [100] Gao S., Wang J., Jin Z. Preparation of cellulose flms from solution of bacterialcellulose in NMMO. Carbohydrate Polymers2012,87,1020-1025.
    [101] Rosenau T., Hofnger A., Potthast A., Kosma P. On the conformation of thecellulose solvent N-methylmorpholine-oxide (NMMO) in solution. Polymer2003,44,6153-6158.
    [102] Chanzy H., Dubé M., Marehessault R.H.,Crystallization of cellulose withN-methylmorpholine N-oxide: A new method of texturing cellulose,J. Polym. Sci:Polym. Lett. Ed.1979,17,219-226.
    [103]杨革生,冯坤,邵惠丽,胡学超.竹纤维素/NMMO·H2O溶液流变性能的研究.纤维素科学与技术.2008,16,54-59.
    [104] Andresen E. M., Mitchell G. R. In situ X-rays cattering investigations ofsolutions of cellulose in N-methyl-morpholine-N-oxide during shearing flow.Polymer,1998,39,7127-7129.
    [105] Eckelt J. Eich T., Ro¨der T., Ru¨f H., Sixta H., Wolf B. A. Phase diagram of theternary system NMMO/water/cellulose. Cellulose2009,16,373-379.
    [106] Adorjan I., Potthast A., Rosenau T., Sixta H., Kosma P. Discoloration ofcellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part1: Studies onmodel compounds and pulps. Cellulose2005,12,51-57.
    [107] Rosenau1T., Potthast A., Adorjan I., Hofnger A., Sixt H., Firgo H., Kosma P..Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)–degradation processesand stabilizers. Cellulose2002,9,283-291.
    [108] McCormick C. L., Callais P. A., Hutchinson B H. Solution studies of cellulosein lithium chloride and N, N-dimethylacetamide. Macromolecules1985,18,2394-2401.
    [109] Burchard W. Polymer structure and dynamics, and polymer-polymerinteractions. Adv Colloid Interfac,1996,64,45-65.
    [110] Sj holma E., Gustafsson K., Eriksson B., Brown W. Colmsjo A. Aggregation ofcellulose in lithium chloride/N,N-dimethylacetamide. Carbohydrate Polymers2000,41,153-161.
    [111] Roder T., Schelosk y. N., Glatter O. Solutions of cellulose inN,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer,2001,42,6765-6773.
    [112] Terbojevich H., Cosani A., Conio G., et al. Mesophase formation and chainrigidity in cellulose and derivatives. Aggregation of cellulose inN,N-dimethylacetamide-lithium chloride. Macromolecules1985,18,640-646.
    [113] Aono H., Tatsumi D., M atsumoto T. Effect of solvent exchange on the solidstructure and dissolution behavior of cellulose. Biomacromolecules2006,7,1311-1317.
    [114] Matsumoto T., Tatsumi D., Tamai N., Takaki T. Solution properties of cellulosesfrom different biological origins in LiCl/DMAc. Cellulose2002,10,1-8.
    [115]王铁群,阮金月,颜少晾,陈家楠.纤维素体系的溶液特征.纤维素科学与技术.1996,4,7-13.
    [116] Dorn S., Sch bitz M., Schlufter K., Heinze T. Novel cellulose productsprepared by homogeneous functionalization of cellulose in ionic liquids. CelluloseSolvents: For Analysis, Shaping and Chemical Modification.2010,275-285.
    [117] Wu J., Zhang J., Zhang H., He J., Ren Q., Guo M. Homogeneous Acetylation ofCellulose in a New Ionic Liquid. Biomacromolecules,2004,5,266-268.
    [118] Megan B. Turner, Scott K. Spear, John D. Holbrey, and Robin D. Rogers.Production of Bioactive Cellulose Films Reconstituted from Ionic Liquids.Biomacromolecules,2004,5,1379-1384.
    [119] Lu L., Zhang B., Xiao Y., Wan Z. Cui S. A novel cellulose hydrogel preparedfrom its ionic liquid solution. Chinese Science Bulletin2009,54,1622-1625.
    [120] Chen Y., Zhang Y., Ke F., Zhou J., Wang H., Liang D. Solubility of neutral andcharged polymers in ionic liquids studied by laser light scattering. Polymer2011,52,481-488.
    [121] Romain S., Kim A., Ries M. E., Budtova T. Viscosity ofCellulose-Imidazolium-Based Ionic Liquid Solutions. J. Phys. Chem. B2010,114,7222-7228.
    [122] Kuang Q., Zhao J., Niu Y. H., Zhang J., Wang Z. G.. Celluloses in an IonicLiquid: the Rheological Properties of the Solutions Spanning the Dilute andSemidilute Regimes. J. Phys. Chem. B2008,112,10234-10240.
    [123] Gericke M., Schlufter K., Liebert T., Heinze T., Budtova T. Rheologicalproperties of cellulose/ionic liquid solutions: from dilute to concentrated states.Biomacromol.2009,10,1188-1194.
    [124] Song H., Niu Y., Wang Z., Zhang J. Liquid crystalline phase and gel soltransitions for concentrated microcrystalline cellulose(mcc)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromol.2011,12(4),1087-1096.
    [125] Chen P., Zhang L., Cao F. Effect of moisture on glass tranition andmicrostructure of glycerol-plasticzied soy protein. Macromol. Biosci.2005,5,872-880.
    [126] Sammons R. J., Collier J. R., Rials T. G, Petrovan S. Rheology of1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J. Appl.Polym. Sci.2008,110,1175-1181.
    [127] Kamide K., Okajima K., Matsui T., Kowsaka K. Study on the solubility ofcellulose in aqueous alkali solution by deuteration IR and carbon-13NMR. Polymer1984,16,857-866.
    [128] Roy C. Budtova T., Navard P., Bedue O. Structure of Cellulose-Soda Solutionsat Low Temperatures. Biomacromolecules2001,2,687-693.
    [129] Yamashiki T. Matsui T., Kowsaka K., Saitoh M. New class of cellulose fiberspun from the novel solution of cellulose by wet spinning method. J. Appl. Polym. Sci.1992,44,691-698.
    [130] Roy C., Budtova T., Navard P. Rheological properties and gelation of aqueouscellulose-naoh solutions. Biomacromolecules2003,4,259-264.
    [131] Lu A., Liu Y., Zhang L., Potthast A. Investigation on metastable solution ofcellulose dissolved in naoh/urea aqueous system at low temperature. J. Phys. Chem. B2011,115,12801–12808.
    [132] Cai J., Zhang L., Unique gelation behavior of cellulose in NaOH/urea aqueoussolution, Biomacromolecules2006,7,183-189.
    [133] Lue A., Zhang L., Rheological behaviors in the regimes from dilute toconcentrated in cellulose solutions dissolved at low temperature, Macromol. Biosci.2009,9,488-496.
    [134] Norman A. P. Anderson D. P. Chemistry of the Cellulose-N2O4-DMF Solution:Recovery and Recycle of Raw Materials. Solvent Spun Rayon, Modified CelluloseFibers and Derivatives chapter Chapter5,55-70.
    [135] Wolfgang W., Irene N., Burkart P. The formation and stability of partially andcompletelysubstituted cellulose nitrite esters in dipolar aprotic solvents containingN204. Carborhydrate Research.1992,237,211-222.
    [136]王海云,朱永年,储富祥,蔡智慧.溶解纤维素的溶剂体系研究进展.生物质化学工程.2006,40,54-58.
    [137] Cuculo. Cellulose solvent compositions and methods of making and employingsame. US,6827773.
    [138] Fischer S. Leipner H., Thümmler K., Brendler E., Peters J. Inorganic MoltenSalts as Solvents for Cellulose. Cellulose2003,10,227-236.
    [139]熊健,叶君,赵星飞.纤维素在ZnCl2水溶液中的溶解性能及再生结构.华南理工大学学报.2010,38,23-27.
    [140]翁丽惠,聚合物水凝胶的表征及其智能行为研究,博士论文,武汉:武汉大学,2004.
    [141] Yoon J. A., Bencherif S. A. Aksak B. Kim E. K., Kowalewski T. Oh J. K.,Matyjaszewski K. Thermoresponsive hydrogel scaffolds with tailored hydrophilicpores. Chem. Asian J.2011,6,128-136.
    [142] Hoare T. R., Kohane D. S. Hydrogels in drug delivery: Progress and challenges.Polymer2008,49,1993-2007.
    [143] Jo C. Kang H., Lee N. Y., Kwon J. H., Byun M. W. Pectinand gelatin-basedfilm: effect of gamma irradiation on the mechanical properties and biodegradation.Radiat. Phys. Chem.2005,72,745-750.
    [144] Calvert P. Hydrogels for soft machines. Adv. Mater.2009,21,743-756.
    [145] Osada Y., Okuzaki H., Hori H. A polymer gel with electrically driven motility.Nature1992,355,242-244.
    [146]赵骞,多孔智能水凝胶的合成与性能,博士论文,杭州:浙江大学,2009.
    [147]刘文广,姚康德,戚务勤.水凝胶研究的最新进展.高分子材料科学与工程.2002,18,54-57.
    [148] Nettles D. L., Vail T. P., Morgan M. T., Grinstaff M. W., Setton L. A.Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann. Biomed.Eng.2004,32,391-397.
    [149] Balakrishnan B. Jayakrishnan A. Self-cross-linking biopolymers as injectable insitu forming biodegradable scaffolds. Biomaterials2005,26,3941-3951.
    [150] Ogushi Y. Sakai S., Kawakami K. Development of series of gateway binaryvectors, pGWBs, for realizing efficient construction of fusion genes for planttransformation. J. Biosci. Bioeng.2007,104,34-41.
    [151] Kurisawa M., Chung J. E., Yang Y. Y., Gao S. J., Uyama H. Injectablebiodegradable hydrogels composed of hyaluronic acid Ctyramine conjugates for drugdelivery and tissue engineering. Chem. Commun.2005,34,4312-4314.
    [152] Heinze T., Liebert T. Unconventional methods in cellulose functionalization.Prog. Polym. Sci.2001,26,1689-1762.
    [153] Frey M.W., Cuculo J.A., Khan S.A. Rheology and gelation ofeellulose/Ammonia/Alnmonium thioeyanate solutions,J. Polym. Sci. Part B: Polym.Phys.1996,34,2375-2386.
    [154] Di Martino A., Sittinger M., Risbud M. V. Chitosan: a versatile biopolymer fororthopaedic tissue-engineering. Biomaterials2005,26,5983-5990.
    [155] Galois L., Hutasse S., Cortial D., Rousseau C. F., Grossin L., Ronziere M. C.Herbage D., Freyria A. M. Bovine chondrocyte behaviour in three-dimensional type Icollagen gel in terms of gel contraction, proliferation and gene expression.Biomaterials2006,27,79-90.
    [156] Bryant S. J., Arthur J. A., Anseth K. S. Incorporation of tissue-specificmolecules alters chondrocyte metabolism and gene expression in photocrosslinkedhydrogels. Acta Biomater.2005,1,243-252.
    [157] Chang C. H., Liu H. C. Lina C. C., Choua C. H., Lina F. H.Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering.Biomaterials2003,24,4853-4858.
    [158] N. Sarkar, Thermal gelation properties of methyl and hydroxypropylmethylcellulose, J. Appl. Polym. Sci.1979,24,1073-1087.
    [159]王洪学,金春梅,王继锋,张淑华,吕殿贵,赵优臣.应用高分子吸水剂处理苗木提高干旱地造林成活率.林业科技,1999,24,10-12.
    [160] Peppas N. A., Hilt J. Z., Khademhosseini A., Langer R. Hydrogels in biologyand medicine: from molecular principles to bionanotechnology. Adv. Mater.2006,18,1345-1360.
    [161] Klein T. J., Rizzi S. C., Schrobback K., Reichert J. C., Jeon J. E., Crawford R.W., Hutmacher D. W. Long-term effects of hydrogel properties on humanchondrocyte behavior. Soft Matter2010,6,5175-5183.
    [162] Nishimoto S., Takagi M., Wakitani S., Nihira T., Yoshida T. Effect ofchondroitin sulfate and hyaluronic acid on gene expression in a three-dimensionalculture of chondrocytes. J. Biosci. Bioeng.2005,100,123-126.
    [163] Hoffman A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev.2002,54,3-12.
    [164] Peng X., Zhong L., Ren J., Sun R. Highly Efective Adsorption of Heavy MetalIons from Aqueous Solutions by Macroporous Xylan-Rich Hemicelluloses-BasedHydrogel. J. Agric. Food Chem.2012,60,3909-3916.
    [165] Malafaya P. B., Silva G. A., Reis R. L. Natural-origin polymers as carriers andscaffolds for biomolecules and cell delivery in tissue engineering applications. Adv.Drug Deliver. Rev.2007,59,207-233.
    [166] Mauck R. L., Soltz M. A., Wang C. C. B., Wong D. D., Chao, P. H. G., ValhmuW. B., Hung C. T., Ateshian G. A. Functional tissue engineering of articular cartilagethrough dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng.2000,122,252-260.
    [167] Tate M.C., Shear D.A., Hoffman S.W., Stein D.G., LaPlaca M.C.Biocompatibility of methylcellulose-based constructs designed for intracerebralgelation following experimental traumatic brain injury. Biomaterials2001,22:1113-1123.
    [168] Liu W., Zhang B., Lu W.W., Li X., Zhu D., Yao K. De, Wang Q., Zhao C.,Wang C.. A rapid temperature-responsive sol–gel reversiblepoly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials2004,25,3005-3012.
    [169] Stabenfeldt S.E., Garcia A.J., LaPlaca M.C. Thermoreversiblelaminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res.2006,77,718-725.
    [170] Stauffer D., Coniglio A., Adam M.,Gelation and Critieai Phenomenon. Adv.Polym. Sci.1982,44,103-145.
    [171] Nystrom B., Walderhaug H., Hansen F. K. RHElogieal behavior duringthermoreversible gelation of Aqueous Mixture of Ethyl(hydroxyethyl) cellulose andSurfactants. Langmuir1995,11,750-769.
    [172] Silberberg S., Mijnlieff P.F. Study of reversible gelation of partially neutralizedpoly(methacrylic acid) by viscoelastic measurements. J. polym. Sci. A,1970,8,1089-1094.
    [173]左榘,牛爱珍,安英丽,何炳林.凝胶化反应全过程的激光光散射跟踪研究.高分子学报,1998,4,419-423.
    [174] Decker C., Moussa K. Real-time kinetic study of laser-induced polymerization.Macromol.1989,22,4455-4467.
    [175] Pekcan O., Kaya D. Erdogan fast transient fluorescence technique formonitoring gelation in free-radical crosslinking copolymerization. Polym.2001,42,645-653.
    [176] Chen Q., Zhang X., Xu J. A novel method for characterization the wholeprocess of polymer gelation. Chin. J. Polym. Sci.2001,19,335-356.
    [177] Lin L., Thermal gelation of methycellulose in water: scaling andthremoreversibility. Macromol.2002,35,5990-5998.
    [178] Matricardi P., Dentini M., Crescenzi V., Ross-Murphy S. B. Gelation ofchemically cross-linked polygalacturonic acid derivatives. Carbohydr. Polym.1995,27,215-220.
    [179] Chambon F., Winter H. H. Linear viscoelasticity at the gel point of acrosslinking PDMS with imbalanced stoichiometry. J. Rheol.1987,31,683-697.
    [180] Nijenhuis K. T., Winter H. H. Mechanical properties at the gel point of acrystallizing poly (vinyl chloride) solution. Macromolecules1989,22,411-414.
    [181] Nystrom B., Walderhaug H., Hansen F. K. Rheological Behavior duringThermoreversible Gelation of Aqueous Mixtures of Ethyl(hydroxyethy1)cellulose andSurfactants. Langmuir1995,11,750-757.
    [182] Frey M. W., Cuculo J. A., Khan S. A. Rheology and Celation ofCellulose/Ammonia/Ammonium Thiocyanate Solutions. J. Polym. Sci. B1996,34,2375-2381.
    [183] Oyama N., Tatsuma T., Sato T., Sotomur T. Dimercaptan–polyaniline compositeelectrodes for lithium batteries with high energy density. Nature1995,373,598-600.
    [184] Madden J., Vandesteeg N. A., Anquetil P. A., Madden P. G. A., Takshi A., PytelR. Z., Lafontaine S. R., Wieringa P. A., Hunter I. Artificial muscle technology:Physical principles and naval prospects. Oceanic Engineering2004,29,706-728.
    [185] Smela E., Gadegaard N. Volume change in polypyrrole studied by atomic forcemicroscopy. Journal of Physical Chemistry B2001,105,9395-9405.
    [186] Xie X. Mai Y., Zhou X. Dispersion and alignment of carbon nanotubes inpolymer matrix: A review. Materials Science and engineering: R: reports.2005,4,89-112.
    [187]贺丽丽,叶明泉,韩爱军.共混复合型导电高分子材料研究进展.塑料工业.2007,35,43-53.
    [188]叶明泉,贺丽丽,韩爱军.填充复合型导电高分子材料导电机理及导电性能影响因素研究概况.化工新型材料.2008,36,13-15.
    [189] Furukawa Y, Akimoto M, Harada I. Vibrational key bands and electricalconductivity of polythiophene. Synthetic Metal1987,18,151-156.
    [190] Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube–polymercomposites: Chemistry, processing, mechanical and electrical properties. Progress inpolymer Science2010,35,357-401.
    [191] Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., Warth H.Mechanical properties and electrical conductivity of carbon-nanotube filledpolyamide-6and its blends with acrylonitrile/butadiene/styrene. Polymer2004,45,739-748.
    [192] Li S., Qin Y., Shi J., Guo Z., Li Y., Zhu D. Electrical Properties of SolubleCarbon Nanotube/Polymer Composite Films. Chem. Mater.2005,17,130-135.
    [193]鲁江.碳纳米管纤维的研制及其应用初探学.博士论文.上海:东华大学.2010.
    [194] Yoon S. H., Jin H. J., Kook M. C., Pyun Y. R. Electrically Conductive BacterialCellulose by Incorporation of Carbon Nanotubes. Biomacromolecules2006,7,1280-1284.
    [195] Fugetsua B., Sanob E., Sunadac M., Sambongi Y., Shibuyac T, Wang X., HirakiT. Electrical conductivity and electromagnetic interference shielding effciency ofcarbon nanotube/cellulose composite paper. Carbon.2008,46,1256-1258.
    [196] Son W., Youk J., Lee T., Park W. Preparation of Antimicrobial UltrafneCellulose Acetate Fibers with Silver Nanoparticles. Macromol. Rapid Commun.2004,25,1632-1637.
    [197] Sharma A.K., Ramu Ch. Pyroelectricity in Fe-doped cellulose acetate films.Materials Letters2003,10,517-520.
    [198]周秀民,孙丽菊.导电高分子材料的应用研究.吉林化工学院学报.2005,22,65-67.
    [199] Koula S., Chandra R., Dhawan S.K. Conducting polyaniline composite for ESDand EMI at101GHz. Polymer,2000,41,9305-9310.
    [200] Al-Ahmed A., Mohammad F., Rahman M. Z. Ab. Composites of polyanilineand cellulose acetate: preparation, characterization, thermo-oxidative degradation andstability in terms of DC electrical conductivity retention. Synthetic Metals2004,144,29-49.
    [201] Yin W., Li J., li Y., wu J., Gu T. Conducting Composite Film Based onPolypyrrole and Crosslinked Cellulose. J. Appl. Polym. Sci.2001,80,1368-1373.
    [202] Johnston J. H., Kelly F. M., Moraes J., Borrmann T., Flynn D. Conductingpolymer composites with cellulose and protein fbres. Current Applied Physics,2006,6,587-590.
    [203] Shi X., Zhang L., Cai J., Cheng G., Zhang H., Li J., Wang X. A FacileConstruction of Supramolecular Complex from Polyaniline and Cellulose in AqueousSystem. Macromolecules2011,44,4565-4568.
    [1] Klemm D., Heublein B., Fink H.P, Bohn A. Cellulose: fascinating biopolymer andsustainable raw material. Chem. Int. Ed.2005,44,3358-3393.
    [2] Kadokawa J., Murakami M., Takegawa A., Kaneko Y. Preparation ofcellulose-starch composite gel and fibrous material from a mixture of thepolysaccharides in ionic liquid. Carbohydrate Polymers2009,75,180-183.
    [3] Eichhorn S. J., Baillie C. A., Zafeiropoulos N., Mwaikambo L.Y., Ansell M. P.,Dufresne A., Entwistle K. M., Herrera-Franco P. J., Escamilla G. C., Groom L.,Review: current international research into cellulosic fibres and composites. J. Mater.Sci.2001,36,2107-2131.
    [4] Zhang J., Yuan J., Yuan Y., Shen J., Lin S. Chemical modification of cellulosemembranes with sulfo ammonium zwitterionic vinyl monomer to improvehemocompatibility. Colloids and Surfaces B: Biointerfaces2003,30,249-257.
    [5] Shibazaki H., Kuga S., Onabe F. Acid hydrolysis behaviour of microbial celluloseII. Polymer1995,26,4971-4976.
    [6] Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. ComprehensiveCellulose Chemistry,1st ed., Vol.1, WileyVCH, Weinheim1998,130-240.
    [7] Wu M., Kuga S. Cationization of cellulose fabrics by polyallylamine binding. J.Appl. Polym. Sci.2006,100,1668-1672.
    [8] Bochek A. M., Petropavlovsky G., Kallistov O. Dissolution of cellulose and itsderivatives in the same solvent, methylmorpholine-N-oxide and the properties of theresulting solutions. Cellul. Chem. Technol.1993,27,137-144.
    [9] Fink H. P., Weigel P., Bohn A. Supermolecular structure and orientation of blowncellulosic films. J. Macromol. Sci. Phys.1999, B38,603-613.
    [10] Eckelt J., Wolf B. A. Membranes directly prepared from solutions of nativecellulose. Macromol. Chem. Phys.2005,206,227.
    [11] Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. Dissolution of cellulosewith ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [12] Budtova T., Egal M., Gavillon R.; Gericke M., Heinze L. T., Roy C., Schlufter K.,Navard P. Cellulose Solvents: For Analysis, Shaping and Chemical Modification,2005, Chapter10,179.
    [13] Song H., Zhang J., Niu Y., Wang Z. Phase Transition and Rheological Behaviorsof Concentrated Cellulose/Ionic Liquid Solutions. J. Phys. Chem. B.2010,114,6006-6013.
    [14] Isogai A., Atalla R.H. Dissolution of cellulose in aqueous NaOH solutions.Cellulose1998,4,309-319.
    [15] Zhang H., Wu J., Zhang J., He J.1-Allyl-3-methylimidazolium chloride roomtemperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose.Macromolecules2005,38,8272-8277.
    [16] Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B.Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [17] Liu S., Zhang L., Zhou J., Xiang J., Sun J., Guan J. Fiberlike Fe2O3Macroporous Nanomaterials Fabricated by Calcinating Regenerate CelluloseComposite Fibers. Chem. Mater.2008,20,3623-3628.
    [18] Chang C., He M., Zhou J., Zhang L. Behaviors of pH-and Salt-ResponsiveCellulose-Based Hydrogels. Macromolecules2011,44,1642-1654.
    [19] Cai J., Zhang L., Liu S., Liu Y., Xu X., Chen X., Chu B., Guo X., Xu J., ChengH., Han C C., Kuga S. Dynamic self-assembly induced rapid dissolution of celluloseat low temperatures. Macromolecules2008,41,9345-9351.
    [20] Lue A., Zhang L., Ruan D. Inclusion complex formation of cellulose inNaOH–thiourea aqueous system at low temperature. Macromol. Chem. Phys.2007,208,2359-2366.
    [21] Chen X., Burger C., Wan F., Zhang J., Rong L., Hsiao B., Chu B., Cai J., ZhangL. Structure study of cellulose fibers wet-spun from environmentally friendlyNaOH/urea aqueous solutions. Biomacromolecules2007,8,1918-1926.
    [22] Wu C., Siddiq M., Woo K. F. Laser light-scattering characterization of a polymermixture made of individual linear chains and clusters. Macromolecules1995,28,4914-4919.
    [23] Cai J., Liu Y., Zhang L. Dilute solution properties of cellulose in LiOH/ureaaqueous system. J Polym Sci Part B Polym Phys.2006,44,3093-3101.
    [24] Luo S., Liu S., Xu J., Liu H., Zhu Z., Jiang M., Wu C. A stopped-flow kineticstudy of the assembly of interpolymer complexes via hydrogen-bonding interactions.Macromolecules2006,39,4517-4525.
    [25] Wu C., Siddiq M., Woo K. F. Laser light-scattering characterization of a polymermixture made of individual linear chains and clusters. Macromolecules1995,28,4914-4918.
    [26] Lue A., Liu Y., Zhang L.; Potthas A. Light scattering study on the dynamicbehaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer2011,52,3857-3864.
    [27] Schulz L., Seger B., Buchard W. Structures of cellulose in solution. Macromol.Chem. Phys.2000,201,2008-2022.
    [28] Morgenstern B., R der T. Investigations on structures in the systemcellulose/N-methylmorpholine-N-oxids monohydrate by means of light scatteringmeasurements. Papier1998,52,713-717.
    [29] Fischer K. Untersuchungen zur Substituentenverteilung in Cellulosexanthogenat.Papier1994,48,769-774.
    [30] Kamide K., Saito M. Light scattering and viscometric study of cellulose inaqueous lithium hydroxide. Polym. J.1986,18,569-579.
    [31] Roy C., Budtova T., Navard P., Bedue O. Structure of cellulose-soda solutions atlow temperatures. Biomacromolecules2001,2,687-693.
    [32] Woutersen S., Emmerichs U., Bakker H. J. Femtosecond Mid-IR Pump-ProbeSpectroscopy of Liquid Water: Evidence for a Two-Component Structure. Science1997,278,658-660.
    [33] Botti A., Bruni F., Imberti S., Ricci M. A., Soper A. K. Solvation of hydroxylions in water. J. Chem. Phys.2003,119,5001-5004.
    [34] Botti A., Bruni F., Imberti S., Ricci M. A., Soper A. K. Ions in water: Themicroscopic structure of concentrated NaOH solutions. J. Chem. Phys.2004,120,10154-10162.
    [35] Botti A., Bruni F., Imberti S., Ricci M. A., Soper A. K. Solvation shell of OH-ions in water. J. Mol. Liq.2005,117,81-84.
    [36] Chen B., Ivanov I., Park J. M., Parrinello M., Klein M. L. Solvation structure andmobility mechanism of OH-: A Car-Parrinello molecular dynamics investigation ofalkaline solutions. J. Phys. Chem. B2002,106,12006-12016.
    [37] Chen B., Park J. M., Ivanov I., Tabacchi G., Klein M. L., Parrinello M.First-Principles Study of Aqueous Hydroxide Solutions. J. Am. Chem. Soc.2002,124,8534-8535.
    [38] Nienhuys H.-K., Lock A. J., Santen R. A., Bakker H. J. Dynamics of watermolecules in an alkaline environment. J. Chem. Phys.2002,117,8021-8029.
    [39] Tuckerman M., Laasonen K., Sprik M., Parrinello M. Abinitio moleculardynamics simulation of the solvation and transport of hydronium and hydroxyl ions inwater. J. Phys. Chem.1995,103,150-161.
    [40] Vanzi F, Madan B, Sharp K. Effect of the protein denaturants urea andguanidinium on water structure: a structure and ther-modynamic study. J. Am. Chem.Soc.1998,120,10748-10753.
    [41] Zou Q, Habermann S, Murphy K. Urea effects on protein stability: hydrogenbonding and the hydrophobic effect. Proteins1998,31,107-115
    [1] Schurz. Trends in polymer science a bright future for cellulose. J. Prog. Polym Sci1999,24,481-483.
    [2] Cuissinat C., Navard P., Swelling and dissolution of cellulose, Part III: plant fibresin aqueous systems. Cellulose2008,15,67-74.
    [3] Sreedhar B., Aparna Y., Sairam M.; Hebalkar N. Preparation and characterizationof HAP/carboxymethyl chitosan nanocomposites. J. Appl. Polym. Sci.2007,105,928-934.
    [4] Yan L., Chen J, Bangal P. R. Dissolving cellulose in a NaOH/thiourea aqueoussolution: a topochemical investigation. Macromol. Biosci.2007,7,1139-1148.
    [5] Sun G., Dave W.S., Chemistry of Durable and Regenerable Biocidal Textiles. JChem Educ.2005,82,60-61.
    [6] Kim J., Yun S. Discovery of cellulose as a smart material. Macromolecules2006,39,4202-4206.
    [7] Schult T., Hjerde T., Optun O. I., Kleppe P.J. Characterization of cellulose bySEC-MALLS. Cellulose2002,9,149-158.
    [8] Noishiki Y., Nishiyama Y., Wada M., Kuga S., Magoshi J. Mechanical propertiesof silk fibroin-microcrystalline cellulose composite films. J. Appl. Polym. Sc.i2002,88,3425-3429.
    [9] Kuga S. New cellulose gel for chromatography. Journal of Chromatography A1980,195,221-230.
    [10] Rajulu A.V., Rao G.B., Rao B.R.P., A. Reddy M.S., J., Zhang, J., Tensile andlignocellulosic properties of Prosopis chilensis natural fabric. J Appl Polym Sci2002,84,2216-2218.
    [11] Phillips D. M., Drummy L. F.; Conrady D. G., Fox D. M., Naik R. R., Stone M.O., Trulove P. C., De Long H. C., Mantz R. A. Cellulose processing withchloride-based ionic liquids. J. Am. Chem. Soc.2004,126,14350-14351.
    [12]吕昂,张俐娜.纤维素研究进展.高分子学报,2007,10,937-944.
    [13] Fink H.P., Weigel P., Purz H.J., Ganster J. Structure formation of regeneratedcellulose materials from NMMO-solutions. Prog. Polym. Sci.2001,26,1473-1524.
    [14] Dawsey T.R., Mccormick C.L. The lithium chloride/dimethylacetamide solventfor cellulose: a literature review. J. Macromol. Sci. Rev. Macromol. Chem. Phys.1990,30,405-440.
    [15] Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. Dissolution of cellose withionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [16] Zhang H., Wu J., Zhang J., He J.1-Allyl-3-methylimidazolium chloride roomtemperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose.Macromolecules2005,38,8272-8277.
    [17] Cai J., Zhang L., Liu S., Liu Y., Xu X., Chen X., Chu B., Guo X., Xu J., Cheng H.Han, C., Kuga S. Dynamic self-assembly induced rapid dissolution of cellulose at lowtemperatures. Macromolecules2008,41,9345-9351.
    [19] Kamel M., Hebeish A., Moursi A.Z. Biochemical changes in Bifidobacteriumbifidum var. Pennsylvanicus after cell wall inhibition VII. Structure of thephosphogalactolipids. J Soc. Dyers. Colour.1974,90,352-358.
    [19] Isogai A., Atalla R.H. Dissolution of cellulose in aqueous NaOH solutions.Cellulose1998,5,309-319.
    [20] Cai J., Liu Y., Zhang L. Light scattering study on the dynamic behaviour ofcellulose inclusion complex in LiOH/urea aqueous solution J. Polym. Sci. Pol. Phys.2006,44,3093-3864.
    [21] Zhang L., Ruan, D. Gao, S. Dissolution and regeneration of cellulose inNaOH/thiourea aqueous solution. J. Polym. Sci. Part. B: Polym. Phys.2002,40,1521-1529.
    [22] Cai J., Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/ureaaqueous solutions. Macromol. Biosci.2005,5,539-348.
    [23] Lue A., Zhang L., Ruan D. Inclusion complex formation of cellulose inNaOH–thiourea aqueous system at low temperature. Macromol. Chem. Phys.2007,208,2359-2366.
    [24] Yan L., Tao H., Bangal P.R. Synthesis and flocculation behavior of cationiccellulose prepared in a NaOH/urea aqueous solution. Clean2009,37,39-44.
    [25] Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B.Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [26] Liu S., Zhang L., Zhou J., Wu R. Structure and properties of cellulose/Fe2O3nanocomposite fibers spun via an effective pathway. J. Phys. Chem. C2008,112,4538-4544.
    [27] Chang C., Chen S., Zhang L. Novel hydrogels prepared via direct dissolution ofchitin at low temperature: structure and biocompatibility. J. Mater. Chem.2011,21,3865-3871.
    [28] Qi H., Chang C., Zhang L. Effects of temperature and molecular weight ondissolution of cellulose in NaOH/urea aqueous solution. Cellulose2008,15,779-787.
    [29] Yang Q., Qi H., Lue A, Hu K., Cheng G., Zhang L. Role of sodium zincate oncellulose dissolution in NaOH/urea aqueous solution at low temperature CarbohydratePolymers2011,83,1185-1191.
    [30] Trappe V., Bauer J., Weissmüller M., Burchard W. Angular dependence in staticand dynamic light scattering from randomly branched systems. Macromolecules1997,30,2365-2372.
    [31] Hanselmann R., Burchard W., Ehrat M., Widmer H.M. Structural properties offractionated starch polymers and their dependence on the dissolution process.Macromolecules1996,29,3277-3282.
    [32] Berne B.J., Pecora R., Dynamic light scattering. Plenum Press: New York,1976.
    [33] Chu B., Laser Light Scattering,2nd ed.; Academic Press: New York,1991.
    [32] Sahiner N., Singh M., Kee D.D. John V.T., McPherson G.L. RheologicalCharacterization. Polymer2006,47,1124-1135.
    [34] Ferry J.D. Viscoelastic properties of polymers.3rd ed. New York: John Wileyand Sons,1980.
    [35] Roy C., Budtova T., Navard P. Rheological Properties and Gelation of AqueousCellulose NaOH Solutions. Biomacromolecules2003,4,259-264.
    [36] Burchard W. Solution properties of branched macromolecules. Adv. Polym. Sci.1999,143,113-194.
    [37] Marson G. A., Seoud El O. A. Cellulose dissolution in lithiumchloride/N,N-dimethylacetamide solvent system: Relevance of kinetics ofdecrystallization to cellulose derivatization under homogeneous solution conditions. J.Polym. Sci. Part A: Polym. Chem.1999,37,3738-3744.
    [38] Wang Y., Deng Y. L. The kinetics of cellulose dissolution in sodium hydroxidesolution at low temperatures. Biotechnology and Bioengineering2009,102,1398-1405.
    [1]何明,尹国强,王品,多孔水凝胶研究进展,化工进展,2009,28(9),1578-1582.
    [2] Silva G. A., Czeisler C., Niece K. L., Beniash E., Harrington D. A., Kessler J. A.,Stupp S. I. Selective differentiation of neural progenitor cells by high-epitope densitynanofibers. Science2004,303,1352-1355.
    [3] Franzesi T., G. Ni, B. Ling, Khademhosseini Y., A controlled-release strategy forthe generation of cross-linked hydrogel microstructures. A. J. Am. Chem. Soc.2006,128,15064-15065.
    [4] Lee K.Y., Mooney D.J. Hydrogels for tissue engineering. Chemical Reviews2001,101(7),1869-1879.
    [5] Jeanie L. Drury, David J. Mooney Hydrogels for tissue engineering: scaffolddesign variables and applications. Biomaterials2003,24,4337-4351.
    [6] Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery. Advanceddrug delivery reviews.2001,53,321-339.
    [7] Fan H., Hu Y., Zhang C., Li X., Lv R., Qin L., Zhu R. Cartilage regeneration usingmesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold.Biomaterials2006,27,4573-4580.
    [8] Cho S., Oh H., Lee J. Fabrication and characterization of porousalginate/polyvinyl alcohol hybrid scaffolds for3D cell culture. J. Biomater. Sci.Polym. Ed.2005,16,933-947.
    [9] Jha A., Malik M., Farach-Carson M., Duncan R., Jia X. Hierarchically structured,hyaluronic acid-based hydrogel matrices via the covalent integration of microgels intomacroscopic networks. Soft Matter2010,6,5045-5055.
    [10] Rimdusit S., Jingjid S., Damrongsakkul S., Tiptipakorn S., Takeichi T.Biodegradability and property characterizations of Methyl Cellulose: Effect ofnanocompositing and chemical crosslinking. Carbohydrate Polymers2008,72,444-455.
    [11] Fricain J.C., Granja P.L., Barbosa M.A., Jeso B. de, Barthe N., Baquey C.,Cellulose phosphates as biomaterials In vivo biocompatibility studies. Biomaterial2002,23,971-980.
    [12] Lionetto F., Sannino A., Maffezzoli A. Ultrasonic monitoring of the networkformation in superabsorbent cellulose based hydrogels. Polymer2005,46,1796-1803.
    [13] H. Saito, A. Sakurai, M. Sakakibara, H. Saga. Preparation and properties oftransparent cellulose hydrogels. J. Appl. Polym. Sci.2003,90,3020-3025.
    [14] Esposito F., Nobile M. A., Mensitieri G., Nicolais L. Water sorption incellulose-based hydrogels. J. Appl. Polym. Sci.1996,60,2403-2407.
    [15] Lionetto F., Sannino A., Maffezzoli A. Ultrasoniconitoring of the networkformation in superabsorbent cellulose based hydrogels. Polymer2005,46,1796-1803.
    [16] Chauhan G. S., Lal H., Novel grafted cellulose-based hydrogels for watertechnologies. Desalination2004,159,131-138.
    [17] Sannino A., Nicolais L. Concurrent effect of microporosity and chemicalstructure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer2005,46,4676-4685.
    [18] Zhang L., Zhou J. CN00114486.3, Wuhan University,2003
    [19] Cai J., Zhang L., Chang C., Cheng G., Chen X., Chu B.Hydrogen‐Bond‐Induced Inclusion Complex in Aqueous Cellulose/LiOH/UreaSolution at Low Temperature. ChemPhysChem.2007,8,1572-1579.
    [20] Zhou J., Chang C., Zhang R., Zhang L. Hydrogels prepared from unsubstitutedcellulose in NaOH/urea aqueous solution. Macromol. Biosci.2007,7,804-809.
    [21] Cai J., Zhang L. Unique gelation behavior of cellulose in NaOH/urea aqueoussolution. Biomacromolecules2006,7,183-189.
    [22] Cai J., Liu Y., Zhang L., Dilute solution properties of cellulose in LiOH/ureaaqueous System. J. Polym. Sci. Pol. Phys.2006,44,3093-3101.
    [23] Chang C., Zhang L., Zhou J., Zhang L., Kennedy J. Structure and properties ofhydrogels prepared from cellulose in NaOH/ureaaqueous solutions. CarbohydratePolymers2010,82,122-127.
    [24] Kuo C., Ma P. Ionically crosslinked alginate hydrogels as scaolds for tissueengineering: Part1. Structure, gelation rate and mechanical properties. Biomaterials2001,22,511-521.
    [25] Taylor C., Allen A., Dettmar P., Pearson J. The gel matrix of gastric mucus ismaintained by a complex interplay of transient and nontransient associations.Biomacromol.2003,4,922-927.
    [26] Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B.Multifilament fibers based on dissolution of cellulose in NaOH/Urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [27] Weng L., Chen X., Chen W. Rheological Characterization of in SituCrosslinkable Hydrogels Formulated from Oxidized Dextran and N-CarboxyethylChitosan. Biomacromolecules2007,8,1109-1115.
    [28] Rodriguez R., C. Alvarez-Lorenzo A. ConcheiroCationic cellulose hydrogels:kinetics of the cross-linking process and characterization as pH-/ion-sensitive drugdelivery systems. J. Controlled Release2003,86,253-354.
    [1] Gangopadhyay R., De A. Conducting Polymer Nanocomposites: A Brief Overview.Chem. Mater.2000,12,608-622.
    [2] Jannasch P., Recent developments in high-temperature proton conductingpolymerelectrolyte membranes. Current Opinion in Colloid Interface Science2003,8,96-102.
    [3]曹镛.导电性聚合物化学的进展.高分子通报.1988,25-31.
    [4] Pérez J., Gonzálezrila F. J, lmendros G. A. The effect of fire on soil organicmattera review. Environment International2004,30,855-870.
    [5] Pedra F., Plaza C., Carlos G J. Effects of munici2pal waste compost and sewagesludge on p roton binding behavior of humic acids from Portuguese sandy and clayloam soils. Bioresource Technology2008,99,2141-2147.
    [6] Benincasa M., Contiero J., Manresa M.A. Rhamnolipid production byPseudomonas aeruginosa LBI growing on soapstock as the sole carbon source.Journal of Food Engineering2002,54,283-288.
    [7] Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons.Physicochemical and Engineering Aspects1999,152,41-52.
    [8] Siegmund I., Wagner F. New method for detectingrhamolipids excreted byPseudomonas species during growth on mineral agar. Biotechnol Tech.1991,5,265-268.
    [9] Arino S., Marchal R., Vandecasteele J P. Identification and production of arhamnolipic biosurfactant by a Pseudomonas species. Appl. Microbiol. Biotechnol.1996,45,162-168.
    [10] Smidt E., Meissl K., SchmutzerM. Co-composting of lignin to build up humicsubstancesstrategies in waste management to imp rove compost quality. IndustrialCrop s and Products2008,27,196-201.
    [11]劳家柽.土壤农化分析手册.北京:中国农业出版社,1988,203-298.
    [12]沈萍.武汉大学、复旦大学.微生物学.北京:高等教育出版社,1987,243-252.
    [13] Mary E.G., Gary E W. Electrically conductive polymer composites:polymerization of acetylene in polyethylene. J. Am. Chem. Soc.1982,90,135-136.
    [14] Yasuda A., Wu G. C. Synthesis of polyester by direct polycondensation withtriphenylphosphine. J. Polym. Sci. Polym Chem. Ed.1983,21,2609-2612.
    [15] Wu G C, Tanaka H. Synthesis of Poly (p-benzamide) with Triphe nylphosphineand Hexachloroethane Reagents-Reaction Conditions. Polym. J.1982,14,571-589.
    [16] Huang J., Matsunaga N., Shimanoe K., Yamazoe N., Kunitake T. NanotubularSnO2Templated by Cellulose Fibers: Synthesis and Gas Sensing. Chem. Mater.2005,17,3513–3518.
    [17] Park J., Kang E., Son S. U., Park H. M., Lee M. K., Kim J., Kim K. W., NohH.J, Park J.H., Bae C. J., Park J.G., Hyeon T. Monodisperse Nanoparticles of Ni andNiO: Synthesis, Characterization, Self-Assembled Superlattices, and CatalyticApplications in the Suzuki Coupling Reaction. Adv. Mater.2005,17,429-434.
    [18] Ruan D., Huang Q., Zhang L. Structure and Properties ofCdS/RegeneratedCellulose Nanocomposites. Macromol. Mater. Eng.2005,290,1017–1024
    [19] Cai J., Zhang L., Chang C., Cheng G., Chen X., Chu B. Hydrogen-Bond-InducedInclusion Complex in Aqueous Cellulose/LiOH/Urea Solution at Low Temperature.Chem Phys Chem.2007,8,1572-1579.
    [20] Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B.Multifilament Fibers Based on Dissolution of Cellulose in NaOH/Urea AqueousSolution: Structure and Properties. Adv. Mater.2007,19,821-825.
    [21] Cai J., Zhang L. Rapid Dissolution of Cellulose in LiOH/Urea andNaOH/UreaAqueous Solutions. Macromol. Biosci.2005,5,539–548.
    [22] Lekpittaya P., Yanumet N., Grady B. P. Resistivity of conductive polymer coatedfabric. J. Appl. Polym. Sci.2004,92,2629-2636.
    [23] Kim M. S., Kim H. K., Byun S. W. PET fabric/polypyrrole composite with highelectrical conductivity for EM I shielding. Synthetic Metals2002,126,233-239.
    [24] Cai J., Zhang L. Unique Gelation Behavior of Cellulose in NaOH/Urea AqueousSolution. Biomacromol.2006,7,183-189.
    [25] Omastova M., Trchova M., Kovarova J., Stejskal J. Synthesis and structuralstudy of polypyrroles prepared in the presence of surfactants. Synth. Met.2003,138,447-455.
    [26] Beneventi D., Alila S., Boufi S., Chaussy D., Nortier P. Polymerization of pyrroleon cellulose fbres using a FeCl3impregnation-pyrrole polymerization sequence.Cellulose2006,13,725-734.
    [27] Kaplan, D. L. Biopolymers from Renewable Resources. Spinger-Verlag: BerlinHeidelberg,1998,55-57.
    [28] Xu P., Han X., Wang C. Synthesis of electromagnetic functionalizednickel/polypyrrole core/shell composites. J. Phy. Chem. B2008,112,10443-10448.
    [29]樊莹,柳士忠.过渡金属一取代Keggin结构钼磷酸盐掺杂的聚吡咯的制备、表征与导电性研究.无机化学学报2002,18,635-638.
    [30] Ljungberg N., Bonini C., Bortolussi F., Boisson C., L. Heux, Cavaille J.Y. NewNanocomposite Materials Reinforced with Cellulose Whiskers in AtacticPolypropylene: Effect of Surface and Dispersion Characteristics. Biomacromol.2005,6,2732-2739.
    [31] Nystr m G., Mihranyan A., Razaq A., Lindstr m T., Nyholm L., Str mme M. ANanocellulose Polypyrrole Composite Based on Microfbrillated Cellulose fromWood. J. Phys. Chem. B2010,114,4178–4182.
    [32] Str mme M., Frenning G., Razaq A., Gelin K., Nyholm L.; Mihranyan A. IonicMotion in Polypyrrole Cellulose Composites: Trap Release Mechanism duringPotentiostatic Reduction. J. Phys. Chem. B2009,113,4582-4589.
    [33] Lin Y.C., Cho J., Tompsett G. A., Westmoreland P. R., Huber G. W. Kinetics andmechanism of cellulose pyrolysis, J. Phys. Chem. C2009,113,20097-20107.
    [34] Suresha K. M., Kim J. Electromechanical Behavior of Room Temperature IonicLiquid Dispersed Cellulose. J. Phys. Chem. C2009,113,12523-12529.
    [35] Li J., Qian X., Chen J., Ding C., An X. Conductivity decay ofcellulose–polypyrrole conductive paper composite prepared by in situpolymerization method. Carbohydrate Polym.2010,82,504-509.
    [36] Varesano, A., Tonin, C., Ferrero F., Stringhetta M. Stability and fame resistanceof polypyrrole-coated PET fbres. Journal of Thermal Analysis and Calorimetry2008,94,559-565.
    [37] Jesus M. C., Fu Y., Weiss R. A. Conductive polymer blends prepared by in situpolymerization of pyrrole: A review. Polym. En. Sci.1997,37,1936-1943.
    [38] Dang M., Xu H., Wang H. Significantly enhanced low-frequency dielectricpermittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. App. Phys. Lett.,2007,90,12901-12903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700