车辆油气悬架电液伺服加载系统控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气悬架系统具有功率密度高、安装空间小的优点,能提高车辆行驶时的舒适性和安全性,广泛应用于各种机动车及场内车辆中。油气悬架试验系统用于模拟重型车辆在不同路面条件和速度下悬架系统的动态响应,验证轮式车辆悬架及车桥的设计参数,提高悬架系统及车桥的可靠性。
     本文以哈尔滨工业大学电液伺服仿真及试验系统研究所承担的“油气悬架加载试验台”项目为背景,对油气悬架加载试验系统中采用的关键控制技术进行了理论研究和实验研究,研究成果对于提高系统控制性能及加载精度具有积极意义。
     文中建立了由电液伺服阀控缸系统和油气悬架组成的加载系统的数学模型,对油气悬架高度的非线性以及加载系统固有频率低、阻尼小的特点进行了分析。引入三状态控制策略,应用极点配置的方法对控制器参数进行设计,在保持系统稳定性的基础上拓展了系统的频宽,改善了系统的动态特性。设计了位置与加速度信号切换的输入滤波器,使系统保持性能不变的情况下,实现位置和加速度两种控制方式。通过仿真分析和实验测试,验证了三状态控制器的有效性和切换位置和加速度控制方式的可行性。
     主动驱动力加载结构是目前最为常用的加载结构,力传感器安装于加载系统与试验负载之间,检测加载时的弹性力和粘性力以及惯性力,其缺点是控制特性易受到负载刚度的影响。常规PID控制为了达到稳定性的要求,控制参数往往选取比较保守,系统性能受到制约。针对油气悬架的高度非线性,文中采取变结构的控制方法,选取含有位置、速度和加速度状态的滑模函数。利用指数趋近方式,使系统能够快速地稳定于平衡位置。基于Lyapunov稳定理论,设计了参数摄动和不确定量两种非线性环节的自适应律,结合自适应控制方式减小了滑模带的宽度,从而减小由于开关控制而引起的系统振动。仿真分析和实验验证了当负载刚度变化时,采用变结构滑模力加载控制策略的优势,为具有状态反馈的力加载控制系统提供了实用的控制方法。
     正弦信号是协调加载系统控制中常用的工程信号。在多通道同时对同一试件进行加载时,各通道响应正弦信号幅值和相位的差异会使实验结果与实际情况有着很大的差异。本文针系统对正弦信号的精确复现控制要求提出了基于单层双通道神经网络控制方法。采用LMS算法自动调整权值向量,使系统输出正弦波的幅值、相位与期望信号一致,从而实现正弦波信号的精确复现。通过对算法收敛性必要条件的分析,提出了归一化正弦波复现的控制方法。经仿真分析和实验研究,验证了该方法在收敛性和收敛速度方面的优势。
     时域波形复现与激振台架是实验室内再现路谱的必要条件。时域波形复现(TWR)的目的是将跑车场测试得到的车辆响应转化为激振台架的输入信号。传统时域波形复现方法采用频响函数迭代的方式,在非线性系统中应用时会变得不易收敛,耗费大量时间。本文提出了基于自适应逆控制的方法,降低迭代次数。应用递推最小二乘算法设计了能够实时辨识系统传递函数和阻抗函数,并在线调整系统逆函数的控制策略。经过仿真分析和实验,验证了控制算法的稳定性。
     根据加载系统的要求研制了包括液压源、机械部分、液压伺服加载部分和数字式控制系统在内的油气悬架加载试验台。采用Labview SIT快速控制原型技术设计了基于以上控制策略的数字式控制软件,对所设计控制策略进行了实验研究。实验结果验证了本文所提出的各种控制技术的有效性和先进性。
The hydro-pneumatic suspension have been system used increasingly for variouson-road and off-road applications along with driving safety and comfort due to thehigh power density of the hydraulics and installation space. The hydro-pneumaticsuspension test system promises to simulate the dynamic responses of a heavy dutyvehicle suspension systems adapting to different terrains and speeds, validates thedesign parameters and improves reliability of the hydro-pneumatic suspension andvehicle axle in wheeled vehicles.
     This thesis investigates the control of a Hydro-pneumatic Suspension TestSystem developed by IEST of HIT. The development, modeling and algorithms ofpivotal control technology have been theoretically studied. The results are validatedthrough experimental activities done by a suspension bench test. The main resultsare valuable to improve the control performance and the precision of simulation.
     The test system constructed by a hydro-pneumatic damper and anelectro-hydraulic servo-valve controlled cylinder is modeled.The highly nonlinearcharacter of the hydro-pneumatic damper suspension system and low naturalfrequency and small damping of the loading system rre investigated. TheThree-states Control Strategy is developed for the test system, the controlparameters are designed via pole placement, which improves the dynamiccharacteristics such as extending the frequency width of system and keep the systemstable. An input filter switch between the position and acceleration signals isdesigned, and position and acceleration control schemes are implemented withoutchanging the control performance. Simulation and experimental results indicate thatthe three-state controller is effective and the method of switch control schemebetween position and acceleration controller can be achieved.
     The active force loading is a popular loading control method in which the forcesensor is fixed between cylinder and suspension system to measure the loading force,viscous force and inertia force. However, the disadvantage is that the controlperformance of test system may change along the stiffness fluctuation of thehydro-pneumatic damper suspension system. In common PID control,the gain ofcontroller is always low to keep system stability, thus the system characteristics arelimited. This thesis presented a variable structure controller for the highly nonlinearsystem. The therr-state control strategy including position, velocity, and acceleration information is selected as cascade function. The stability and robustness are enhancedby making use of exponential convergence. Based on the Lyapunov function, anadaptive control law is developed for the nonlinear system under parameterdisturbance and non-parametric uncertainty, which is also adopted to reduce thevibration of responses on cascade surface. Simulation results illustrate the advantageof variable structure force loading control strategy, it proposes a novel controlscheme for force loading system with states feedback.
     Sine signal is commonly used in control of a coordinated loading system. Whena sample is tested by multichannel at one time, the amplitude and phase of responsesignals from each channel are different. As a result, the output of test will contrary tothe expectation. This thesis introduces a control method based on single-layer&two-channel neural network to meet the requirement of an accurate recurrence control.A LMS algorithm is used to adjust the weight vector automatically and make theamplitude and phase of outputting sine signal consistent with the expected signal.Thus, the precise sine wave repetition is achieved. By analyzing the necessaryconditions for convergence of the algorithm, this thesis presents the normalizedsinusoidal recurrence control method. Advantages of this method in convergence andrapidity have been verified through the simulation and experimental analysis.
     Experiments on vibration test rigs in combination with time waveformreplication (TWR) can create repeatable testing conditions of the road. The objectiveof TWR is to determine the inputs to the shakers in order to obtain the same sensorreadings as during the field experiments. The classical TWR method consists of aniterative procedure that can be time consuming and divergence for a nonlinear system.This thesis presents a feedback approach based on adaptive inverse control, therebyreducing the number of iterations. By means of recursive least square (IRLS) method,a nonlinear system transfers function and its inverse function identification controllercan be designed. Experiments indicate that with the present control algorithm a betterstability can be achieved.
     The hydro-pneumatic suspension loading test-bed consists of a hydraulic source,a mechanical system, a hydraulic servo system and a digital control system. Based onLabView SIT (Simulation Interface Toolkit) fast control prototype technology, thedigital control software is developed to carry out the proposed control strategy.Experiments indicate that the present control schemes are effective and advanced.
引文
[1]孙建民.油气悬架在工程车辆中的应用及关键技术[J].噪声与振动控,2007(8):50-53.
    [2]甄龙信,张文明,王国彪.油气悬架综述[J].有色金属(矿山部分),2004,56(4):37-38.
    [3]中华人民共和国交通部. JT/T448-2001.中华人民共和国交通行业标准.汽车悬架装置检测台[S].2001.
    [4]国家发展和改革委员会. QC/T.中华人民共和国汽车行业标准.汽车减振器技术条件与台架试验方法[S].2007.
    [5]李洪人.液压控制系统[M].北京:国防工业出版社,1990:162-167,188-199.
    [6]王益群,王燕山.电液力控制研究进展[J].液压与气动,2002(7):1-4.
    [7] Liu G. P, Daley S. Optimal-tuning nonlinear PID control of hydraulicsystems[J]. Control Engineering Practice,2000,8(9):1045-1053.
    [8] Tomohisa H,Hideaki I, Koji T. Adaptive quantized control for nonlinearuncertain systems[J]. Systems&Control Letters,2009,58(9):625-632.
    [9] Ho H. F, Wong Y. K, Rad A. B. Adaptive fuzzy sliding mode control withchattering elimination for nonlinear SISO systems[J]. Simulation ModellingPractice and Theory,2009,17(7):1199-1210.
    [10] Maryam Z, Saeed S, Farid S. Adaptive fuzzy wavelet network control designfor nonlinear systems[J]. Fuzzy Sets and Systems,2008,159(20):2668-2695.
    [11] Wu G, Sepehri N, Ziaei K. Design of hydraulic force control system using ageneralized predictive control algorithm[J]. Proc. Inst. Elec. Eng.-Contr. TheoryApplicant,1998,145(5):428-436.
    [12]邱法维,潘鹏.结构拟静力加载实验方法及控制[J].土木工程学报,2002,35(1):1-5.
    [13]韩俊伟,赵慧,马剑文等.具有时变柔性负载的电液力控制系统中Gain-Scheduled H∞控制器的研究[J].机械工程学报,2001,36(4):58-61.
    [14]王经甫,叶正茂,张辉,等.基于LMI的H∞控制在电液负载模拟器中的应用[J].机床与液压,2007,35(5):169-171.
    [15] Witters M, Swevers J. Black-box model identification for a continuouslyvariable, electro-hydraulic semi-active damper[J]. Mechanical Systems andSignal Processing,2010,24(1):4-18.
    [16] He Y,Zhao H,Zhu Y,et al. Neural network self-learning variable robustnessadaptive tracking control for electro-hydraulic servo system[C].3ndInternational Symposium on Test and Measurement,2009:688-693.
    [17]罗雄飞.基于神经网络的电动负载模拟器控制策略研究[D].哈尔滨:哈尔滨工业大学工学硕士论文,2007:22-37.
    [18] Rui L, Andre A. Nonlinear force/pressure tracking of an elcetro-hydraulicactuator[J]. ASME Journal of Dynamic Systems, Measurement and Control,2000,122(3):232-237.
    [19] Andrew A, Rui L. A simplified approach to force control for electro-hydraulicsystems[J]. Control Engineering Practice,2000(8):1347-1356.
    [20] PooGyeon P, Doo J. C,Seong G. K. Output feedback variable structure controlfor linear systems with uncertainties and disturbances[J]. Automatica,2007,43(1):72-79.
    [21]张晓宇,苏宏业.滑模变结构控制理论进展综述[J].化工自动化及仪表,2006,33(2):1-8.
    [22] Emelyanov S. V. Control of First Order Delay Systems by Means of AnastaticController and Nonlinear Correction[J]. Automation and Remote Control,1959,20(8):983-991.
    [23] Emelyanov S. V,Fedotova A I. Design of A static Tracking Systems withVariable Structure[J]. Automation and Remote Control,1962,23(10):1223-1235.
    [24] Emelyanov S. V,et al. Design Princip les for Variable Structure ControlSystems[C]. Proceedings of the3rd IFAC Congress. London,UK: ElsevierPress,1966(40):1-6.
    [25] Utkin V. I. Variable Structure System swith Sliding Modes[J]. IEEETransactions on Automatic Control,1977,22(2):212-222.
    [26] Zolezzi T. Real states of stable sliding mode control systems[J]. Systems&Control Letters,2008,57(9):778-783.
    [27] lyas E. Sliding mode control with PID sliding surface and experimentalapplication to an electromechanical plant[J]. ISA Transactions,2006,45(1):109-118.
    [28] Mezouar A, Fellah M. K, Hadjeri S. Adaptive sliding-mode-observer forsensorless induction motor drive using two-time-scale approach[J]. SimulationModelling Practice and Theory,2008,16(9):1323-1336.
    [29] Halim A, Christopher E. Fault tolerant control using sliding modes withon-line control allocation[J]. Automatica,2008,44(7):1859-1866.
    [30] Man Z. H, Palan I. Decentralized Three-segment Nonlinear Sliding ModeControl for Robotic Manipulators. Proceedings of IEEE International Workshopon Emerging Technologies and Factory Automation. Carns[J]. Australia IEEEPress,1992:607-612.
    [31] Bartolini G, Pydynowski P. Asymptotic Linearization of Uncertain NonlinearSystems by Means of Continuous Control[J]. International Journal of Robustand Nonlinear Control,1993,3(2):87-103.
    [32] Khan M. K, Sarah K. S. Robust MIMO water level control in interconnectedtwin-tanks using second order sliding mode control[J]. Control EngineeringPractices,2006,14(4):375-386.
    [33] Francesco D, Antonella F. Finite-time output stabilization with second ordersliding modesp[J]. Automatica,2009,45(9):2169-2171.
    [34] Lydie N, Sad M. Experimental vehicle longitudinal control using a secondorder sliding mode technique[J]. Control Engineering Practice,2007,15(8):943-954.
    [35] Bartolini G, Ferrara A, Usai E,et al. On Multi-input Chattering Free SecondOrder Sliding Mode Control[J]. IEEE Transactions on Automatic Contrl,2000,45(9):1711-1717.
    [36]刘乔,吴新跃,石阳等.电液伺服系统的积分滑模自适应控制方法的研究[J].机床与液压,2008(5)126-129.
    [37]高为炳.离散时间系统的变结构控制[J].自动化学报,1995,21(2):154-161.
    [38]翟长连,吴智铭.不确定离散时间系统的变结构控制设计[J].自动化学报,2000,26(2):184-191.
    [39] Shahraz A, Boozarjomehry R. B. A fuzzy sliding mode control approach fornonlinear chemical processes[J]. Control Engineering Practice,2009,17(5):541-550.
    [40] Mehdi R, Mansoor Z, Sina M. Enhanced adaptive fuzzy sliding mode controlfor uncertain nonlinear systems[J]. Communications in Nonlinear Science andNumerical Simulation,2009,14(9-10):3670-3681.
    [41] Thoen B. Sinusoidal Signal Amplitude and Phase Control for an AdaptiveFeedback Control System[P]. United States Patent,1992.
    [42] Wasfy B. M, Raghuram R. Complex adaptive FIR digital filtering algorithmwith time-varying independent convergence factors[J]. Signal Processing,2008,88(7):1889-1893.
    [43] Márcio H. C, Leandro R. X, José C. M. B. Statistical analysis of the LMSadaptive algorithm subjected to a symmetric dead-zone nonlinearity at theadaptive filter output[J]. Signal Processing,2008,88(6):1485-1495.
    [44]延皓,叶正茂,张辉等.基于Widrow-Hoff学习算法的液压协调加载控制策略研究[J].地震工程与工程振动,2006,26(3):104-107.
    [45] Marcos A. U. Calibration Method and Programmable Phase-Gain Amplifier[P].United States Patent,1990:4937535.
    [46] Underwood M.A. Adaptive Control Method for Multiexciter Sine Tests[P].United States Patent,1994:5299459.
    [47]陈章位;于慧君.振动控制技术现状与进展[J].振动与冲击,2009,28(3):73-77,86.
    [48] Edwin A. S, Charles L. Heizman. System for Digitally Controlling a VibrationTesting Environment or Apparatus[P]. United States Patent,1973:3710082.
    [49] Smallwood D. O. Random Vibration Testing of a Single Test Item with aMultiple Input Control System[C]. Proceedings of the Institute ofEnvironmental Sciences’28thAnnual Technical Meeting,1982:42-49.
    [50] Peeters B, Debilie J. Multi-axial Random Vibration Testing: a6Degrees-of-freedom Test Case[C]. Proceedings of the21st Aerospace TestingSeminar, Manhattan Beach,CA,USA,2003:4.47-4.62.
    [51] Bart P,Jan D. MIMO Random Vibration Control Algorithm and Simulations[C].Proceedings of the72ndShock and Vbiration Symposium, San Destin,FL,USA,2001:1-11.
    [52] Bart P, Jan D. MIMO Random Vibration Qualification Testing:Algorithm andPractical experience[J]. Proceedings of ESTECH. Anaheim,CA,USA,2002:158-165.
    [53] Stroud R.C. and Hamma G.A. Multiexciter and Multiaxis Vibration ExciterControl Systems[J]. Sound and Vibration,1988,22(4):18-28.
    [54]王述成.振动试验实时控制系统的研究[D].杭州:浙江大学博士学位论文.2006:53~70.
    [55]韩军,陈怀海,许峰等.基于遗传算法的多振动台随机振动控制方法[J].航空学报,2003,24(1):39-41.
    [56]关广丰,熊伟,王海涛,等.6自由度液压振动台伺服控制策略[J].液压与气动,2008(10):29-32.
    [57]杨志东.液压振动台振动环境模拟的控制技术研究[D].哈尔滨:哈尔滨工业大学博士论文,2009:9-16.
    [58]沈刚,黄其涛,何景峰,等.基于DSP快速原型控制的道路模拟振动台控制系统[J].农业机械学报,2009,40(6):37-42.
    [59]姚建军.电液伺服振动台加速度谐波抑制研究[D].哈尔滨:哈尔滨工业大学博士论文,2007:43-45.
    [60]徐洋.结构主动控制的鲁棒策略研究[D].哈尔滨:哈尔滨工业大学博士论文,2006:41-53.
    [61]王刚.数字式随机振动控制技术[J].战术导弹技术,1999(3):54-60.
    [62]关广丰.六自由度液压振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学博士论文,2007:10-13.
    [63]方重.模拟地震振动台的近况及其发展[D].世界地震工程,1999,15(2):89-91.
    [64]王宵锋.汽车车轴室内耐久性试验研究[J].清华大学学报(自然科学版),1997(12):85-87.
    [65]杨云.电液道路模拟振动台及功率谱再现控制的研究[D].西安:西安交通大学博士学位论文,2003:9-10.
    [66]杜永昌,管迪华.汽车道路动态试验模拟控制系统的研究与开发[J].汽车技术,1999(3):16-18.
    [67]杜永昌,管迪华.汽车道路模拟试验台计算机测控系统的研发[J].清华大学学报(自然科学版),2002:42(4):523-526.
    [68]杜永昌,管迪华,宋健.汽车道路模拟算法研究[J].公路交通科技,2001,18(6):10-13.
    [69]刘侠,张瑞金,吴捷.自适应逆控制的研究综述[J].电气自动化,2003,25(6):5-8.
    [70] Zheng, Q.S, Zafiriou E. A local form of small gain theorem and analysis offeedback Volterre systems[J]. IEEE Transactions on Automatic Control,1999,44(3):635-640.
    [71] Wolfgang J, Klippel. Adaptive inverse control of weakly nonlinear system.Proc[C]. Munich1997IEEE International Conference on Acoustics,Speech andSignal Processing,1997:355-358.
    [72] Brian P. R, Lucy Y. P, Dale A. Lawrence. Nonminimum phase adaptive inversecontrol for settle performance applications[J]. Mechatronics,2010,20(1):35-44.
    [73] Muhammad S. Internal model control structure using adaptive inverse controlstrategy[J]. ISA Transactions,2005,44(3):353-362.
    [74] Raied Salman. Neural networks of adaptive inverse control systems[J]. Proc.Applied Mathematics and Computation,2005,163(2):931-939.
    [75] Tao Y, Tang K, Cui H, et al. Modified formula on mean square convergence ofLMS algorithms[J]. Electronics Letters,2002,38(19):1147-1148.
    [76]胡春风,高立,张筱华,等.一种改进的频域LMS自适应滤波器算法[J].通信学报,1998,19(9):75-79.
    [77] Li G, Khajepour A.Robust control of a hydraulically driven flexible arm usingback stepping technique[J]. Sound and Vibration,2005(280):759~775.
    [78] Tyseer A. Mayyas K. A robust variable step-size LMS-type algorithm:analysis and simulations[J]. IEEE Transactions on Signal Process,1997,45(3):631-639.
    [79] Shin H. C, Sayed A. H, Song W. J. Variable step-size NLMS and affineprojection algorithms[J]. IEEE Signal Processing Letters,2004,(2):132-135.
    [80] Koike S. A class of adaptive step-size control algorithms for adaptive filters[J].IEEE Transactions on Signal Process,2002,50(6):1315-1326.
    [81]姚建均,丛大成,姜洪洲等.基于神经网络的自适应相位纠偏器在电液伺服系统中的应用[J].吉林大学学报(工学版),2007,37(4):930-934.
    [82] Garett A. S, James E B. Experiments and simulations on the nonlinear controlof a hydraulic servo system[J]. Proc Amer Contr Conf. America,1997:631-635.
    [83] Fletcher P Dean M. Low Immplexity Complementation of LMS Algorithm[J].Electronics Letters,2002,38(15):576-581.
    [84]孙涛,喻凡,邹游.工程车辆油气悬架非线性特性的建模与仿真[J].系统仿真学报,2005,17(3):210-214.
    [85]韩俊伟,于丽明,赵慧等.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报,1999,31(3):21-23,28.
    [86]韩俊伟.三向六自由度大型地震模拟振动台的研制[D].哈尔滨:哈尔滨工业大学博士后研究报告,1996:33-39.
    [87]王积伟,吴振顺.现代控制理论与工程[M].北京:高等教育出版社,2003:197-203.
    [88]李罗文,王子栋.基于圆形区域极点配置的降维状态观测器设计[J].南京理工大学学报,1997,21(2):169-172.
    [89]吴宏涛,张明.油气弹簧热平衡仿真及试验研究[J].车辆与动力技术,2007,107(3):37-40.
    [90]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996:119-126,205-216.
    [91] Cheng G, Shuang X. P. Adaptive sliding mode control of electro-hydraulicsystem with nonlinear unknown parameters[J]. Control Engineering Practice,2008,16:1275-1284.
    [92] Niksefat N, Sepehri N. Design and experimental evaluation of a robust forcecontroller for an electro-hydraulic actuator via quantitative feedback theory[J].Control Engineering Practice,2000(8):1335-1345.
    [93]杜春燕.基于迭代逼近的非线性系统滑模控制[D].天津:天津大学博士论文,2008:26-38.
    [94]张昌凡.滑模变结构的智能控制理论与应用研究[D].长沙:湖南大学博士论文,2001:4-10.
    [95]胡永生.滑模变结构控制及其在电液位置伺服系统中的应用[D].太原:太原理工大学硕士论文,2008:14-19.
    [96]姚胜兴,彭楚武.基于比例切换变结构控制的倒立摆系统的研究[J].武汉理工大学学报,2007,29(4):114-118.
    [97]管成.非线性系统的滑模自适应控制及其在电液控制系统中的应用[D].杭州:浙江大学博士论文,2005:13-48.
    [98] Bonchis A, Cork P. I, Rye D, et al. Variable structure methods in hydraulicservo systems control[J]. Automatica,2001,37:589-595.
    [99]吕维迪.多通道电液伺服加载系统同步协调控制器的研制[D].哈尔滨:哈尔滨工业大学硕士论文,2003:36-50.
    [100]高峰端,乔彦峰,王志乾等.正弦波形畸变校正研究[J].计算机仿真,2008,26(6):281-284.
    [101]袁宏杰,李传日,殷雪岩等.正弦振动控制技术的研究[J].电气自动化,2001(2):25-27.
    [102]赵勇.液压振动台高精度正弦振动的控制策略研究[D].哈尔滨:哈尔滨工业大学博士论文,2009:72-88.
    [103]覃欢.模拟地震平台随机振动信号功率谱估计及再现的研究[D].西安:西安交通大学硕士学位论文,2002:14-44.
    [104]赫金,郑宝玉.自适应滤波器原理(第四版)[M].北京:电子工业出版社,2003:159-183,344-361.
    [105]D.E.纽兰.随机振动与谱分析概论[M].方同,等译.北京:机械工业出版社,1980:71-87.
    [106]齐华.单轴多点激励正弦振动控制算法研究及其实现[D].北京:北京航空航天大学硕士学位论文,2001:6-27.
    [107]Niu B. L, Yan X. A FFT-BASED Variety-Sampling-Rate Sine Sweep VibrationController. IEEE Int.Conf[J]. Neural Networks&Signal Processing,2003:14-17.
    [108]杨福生.随机信号分析[M].北京:清华大学出版社,1988:142-208.
    [109]吴三灵.实用振动试验技术[M].北京:兵器工业出版社,1993:69-97.
    [110]应怀樵.波形和频谱分析与随机数据处理[M].北京:中国铁道出版社,1983:314-400.
    [111]De la Fuente E. Von Mises stresses in random vibration of linear structures[J].Computers&Structures,2009,87(21-22):1253-1262.
    [112]戴诗亮.随机振动实验技术[M].北京:清华大学出版社,1984:134~169.
    [113]Lu F, Lin J.H, Kennedy D. An algorithm to study non-stationary randomvibrations of vehicle–bridge systems[J]. Computers&Structures,2009,87(3-4):177-185.
    [114]Douglas T. Random Vibration[J]. Structural Dynamics and Vibration inPractice,2008:267-324.
    [115]Wei G, Nong Z, Jin C. J. A new method for random vibration analysis ofstochastic truss structures[J]. Finite Elements in Analysis and Design,2009,45(3):190-199.
    [116]中国国家标准化管理委员会. GB/T5170.15-2005.中华人民共和国机械行业标准.电工电子产品环境试验设备基本参数检定方法振动(正弦)试验用液压振动台[S],2005:1-10.
    [117]国际电工学会. IEC68-2-34基本环境随机振动试验[S],1973:1-12.
    [118]中华人民共和国国家计量局. JJG529-88随机振动试验系统[S],1988:1-5.
    [119]威德罗,瓦莱斯.自适应逆控制[M].西安:西安交通大学出版社,2000.
    [120]郭天一,廉保旺,邹晓军.一种具有快速跟踪能力的改进RLS算法研究[J].计算机仿真,2009,26(8):345-348.
    [121]孙恩昌,李于衡,张冬英等.自适应变步长LMS滤波算法及分析[J].系统仿真学报,2007,19(14):3172-3175.
    [122]Victor I. D. Multichannel parallelizable sliding window RLS and fast RLSalg1rithms with linear constraints[J]. Signal Processing,2006,86(4):776-791.
    [123]Seiichi N. RLS fixed-lag smoother using covariance information in linearcontinuous stochastic systems[J]. Applied Mathematical Modelling,2009:242-255.
    [124]Mansour D, Gray A. H. Unconstrained Frequency-Domain Adaptive Filter[J].IEEE Transations on ASSP,1982,30(5):726-734.
    [125]Chen W, Gu Z. Q. Frequency Domain Implementation of filtered-x algorithmwith on line system identification for vibration control[J]. Transaction of NanjingUniversity of Aeronautics&Astronautics,1995,12(1):100-103.
    [126]Gelfand S. B, Wei Y, Krogmeie J. V. The stability of variable step-size LMSalgorithms[J]. IEEE Transations on Signal Processing,l999,47(12):3277-3288.
    [127]兰瑞明,唐普英,一种新的变步长LMS自适应算法[J].系统工程与电子技术,2005,27(7):1307-1310.
    [128]罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126.
    [129]Karm S, Zeng G. A new convergence factor for adaptive filters[J]. IEEETransations on Circuits and Systems,1989,36(7):1011-1012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700