内固化高压玻璃钢管制造工艺及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪六十年代美国首先研制出高压玻璃钢管道,并替代钢管用于石油集输管路,取得了良好的经济效益和社会效益。我国在三次采油的初期从国外引进高压玻璃钢管,以解决聚合物对钢管的腐蚀问题。为打破国外垄断,填补国内空白,开发具有自主知识产权的高压玻璃钢管生产线就成为我国玻璃钢管行业迫切需要解决的课题。
     目前,我国生产高压玻璃钢管的方法是用三台独立的设备进行管道缠绕,固化和脱模,采用外固化工艺进行管道固化,这增加了设备成本和生产成本,而且管道固化效率低、质量差。而内加热式固化则是将浸渍树脂的纤维缠绕在可加热的金属芯模外面,模腔中的热能通过金属管壁可直接传给纤维树脂层,这种工艺可极大地提高固化效率和质量。
     本文以传统的高压玻璃钢管生产技术为基础,将蒸汽加热芯模技术引入到高压玻璃钢管固化工艺,研制了仅用一台机床就能完成高压玻璃钢管缠绕、固化和脱膜三道工序的制造系统。该系统将传统的缠绕和脱模设备合为一体,采用内部可通饱和水蒸汽,冷却水和压缩空气的中空芯轴实现管道的缠绕、内加热固化、冷却和吹扫工艺。
     为深入研究复合材料固化成型时内部变化历程,分析其机理,本文针对玻璃钢管固化中同时存在且相互联系的四方面历程:热化学历程、纤维运动历程、气泡活动历程和应力应变历程进行了分析,根据四方面历程建立了四个模型。热化学模型描述管道固化过程中温度、固化度和固化反应速率的关系及其变化;纤维运动模型描述固化过程中纤维的张力变化、运动状态和各时刻的位置;应力模型给出管体内的应力和应变的分布;气泡活动模型描述了固化过程中管体内气泡的形成、变化和运动机理。这些模型为科学地设计和优化玻璃钢管道缠绕和固化工艺提供了理论依据。
     固化工艺曲线的选择和设计是影响管道质量的重要因素,但是管道固化过程涉及到热传导和放热性化学反应两个方面,是一个复杂的耦合过程。本文根据建立的热化学模型,采用有限元法实现了管道固化过程中温度和固化度的分布及其变化规律的数值模拟研究,采用质量集中技术提高求解的精度和稳定性,采用自适应时间步控制提高求解效率。以有限元软件ANSYS和APDL为平台开发了管道固化过程的数值模拟程序,对高压管道固化过程进行了数值模拟和分析,为固化制度的设计提供了一种有效的分析工具。
     缠绕工艺方面提出了基于电子齿轮的控制方式实现缠绕机的同步运动控制,该控制方式将传统的数控缠绕机的两轴伺服控制简化为单轴伺服跟踪控制。设计了基于DSP和CPLD的能实现变齿轮比控制的位置同步运动控制器。采用自适应模糊PID控制策略实现小车跟踪主轴的同步运动控制,基于MATLAB的仿真表明,与常规PID控制器相比较,模糊PID控制器能提高控制系统的鲁棒性和动静态性能。
     本课题研制的内加热式高压玻璃钢管生产线已应用于大庆汉维长垣高压玻璃钢管道有限公司,取得了良好的应用效果。对两种不同工艺生产的管道性能对比试验表明:内固化生产的管道性能优于外固化管道,内固化管的弹性极限比外固化管提高了8.12%,爆破压力提高了8.50%。实践证明,内固化工艺实现了高压玻璃钢管快速、高效的工业化制造,结束了我国不能自主生产符合美国API标准的高压玻璃钢管道的历史。
     最后,作者对全文工作进行了总结,并提出了今后需进一步研究的内容。
In the 1960s, the high-pressure FRP pipe was first developed in the United States. It soon took the place of the steel tube to be applied in the technological pipe line of petroleum collection and transportation, which achieved great economic and social benefits. The high pressure FRP pipe was introduced to China in the early years of three oil extraction to solve the steel tube corrosion problem caused by polymer. In order to break the international monopolization and fill in the blank of this field in China, designing the product line of high pressure FRP pipe with independent intellectual property right is becoming an urgent task for our FRP pipe industry.
     At present, three independent pieces of equipment are used to carry through winding, curing and extraction of FRP pipe. The external heating curing technique is used to cure the pipe, which increases the cost of equipment and production. In addition, the process of curing in the oven has many disadvantages like the low heat conduction efficiency and poor curing quality. The advanced internal heating curing technique adopts the method of winding the metal mandrel with the fiber and resin layers which can be heated inside. The heat energy in mandrel cavity can transfer to winding fiber layers directly through the metal pipe. By this way the curing efficiency and quality are improved greatly. In this paper the high pressure FRP pipe manufacturing system which adopts internal heating curing technique is designed, and the theoretical analysis and systemic study of the key technologies of winding and curing of FRP pipe are also conducted.
     Based on the traditional production technology of high pressure FRP pipes, the technology of heating the mandrel by steam is introduced into the curing process of FRP pipe, and the first high pressure FRP pipe production system in our country which only one machine tool is used to perform three processes of winding, curing and extraction is designed. This system integrates the traditional winding and extraction machines into one machine tool, and the hollow mandrel in which saturated steam, cooling water and compressed air can circulate is used to accomplish the winding, curing, cooling and sweeping.
     In order to study the internal course and analysis its mechanism of FRP pipe curing process, the cocurrencing and interrelating four courses during cure process are analyzed. They are chemical principle, the resin motion principle, the void action principle and the stress principle. Four mathematical models of curing processes of FRP pipe from four aspects are built. The thermal chemical model describes the relations of temperature and curing rate. The fiber motion model describes the tension variation, motion state and position of fiber in the process. The stress model describes the distribution of the stress and the strain in the pipe. The air hole movement model describes the generation, variation and movement of air hole inside the pipes. These models provide theoretic bases of scientifically design and optimize winding and curing process of FRP pipe.
     The selection and design of curing process curves is important factor that affect the quality of FRP pipe. The curing process of epoxy FRP pipe involves the heat conduction, thermosetting chemical reaction and the interaction between them, which is a complex coupling process. A finite element method is employed to study the distribution and change principle of temperature and curing degree during the cure process of FRP pipe. The lumped-mass approach is adopted to improve calculation precision, and the adaptive time step control to improve calculation efficiency. Based on the finite element software ANSYS and APDL the numerical simulation program of FRP pipe is developed. Curing process numerical simulation and analysis of high pressure FRP pipe is conducted, which is an effective way of designing the curing curve of FRP pipe.
     The control mode of electronic-gearing is proposed to realize winding synchronous motion control, which simplify the two axis servo control of traditional numerical control winding machine into one axis servo tracking control. Based on DSP and CPLD, the position synchronous motion controller which can perform none-uniform speed ratio control is developed. The control strategy of parameters self-tuning fuzzy PID is adopted to realize synchronous motion control. Simulation based on MATLAB shows that the fuzzy-PID controller can improve the robustness, the dynamic and static performance of the control system compared with ordinary PID controller.
     The internal heating curing high pressure FRP pipe product line developed in this paper has been applied in Daqing Hanwei Changyuan FRP Pipe Inc. and proves to be successful. The performance comparison test of pipelines manufactured by two different processes shows that the performance of the pipes manufactured by internal heating curing process is better. The elastic limit is 8.12% higher and the bursting pressure is 8.5% higher than the pipes manufactured by the external heating curing process. It proves that the internal heating curing process has achieved speediness and high efficiency in industrialized manufacturing of epoxy FRP pipe. It ends the history that we can’t manufacture high pressure FRP pipe that agree with American API standard by ourselves.
     Finally, all the work in this paper is summarized and some further investigation contents are also proposed.
引文
1 A. S. Chiu, R. J. Franco. FRP Line Pipe for Oil and Gas Production. SPE Reprint Series, Corrosion, 1997, (46): 137~142
    2 苏焕荣, 郝大富. 用好玻璃钢管道提高油田效益. 玻璃钢/复合材料, 2001, (5): 18~20
    3 K. J. Oswald. Thirty Years of Fiberglass Pipe in Oilfield Applications: a Historical Perspective. Materials Performance, 1996, 35(5): 65~68
    4 J. E. Green. Overview of Filament Winding. SAMPE Journal, 2001, 37(1): 7~11
    5 顾文涛. 浅析油田采出水的成分及所受影响. 油气田地面工程, 1999, 18(6): 27~29
    6 张玉春, 田晶. 油田井下用高压玻璃钢管的研究, 纤维复合材料, 2003, (2): 42~44
    7 张福承. 环氧玻璃钢管快速高效制造技术. 纤维复合材料, 2004, (1): 36~38
    8 张兵. 中高压玻璃钢管道在油气田污水工程中应用研究. 哈尔滨工业大学硕士学位论文, 2001
    9 张玉芳. 石油专用玻璃钢的质量检验标准及其评价技术介绍. 玻璃钢/复合材料, 1996, (6): 40~44
    10 杨斌. 玻璃钢管道及容器在油田地面工程中的应用. 油气田地面工程, 2001, 20(3): 37~38
    11 刘乃伦. 高压玻璃钢管在油田井下的应用. 玻璃钢/复合材料, 1998, (2): 26~27
    12 S. Beckwith, M. Greenwood. Don't Overlook Composite FRP Pipe. Chemical Engineering, 2006, 113(5): 42~48
    13 G. J. Singh. Oilfield FRP Liners Face Corrosion and High Temperatures. Polymers and Polymer Composites, 1999, 7(3): 143~164
    14 陈宏章, 孙雨虹. 中高压玻璃钢管在中国油田中的应用. 纤维复合材料, 2000, (3): 36~39
    15 陈光烈. 高压玻璃钢管道的研制及在油田中的应用. 纤维复合材料. 2002, (4): 41~43
    16 B. Wilson. Filament Winding-the Jump From Aerospace to CommercialFrame. SAMPE Journal, 1997, 33(3):25~32.
    17 李国伟. 纤维缠绕机的发展状况. 玻璃钢/复合材料, 1988, (3): 48~52
    18 董雪芹. CCFW 总体方案智能设计系统研究. 武汉理工大学硕士学位论文, 2002
    19 周云端. 专用缠绕机的开发与张力控制系统研究. 西北工业大学硕士学位论文, 2006
    20 杜善义, 沃丁柱, 章怡宁. 复合材料及其结构的力学、设计、应用和评价. 哈尔滨工业大学出版社, 2000
    21 F. C. Shen. A Filament-Wound Structure Technology Overview. Materials Chemistry and Physics, 1995, 42(2): 96~100
    22 F. Abdel-Hady. Filament Winding of Revolution Structures. Journal of Reinforced Plastics and Composites, 2005, 24(8): 855~868
    23 T. Imamura. Development of Hoop Filament Winding System with Tension Control. Transactions of the Japan Society of Mechanical Engineers Part C, 2003, 69(4): 906~913
    24 T. Imamura and T. Kuroiwa. Design and Tension Control of Filament Winding System. 1999 IEEE International Conference on Systems, Man, and Cybernetics, 1999, 2: 660~670
    25 王春香. 微机数控纤维缠绕机精密张力控制系统研究. 哈尔滨工业大学博士论文, 1999
    26 陈静. 纤维缠绕机计算机控制系统的设计及实现. 天津工业大学硕士学位论文, 2005
    27 王文生, 路华, 范谦. 微机控制纤维缠绕机的设计特点. 哈尔滨工业大学学报, 1988, (2): 71~80
    28 王世寰, 王永章, 路华. 数控缠绕机张力在线检测系统的设计, 中国机械工程, 2002, 13(24): 2091~2093
    29 朱松青, 史金飞, 伍斌. 数控纤维缠绕机精密张力控制系统, 自动化仪表, 2004, 25(5): 60~63
    30 田会方, 杨岳, 周洋. 基于 Internet 的纤维缠绕机远程监控系统, 武汉理大学学报, 2003, 25(7): 57~59
    31 朱晓明, 王永章, 富宏亚. 基于网络的纤维缠绕机远程监控关键技术研究. 计算机集成制造系统, 2005, 11(2): 265~269
    32 胡学同, 周杏鹏. 基于模糊理论的纤维缠绕机双轴协调控制, 测控技术,2002, 21(3): 17~19
    33 胡学同, 周杏鹏. 纤维缠绕机台车速度跟踪控制方法研究. 电气传动, 2003(1): 55~57
    34 薛增涛, 蒋蓓, 李雯. 玻璃钢缠绕微机自适应控制系统的设计. 河北科技大学学报, 2003, 24(4): 48~52
    35 孔庆宝. 促进我国玻璃钢工业稳健发展的思考. 纤维复合材料,1997,14(1): 56~61
    36 谢霞,邱冠雄,姜亚明. 纤维缠绕技术的发展及研究现状. 天津工业大学学报,2004,23(6): 19~22
    37 A. O. Loos, G. S. Springer. Curing of Epoxy Matrix Composites. Journal of Composite Material, 1983, (17): 135~169
    38 P. R. Ciriscioli, G. S. Springer. Smart Autoclave Cure of Composites. USA: Technomic Publishing Company, 1990: 13~15
    39 A. O. Kays. Exploratory Development on Processing Science of Thick Section Composites. Technical Report AFWAL-TR-85-4090, Air Force Wright Aeronautical Laboratories, Wright Patterson AFB, OH, 1985
    40 T. A. Bogetti, J. W. Jr. Gillespie. Two-dimensional Cure Simulation of Thick Thermosetting Composites. Journal of Composite Material, 1991, (2)5: 239~273
    41 T. A. Bogetti, J. W. Jr. GilIespie Process-induced Stress and Deformation in Thick-section Thermoset Composite Laminates. Journal of Composite Material, 1992, 26(5): 625~660
    42 D. D. Shin. Intelligent Processing For Thick Composites. Dissertation of University of California, 2000: 63~65
    43 M. I. Naji and S. Y. Hoa. Curing of Thick Angle-bend Thermoset Composite Part: Cycle Effect on Thickness Variation and Fiber Volume Fraction. Journal of Reinforced Plastics Composites, 1999, 18(8): 702~723
    44 M. I. Naji, S. Y. Hoa. Curing of Thick Angle-bend Thermoset Composite Part: Curing Process Modification for Uniform Thickness and Uniform Fiber Volume Fraction Distribution. Journal of Composite Material, 2000, 34(20): 1710~1755
    45 N. Pantelelis, T. Vrouvakis, K. Spentzas. Cure Cycle Design for Composite Materials Using Computer Simulation and Optimization Tools. EngineeringResearch, 2002, 67(6): 254~262.
    46 D. C. Blest, B. R. Duffy, S. Mckee and A. K. Zulkifle. Curing Simulation of Thermoset Composites. Composites Part A, 1999, (30): 1289~1309.
    47 J. T. Tzeng and A. C. Loos. A Cure Analysis for Axisymmetric Composites. Composite Manufacturing, 1993, 4(3): 43~51.
    48 H. C. Park and S. W. Lee. Cure Simulation of Thick Composite Structures Using the Finite Element Method. Journal of Composite Material, 2001, 35(3): 188~200
    49 S. Yi, H. Hilton and M. F. Abmad. A Finite Element Approach for Cure Simulation of Thermosetting Matrix Composites. Computers and Structures, 1997, 64(4): 383~388
    50 V. A. F. Costa and A. C. M. Sousa. Modeling of Flow and Thermo-kinetics During the Cure of Thick Laminated Composites. International Journal of Thermal Sciences, 2003, (4)2: 15~22
    51 S. Yi and H. H. Hilton. Effects of Thermo-mechanical Properties of Composites on Viscosity, Temperature and Degree of Cure in Thick Thermosetting Composite Laminates During Cure in Thick Thermosetting Composite Laminates During Process. Journal of Composite Material, 1998, (32): 600~622
    52 J. H. Oh and D. G. Lee. Cure Cycle For Thick Glass/Epoxy Composite Laminates. Journal of Composite Material, 2002, 36(1): 19~45
    53 S. C. Joshi, X. L. Liu and Y. C. Lam. A Numerical Approach to the Modeling of Fiber-reinforced Composites. Compos. Sci. Tech., 1003~1013
    54 T. E. Twardowski, S. E. Lin and P. H. Gell. Curing in Thick Composite Laminates: Experiment and Simulation. Journal of Composite Material, 1993, 27 (3): 215~250
    55 M. Hojjati and S. V. Hoa. Curing Simulation of Thick Thermosetting Composites. Composites Manufacturing, 1994, 5(3): 159~169
    56 Z. L. Yang and S. Lee. Optimized Curing of Thick Section Composite Laminates. Materials and Manufacturing Processes, 2001, 16(4): 541~560
    57 杨正林, 陈浩然. 层合板在固化全过程中瞬态温度场及固化度的有限元分析. 玻璃钢/复合材料, 1997, (3): 3~7
    58 陈浩然, 杨正林, 唐立民. 复合材料层合板固化过程的数值模拟. 应用力学学报, 1998, 15(3): 30~36
    59 李辰砂. 复合材料成型工艺智能化的研究. 哈尔滨工业大学博士学位论文, 1999
    60 武湛君. 基于光纤传感技术的复合材料固化监测技术. 哈尔滨工业大学, 博士学位论文, 2001
    61 左德峰, 朱金福, 黄再兴. 树脂基复合材料固化过程中温度场的数值模拟.南京航空航天大学学报. 1999, 31(6): 701~705
    62 胡训传, 李松年, 赵天惠. 复合材料弹翼结构热力力学分析. 北京航空航天大学学报. 1996, 22(3): 374~378
    63 杨自春. 复合材料层合结构的非线性传热分析, 海军工程大学学报. 2000, (5): 9~13
    64 郭战胜, 杜善义, 张博明, 武湛君. 厚截面树脂基复合材料的温度场研究. 复合材料学报, 2004, 21(5): 122~127
    65 Z. S. Guo, S. Y. Du, B. M. Zhang. Temperature Distribution of Thick Thermoset Composites Modelling and Simulation in Materials Science and Engineering, 2004, 12(3): 443~452
    66 梁舒萍, 许珍子. 用差热分析研究环氧树脂固化反应动力学. 佛山科学技术学院院报 (自然科学版), 1998, (3): 38~43
    67 李新松, 黄吉普, 张保龙. 含磷芳胺/环氧树脂体系固化反应的 DSC 研究. 东南大学学报, 1999, (1): 113~115
    68 刘伟昌, 刘德山, 申胜军. 一种液晶环氧树脂固化动力学 FTIR 研究. 功能高分子学报, 1999, (3): 307~332
    69 戴福洪. 树脂传递模塑工艺有限元模拟与树脂流动过程监测. 哈尔滨工业大学博士学位论文, 2004, 10
    70 M. K. Telikicherla, X. Li, M. C. Altan. Numerical Study of Conjugate Heat Transfer in Autoclave Curing of Thermosetting Composites. Thermal Processing of Materials: Thermo-Mechanics, Controls, and Composites, Heat Transfer Division. ASME. NEW York, (Publication) HTD, 1994, 289: 213~221
    71 S. Y. Lee, G. S. Springer. Filament Winding Cylinder, I: Process Model. Journal of Composite Materials. 1990, 24(12): 1270~1298
    72 G. S. Springer. A Model of the Curing Process of Epoxy Matrix Composites. in Progress in Science and Engineering of Composites, Japan Society forComposite Materials, 1983: 23~35
    73 M. R. Kamal, S. Sourour. Kinetics and Thermal Characterization of Thermoset Cure. Polymer Engineering and Science, 1973, (13): 59~64
    74 E. P. Calius., S. Y. Lee and G. S. Springer. Filament Winding Cylinders: Part II, Validation of the Model. Journal of Composite Materials, 24(12): 1299~1343
    75 W. L. Lee., A. C. Loos and G. S. Springer. Heat of Reaction Degree of Cure and Viscosity of Hercules 3501-6 Resin. Journal of Composite Materials, 1982, (16): 510~520
    76 M. R. Dusi., W. I. Lee, P. R. Ciriscioli and G. S. Springer. Cure Kinetics and Viscosity of Fiberite 976 Resin. Journal of Composite Materials, 1987, (21): 243~261
    77 S. T. Bhi., R. S. Hansen, B. A. Wilson, et al. Degree of Cure and Viscosity of Hrecules HBRF-55 Resin. in Advanced Materials Technology. Society for the Advancement of materials and Process Engineering, 1987, (32): 1114~1118
    78 E. P. Catius. and G. S. Springer. A Model of Filament Wound Thin Cylinders. International Journal of Solids and Structures, 1990, (26): 271~279
    79 S. W. Tsai. Composites Design. Thick Composite Chapter Ⅱ, 1987
    80 S. Y. Lee, G. S. Springer. Effects of Cure on the Mechanical Properties of Composites. Journal of Composite Materials, 1988, (22): 15~29
    81 J. L. Kardos, M. P. Dudukovic. Void formation and transport during composite laminate processing. In: Browning C E. Composite materials, quality assurance and processing, ASTM STP 797, 1983: 96~109
    82 J. M. Tang, W. I. Lee, G. S. Springer. Effects of Cure Pressure on Resin Flow, Voids and Mechanical Properties. Journal of Composite Materials, 1987, (21): 421~440
    83 王荣国, 田秋, 马文有. 数值计算模拟复合材料固化中夹杂气泡的影响和残余应力的变化. 复合材料学报, 2002, 19(5): 95~101
    84 G. S. Springer. Environmental Effects on Composite Materials. Technomic Publishing Co., 1981: 75~76
    85 R. W. Lyszkowski. Proceeeding of Mass Transfering between Oil and Water in Porous Medium. 2nd Multiphase Flow and Heat Transfer Symposium. Miami, 1979, (4): 16~18
    86 S. Y. Lee. and G. S. Springer. Filament Wingding Cylinders: PartⅢ, Selection of the Process Variables. Journal of Composite Materials, 1990, 24(12): 1344~1366
    87 谭华, 晏石林. 热固性树脂基复合材料固化过程的三维数值模拟. 复合材料学报, 2004, 21(6): 167~172
    88 X. L. Liu, I. G. Crouch, Y. C. Lam. Simulation of Heat Transfer and Cure in Pultrusion with a General-purpose Finite Element Package. Composites Science and Technology, 2000, 60(6): 857~864
    89 K. S. Olofsson. Temperature Predictions in Thick Composite Laminates at Low Cure Temperatures, Applied Composite Materials, 1997, 4(1): 1~11
    90 戴福洪, 杜善义. 复合材料 RTM 制造工艺数值模拟研究进展. 宇航材料工艺, 2002, 32 (6): 14~18
    91 Choi Mi Ae, Lee Mi Hye, Chang Jaeeon. Three-dimensional Simulations of the Curing Step in the Resin Transfer Molding Process. Polymer Composites, 1999, 20(4): 543~552
    92 杨梅, 晏石林, 谭华. RFI 工艺过程的数值模拟. 武汉理工大学学报, 2005, 27(12): 10~13
    93 吴和融, 王彬芳. 高分子物理. 华东化工学院出版社,1990: 144~162
    94 朱良漪, 孙亦梁. 分析仪器手册. 化学工业出版社, 1997: 946~956
    95 M. Li and C. L. Tucker III. Optimal Curing for Thermoset Matrix Composites: Thermochemical and Consolidation Considerations. Polym. Compos., 2002, 23 (5): 739~757
    96 M. Li, Q. Zhu, P. H. Geubelle and C. L. Tucker III. Optimal Curing for Thermoset Matrix Composites: Thermochemical Consideration. Polym. Compos., 2001, 22(1): 118~131
    97 Q. Zhu, P. H. Geubelle, M. Li and C. L. Tucker III. Dimensional Accuracy of Thermoset Composites: Simulation of Process-induced Residual Stresses. J. Compos. Mater., 2001, 35 (24): 2171~2205
    98 Q. Zhu and P. H. Geubelle. Dimensional Accuracy of Thermoset Composites: Shape Optimization. J. Compos. Mater., 2002, 36 (1): 647~672
    99 Z. Dimitrovova, L. Faria. Finite Element Modeling of the Resin Transfer Molding Process Based on Homogenization Techniques. Computers and Structures, 2000, (76): 379~397
    100 M. P. Koteshwara, J. Raghavan. Parametric Study of Process Induced Deformation in Composite Laminates. International SAMPE Symposium and Exhibition (Proceedings), 2001, 46(II): 2278~2292
    101 D. J. Song, X. D. He, Y. Li, R. G. Wang. FEM Analysis for Curing Temperature Field of Filament Wound Vessels. Journal of Harbin Institute of Technology, 2005, 37, (SUPPL. 1): 53~60
    102 A. Kaindl, R. Roeckelein, J. Grindling, M. Gehrig. Simulation of the Curing Process Upon Epoxy-resin Casting of Electrical Apparatuse - a Flexible Way to Do This, International Symposium on Electrical Insulating Materials Proceedings, 1998: 277~280
    103 王宏, 于泳, 徐殿国. 永磁同步电机位置伺服系统. 中国电机工程学报, 2004, 24(7):151~155
    104 Z. Ibrahim, E. Levi. Fuzzy Logic Versus PI Speed Control in High- Performance AC drives:A comparison.Electric Power Components and Systems,2003,31(40):403~422
    105 刘金凌, 王先逵, 吴丹. 直线电机伺服系统的模糊推理自校正 PID 控制. 清华大学学报(自然科学版), 1998, 38(2):44~46
    106 Y. F. Li, C. C. Lau. Development of Fuzzy Algorithm for Servo System. IEEE Control System Magazine, 1989, 9(3):65~67
    107 Sae Kyu Nam, Wan Suk Yoo. Fuzzy PID Control with Accelerated Reasoning for D.C. Servo Motors. Engineering Applications of Artificial Intelligence, 1994, 7(5):559~569
    108 牛全民, 黄道敏, 张波. 伺服系统中模糊控制器的设计与仿真. 系统仿真学报, 2003, 15(5): 706~708
    109 Y. Tan, J. G. Zhang, Y. B. Xu. Novel Control Strategy of AC Servo System. Proceedings of the IEEE International Conference on Intelligent Processing Systems, Beijing, China, 1998, (1): 286~290
    110 M. J. George. Fuzzy Logic Servo Motor Control on the Texas Instruments TMS320C14 DSP. Second International Workshop on Industrial Fuzzy Control and Intelligent Systems, USA, 1992: 49~56
    111 黄鸿, 唐毅, 张燕. 连续型模糊 PID 复合控制器在直流位置伺服系统中的应用. 北京理工大学学报, 2004, 24(6): 520~523
    112 牛志刚, 张建民. 应用于直线电机的平滑切换模糊 PID 控制方法. 中国电机工程学报, 2006, 26(8): 132~136
    113 Z. Li, Y. M. Li, P. S. Ma, C. J. Qin. The Synchronization Control of a Multi-motor Based on a Fuzzy PID Controller. Industrial Instrumentation and Automation, 2003(4): 11~13
    114 汪海燕, 李娟娟, 张敬华. 自适应模糊 PID 控制的无刷直流电机及仿真. 微电机, 2003, 36(4): 14~17
    115 M. K. Mishra, A. G. Kothari, D. P. Kothari. Development of a Fuzzy Logic Controller for Servo Systems. Proceedings of the 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control, New Delhi, India, 1998, (1): 204~207
    116 吴振顺,姚建均,岳东海. 模糊自整定 PID 控制器的设计及其应用. 哈尔滨工业大学学报, 2004, 36(11): 1578~1580

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700