用户名: 密码: 验证码:
农田多源信息获取与空间变异表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田多源信息的获取是进行农田土壤、作物与环境等信息空间变异特性研究的基础。随着新一代高分辨率主被动遥感卫星的发射和各类近地传感器的快速发展,利用各自的优势进行农田多源信息获取、空间变异表征与数字制图研究,已成为当前国内外研究的热点。特别是针对土壤信息快速获取与空间变异研究,国际土壤学界给予了极大的关注。国际土壤学会在2002年第17届国际土壤科学大会上新成立了计量土壤学专业委员会(Pedometrics, Commission1.5),提出利用数学和统计学方法研究土壤的分布和发生。2008年又成立了土壤近地传感(Proximal Soil Sensing)工作组,发展各种土壤信息室内外近地快速获取的方法和手段,推进传统土壤理化测试分析向土壤野外实时监测方向发展。本论文围绕上述研究热点,以浙江省杭州湾滨海围垦试验田为样区,针对土壤盐分、水分等关键影响因子,利用近地传感器和主被动遥感等多种手段开展农田信息快速获取和解译、土壤采样方法、农田管理分区与数字土壤制图的研究,为研究区进行土壤科学改良和农田精确管理提供技术支撑与辅助决策指导。主要研究结果包括以下四个方面:
     (1)基于近地传感器数据的土壤盐分时空变异研究
     在海涂围垦区,土壤盐分是影响作物生长的一个重要因素,本研究利用2009-2011年实地测量的土壤表观电导率(ECa)数据,结合传统统计和地统计方法进行土壤盐分的时空变异研究,揭示土壤盐分的空问变异情况,以期为作物种植和农田土壤管理提供依据。空间分析表明,土壤盐分含量高的区域位于研究田块的中部,土壤盐分含量低的区域位于田块的周围。时序上的变异性分析表明,随着围垦利用年限的增加,土壤含盐量逐步减少,年季减少的幅度在降低,年季之间多重比较分析差异显著。时序的稳定性分析表明,在中部土壤盐分含量高的区域,具有时序变异方向上的稳定性,而在土壤盐分含量较低的周围区域,时序稳定性相对较差。这对于农业生产者了解围垦区土壤盐分的时空变化规律,科学指导土壤改良和农业生产具有重要意义。
     (2)基于星地数据的RSM土壤采样设计研究
     从土壤采样设计两个基本原则——样点个数最小化,差异最大化出发,针对当前存在的问题——样点个数和样点位置如何确定,利用ECa数据和后向散射系数(σ0)数据,结合方差四叉树法(VQT)和曲面响应采样设计(RSM)进行土壤肥力高效采样方法的研究。本研究田块中,先采用VQT法得到合理的样点数目为12个,再采用RSM方法进行样点位置的确定和优化,从而确定12个土壤采样点。与传统的42个规则网格采样点比较,两种采样方法具有统计上的相似特征,t-检验的Tukey-Kramer HSD比较表明,差异不显著。说明本方法与传统网格采样方法相比,样点设计的采样效率更高,这对于土壤采样策略的进展具有重要的推动作用。
     (3)基于星地多源数据的农田田间管理分区与数字制图研究
     随着遥感技术和近地传感技术的发展,高分辨率遥感影像和农田快速实时获取的信息在土壤学科中的应用越来越广泛。本研究综合利用反映海涂围垦区土壤盐分的土壤电导率信息,反映作物长势的归一化植被指数(NDVI)和反映土壤水分特征的后向散射系数(G0)作为输入变量,采用模糊κ-均值聚类算法来定义田间管理分区,并利用模糊性能指数(FPI)、改进分类熵(MPE)和聚类独立性指数(S)有效地确定了最佳聚类效果和分区数目,结果表明,最佳分区数目为3。用混淆指数(CI)评价单个管理单元分区效果的好坏。通过划分管理分区来指导土壤采样,能通过少量的土壤样品调查获取各管理分区的土壤养分变异特征;另一方面利用地统计学方法进行制图,进行土壤空间变异田间尺度的表达,给农户提供最直观的数字土壤图,可以为分区进行精准农业管理提供决策依据,具有重要的理论和应用价值。
     (4)基于原位可见-近红外(vis-NIR)高光谱技术的土壤制图研究
     vis-NIR光谱技术是近地传感技术中的一个重要分支,与常规土壤理化分析相比,可见-近红外光谱测量技术具有快速、无损、高通量、低成本等特点。本研究利用ASD FieldSpec Pro FR野外型光谱仪获取的vis-NIR数据,进行土壤光谱数据处理、预测建模和数字制图方法研究。研究中,将野外现场获取的土壤光谱经过去噪和倒数的对数转换(Log (1/R))为吸收光谱后,利用逐步回归分析法寻找表征土壤属性的特征波段,然后利用偏最小二乘法(PLSR)进行土壤属性的预测与建模,结果表明,采用逐步回归法提取特征波段,利用PLSR可以对土壤有机质(SOM)、总氮(TN)、CEC、速效氮(AN)、速效磷(AP)和速效钾(AK)进行准确的预测。例如,对AP,模型可以解释98.9%的变异,RMSE和RPD的值分别为1.03和9.98。即使最小的解释变异模型(TN),也可以解释87.4%的变异,RMSE和RPD的值分别为0.56和3.15。最后利用土壤光谱数据和实测土壤属性数据(SOM、TN、CEC、AP和AK)分别进行克里格插值制图,两组土壤属性空间分布特征基本相同,说明野外光谱测量手段在农田土壤属性快速获取与数字制图方面具有很大的应用潜力。
     本研究基本完成了研究内容,达到了预期的研究目标,取得了以下新进展:
     (1)利用遥感和近地传感器技术各自优势获取的多种农田信息,综合运用在土壤空间变异研究、土壤采样研究和农田管理分区中,有新意。在土壤肥力采样方法的研究中,以围垦区土壤限制因子——水分和盐分数据为基础,提出了VQT和RSM方法相结合,从土壤空间变异特性出发来解决土壤采样问题的方法。一方面解决了采样点位置的问题,另一方面也考虑了数据的空间位置,同时打破了VQT方法中采样形状是矩形的限制。与传统的网格采样方法进行比较,RSM采样方法速度快,效率高。
     (2)针对土壤制图中的田间尺度制图问题,利用多源数据进行土壤空间变异制图分析。如针对田间管理分区及制图问题,综合利用围垦区土壤限制因子盐分、水分信息结合作物长势信息,采用模糊κ-均值聚类进行管理分区划分并制图,为精准农业管理提供最为直观的依据。针对原位信息采集制图问题,利用vis-NIR原位测量的土壤高光谱信息,进行土壤属性预测特征波段的筛选、预测和制图,预测结果良好,为利用野外光谱测量手段进行实时快速的获取土壤属性空间分布信息提供理论支撑,同时也为农户的田间管理提供最为直观的图形数据,对国内进行土壤光谱的原位测量与建模研究具有重要的意义。
Acquisition of multi-sources field information is the premise to conduct studies on spatial variability of soil, crops and the environment. Especially, with the rapid development of a new generation of high-resolution active and passive remote sensing satellite and soil proximal sensor, outstanding advantages of the method to obtain the multi-source farmland information for analyzing soil spatial variability and digital mapping has attracted more and more attention. In this regard, the International Union of Soil Science (IUSS) also gave a great concern on the quick access to field information and soil spatial variability. In2002,17th World Congress of Soil Science set up a Pedometrics, Commission1.5which suggested approaching the soil distribution and pedogenesis with mathematical and geostatistical methods. Consequently in2008, the Proximal Soil Sensing group was formed to focus on the research and development of proximal sensors to acquire soil information inside and outside the room, advancing the approaches of soil science from lab analysis to field monitoring in-stiu. In the present study, the reclaimed coastal fields in Hangzhou gulf, Zhejiang Province, were selected as study area to carry out the research on quick access to field information and soil spatial variability, where soil salinity/moisture has a decisive role in soil quality and crop planting. As such, researches based on the critical factors (i.e. soil salinity, soil moisture) in reclaimed coastal areas, including multi-source information acquisition and processing, soil sampling, soil management zoning and digital mapping were implemented to provide ancillary technical information for soil improvement and precision agriculture. The main results are as follows:
     (1) Sensor-directed spatio-temporal variability of soil salinity in coastal areas
     Soil salinity is crucial variable which influences the soil quality and agricultural productivity in reclaimed areas. Accurately characterizing the spatial variability is critical for the rational development and utilization of tideland resources. In the present study, we employed soil apparent electrical conductivity (ECa) acquired by EM38from2009to2011to carry out spatio-temporal variability analysis integrating traditional and geostatistical analyses. The analyses of the spatial distribution and trend maps revealed the relatively high salinity in the middle, which reasoned by farming and water table fluctuation; low soil salinity in the surroundings may arise of the drainage ditches surrounded the field (i.e. ridge building in the surroundings, irrigation and drainage for rice). In addition, soil salinity decreased from2009to2011with significant difference between years by the calculated Tukey-Kramer means comparisons. Coefficient of variation over time at each measurement showed that the middle region with a high salinity content displayed temporal stability, while the surrounding region of a lower salinity level showed temporal instability. These results could be used for knowing of the change discipline of soil salinity in reclaimed soil, directing the farmer to plant, or scheduling the variable rate application.
     (2) Soil sampling strategy based on radar imagery and proximally sensed data
     On the basis of the two basic principles of soil sampling design-minimized the number of samples and maximized the difference between sampling points, we focused on how to determine the number of samples and sample location herein. ECa and the backscattering coefficient (σ0) data were employed, combining with the variance quadtree method (VQT) and response surface methodology (RSM) to seek the efficient soil sampling. In this specific field, VQT method generated a reasonable number of samples of12, and then we used RSM to determine the sampling locations. The validation indicated that the RSM sampling strategy was highly effective at characterizing spatial variability of various topsoil chemical properties (e.g. soil organic matter (SOM), available nitrogen (AN), and available potassium (AP) compared with the traditional-grid sampling design. The two sampling methods have similar characteristics, t-test with Tukey-Kramer HSD comparison showed that the difference was not significant. The results would play an important role in promoting the progress of soil sampling strategy aided with auxiliary data.
     (3) Management zone and digital soil mapping based on multi-source data of high resolution remote sensing imagery and proximally sensed data
     With the development of a new generation of high resolution remote sensing and proximal soil sensing technology, the usage of high-resolution remote sensing images and real-time access to field information is becoming more and more popular in soil science. In this regard, ECa indicating soil salinity, the normalized difference vegetation index (NDVI) reflecting the crop vigour and the backscattering coefficient (σ0) characterizing the soil moisture were selected as input variables, fuzzy k-means clustering algorithm was used to partition the field management zone. Fuzzy performance index(FPI), modified partition entropy (MPE) and separate clustering independence index (S) were adopted to determine the best clustering and the number of partitions. The results indicated that the optimal number of partitions was3. Afterwards, confusion index (CI) was employed to evaluate the effect of each unit. In light of the characteristics of each zone, corresponding management practices should be adopted to ameliorate the soil and implement precision farmland management. The zoning in useful not only for guiding soil sampling, but also to recommendation of variable input and precision fertilization, and on the other hand, the digital mapping of the management zone can provide the most intuitive basis for precision agriculture, which are of important theoretical and practical value.
     (4) Using visible and near infrared (vis-NIR) reflectance spectroscopy for simultaneous assessment and digital mapping of selected soil properties
     vis-NIR (100-2500mm) technology is a rapid, proximal sensing method that has great potential for quantifying constituents of dried/ground soil samples. It is becoming increasingly important to improve the soil properties prediction and spatial resolution of soil maps as a fundamental information layer for soil classification, mapping and so on. In the present study, vis-NIR reflectance spectra collected in-situ were employed as an indicator for the prediction of some soil properties. Stepwise regression method was used to search for all possible subsets and sort out the best ones from a large number of spectral variables. Afterwards the PLSR approach was adopted to build up the predicted model for some soil properties. Our work demonstrated that vis-NIR spectroscopy has the potential to predict the SOM, TN. CEC, AN, AP and AK from the field measurements. In this instance, the largest explanation proportion for AP achieved98.9%with RMSE of1.03, and the RPD value of9.98, even the smallest one for TN can explain87.4%with RMSE and RPD of0.56and3.15, indicating good prediction. Digital mapping of the measured and predicted soil properties showed similar patterns and value ranges, though there are some minor differences between them. The results demonstrated the ability to use this methodology as an indicator for rapid and reliable soil assessment and mapping. The use of these techniques will promote the implementation of assessment and digital mapping of soil properties by a rapid and reliable approach from lab to field.
     The innovations or new development were made as follows:
     (1) A novel idea was proposed to study the soil spatial variability, soil sampling strategy and soil management zoning based on the outstanding advantages of multi-sources information collected by remotely and proximally sensed techniques. For the study of soil sampling algorithm, the limited factors of soil salinity and soil moisture in the reclaimed soil were used to calibrate and validate the method we proposed. That is, integrating the VQT and RSM to solve the key problem of soil sampling number and location departure from the soil spatial variability. As such, we eliminated two important aspects, one was confirming the accurate soil sampling location; the other was the breaking of the limitation of the rectangular in shape restriction in consideration of the spatial position of sampling strategy. Compared with grid sampling method, RSM has strong points of high speed and efficiency.
     (2) Focused on the field-scale digital soil mapping, we used the multi-source information to conduct soil spatial variability analysis and soil mapping. Firstly, integrating the information of soil salinity, soil moisture and crop vigour in the reclaimed area, fuzzy k-means clustering algorithm was adopted to define the management zones, providing the most intuitive basis for precision agriculture. Secondly, acquisition of high resolution soil vis-NIR spectra in-situ measurement was applied to establish the prediction model, and for soil mapping based on the screened characteristic spectral bands with stepwise regression method and PLSR. Good predictions were gained, which provided theoretical support with the regard of in-situ measurements, and played an important role in the prediction and soil mapping on the basis of in-situ measurement in China.
引文
白成云,白文斌,焦晓燕,等.厚黄土薄基岩型采煤沉陷区农田土壤化学性质空间变异.山西农业科学,2011,39(7):686-689.
    白由路,金继运,杨俐苹,等.基于GIS的土壤养分分区管理模型研究.中国农业科学,2001,34(1):46-50.
    自由路,李保国,胡克林.黄淮海平原土壤盐分及其组成的空间变异特征研究.土壤肥料,1 999,21(3):22-26.
    鲍士旦.土壤农化分析.第三版,北京:中国农业出版社,2007.
    陈彦,吕新.基于模糊c-均值聚类的绿洲农田精确管理分区研究.生态学报,2008,28(7):3067-3074.
    陈赞.高电导率岩土介质介电常数及含水量TDR测试研究.杭州:浙江大学,2011.
    陈鹏飞,刘良云,王纪华,等.近红外光谱技术实时测定土壤中总氮及磷含量的初步研究.光谱学与光谱分析,2008,28(2):295-298.
    程街亮.土壤高光谱遥感信息提取与二向反射模型研究.杭州:浙江大学,2008.
    丁建丽,塔西甫拉提·特依拜.基于NDVI的绿洲植被生态景观格局变化研究.地理学与国土研究,2002,18(1):23-26.
    董炳荣.浙江新围海涂农业综合开发技术.北京:中国农业科技出版社,1996.
    杜今阳.多极化雷达反演植被覆盖地表土壤水分研究.北京:中国科学院研究生院,2006.
    冯德锃,刘金涛,陈喜.山坡土壤化学性质的空间变异影响.山地学报,2011,29(4):427-432.
    傅庆林,厉仁安,葛正豹,等.浙江省海涂农业科技示范园区建设研究与实践.杭州:浙江大学出版社,2000.
    高国治,林家斌,卢介荣,等.农用中子土壤水分计的智能化研究.江苏农业学报,1994,10(4):39-41.
    高祥照,胡克林,郭炎,等.土壤养分与作物产量的空间变异特征与精确施肥.中国农业科学,2002,35(6):660-666.
    龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征.土壤学报,1998,35(1):10-15.
    管孝艳,杨培岭,吕烨.基于多重分形理论的农田土壤特性空间变异性分析.应用基础与工程科学学报,2011,19(5):712-720.
    郭旭东,傅伯杰,陈利顶,等.河北省遵化平原土壤养分的时空变异特征—变异函数与Kriging插值分析.地理学报,2000,55(5):555-566.
    郭燕,田延峰,吴宏海,等.基于多源数据和模糊k-均值方法的农田土壤管理分区研究.土壤学报,2013,50(3):441-447.
    胡建东,赵向阳,李振峰,等.参数调制探针式电容土壤水分传感器技术研究.传感技术学报,2007,20(5):1057-1060.
    黄敬峰.基于GIS的大面积水稻遥感估产方法的研究.杭州:浙江大学,1999a.
    黄敬峰.论遥感技术与资源、环境可持续发展研究.遥感技术与应用,1999b,14(1):65-70.
    黄明祥.海涂围垦区土壤高光谱特性与土地利用遥感调查研究.杭州:浙江大学,2004.
    黄雪峰,刘长玲,姚志华,等.采用TDR水分计研究非饱和黄土入渗及自重湿陷变形规律.岩石力学与工程学,2012,31(增1):3231-3238.
    纪文君,史舟,周清,等.几种不同类型土壤的Vis-NIR光谱特性及有机质响应波段研究.红外与毫米波学报,2012,31(3):277-282.
    姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量.植物营养与肥料学报,2001,7(3):262-270.
    金希.高分辨率SAR影像裸土信息提取及土壤含水量反演初探.杭州:浙江大学,2011.
    金继运.“精准农业”及其在我国的应用前景.植物营养与肥料学报,1998,14(1):1-7.
    雷能忠,王心源,蒋锦刚,等.基于BP神经网络插值的土壤全氮空间变异.农业工程学报,2008,24(11):130-134.
    雷志栋,杨诗秀,许志荣,等.土壤特性空间变异特性初步研究.水利学报,1985,(9):10-20.
    李伟,张书慧,张倩,等.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量.农业工程学报,2007,23(1):55-59.
    李翔,潘瑜春,马景宇,等.基于多种土壤养分的精准管理分区方法研究.土壤 学报,2007,44(1):14-20.
    李艳,史舟,程街亮,等.辅助时序数据用于土壤盐分空间预测及采样研究.农业工程学报,2006,22(6):49-55.
    李艳,史舟,王人潮,等.海涂土壤剖面电导率的协同克立格法估值及不同取样数目的比较研究.,2004,41(3):434-443.
    李艳,史舟,吴次芳,等.基于模糊聚类分析的田间精确管理分区研究.中国农业科学,2007,40(1):114-122.
    李艳.基于空间变异特性的滨海盐土采样及管理分区研究.杭州:浙江大学,2006.
    李洪义.滨海盐土三维土体电导率空间变异及可视化研究.杭州:浙江大学,2008.
    李民赞,王琦,汪懋华.一种土壤电导率实时分析仪的试验研究.农业工程学报,2004,20(1):51-55.
    梁春祥,姚贤良.华中丘陵红壤物理性质空间变异性的研究.土壤学报,1 993,30(1):69-77.
    刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的试验研究.土壤通报,200 1,32(6):85-87.
    刘焕军,张柏,赵军,等.黑土有机质含量高光谱模型研究.土壤学报,2007,44(1):27-32.
    刘强,何岩,崔保山.土壤渗透参数空间变异性及其影响因子研究.水土保持通报,2007,27(2):24-28.
    陆登槐,等编著,遥感技术在农业工程中的应用.北京:清华大学出版社,1997.
    吕军,俞劲炎.水稻土物理性质空间变异性研究.土壤学报,1990,27(1):8-15.
    庞全,苏佳,段会龙.基于四叉树和交叉墒的面向对象图像分割方法.浙江大学学报(工学版),2004,38(2):1616-1618.
    彭玉魁,张建新,何绪生.土壤水分、有机质和总氮含量的近红外光谱分析研究.土壤学报,1998,35(4):553-559.
    邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤物理性质的空间变异.地理学报,2002,57(5):587-594.
    裘正军,何勇,葛晓峰,等.基于GPS定位的土壤水分快速测量仪的研制.浙江 大学学报,2003,29(2):135-138.
    史舟,郭燕,金希,等.土壤近地传感器研究进展.土壤学报,2011,48(6):1274-1281.
    史舟,李艳,金辉明.基于方差四又树法的滨海盐土电导率采样布局研究.土壤学报,2007,44(2):294-299.
    史舟,李艳.地统计学在土壤学中的应用.北京:中国农业出版社,2006.
    舒宁.微波遥感原理.武汉:武汉测绘科技大学出版社,2000.
    苏奋振,周成虎,史文中,等.东海区底层及近底层鱼类资源的空间异质性.应用生态学报,2004,15(4):683-686.
    孙孝林,赵玉国,张甘霖,等.预测性土壤有机质制图中模糊聚类参数的优选.农业工程学报,2008,24(9):31-37.
    孙宇瑞,马道坤,何权,等.土壤水分剖面实时测量传感器试验研究.北京林业大学学报,2006,28(1):55-59.
    唐鹏钦,吴文斌,姚艳敏,等.基于小波变换的华北平原耕地复种指数提取.农业工程学报,2011,27(7):220-226.
    田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13:327-333.
    王军战,张友静,鲍艳松,等.基于ASAR双极化雷达数据的半经验模型反演土壤湿度.地理与地理信息科学,2009,25(2):5-9.
    王其兵,李凌浩.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析.植物生态学报,1998,22(5):409-414.
    吴盼密,龙鹏飞.基于四叉树和进化算法的分形图像压缩.微计算机应用,2005,26(2):198-200.
    谢宝妮,常庆瑞,秦占飞.县域土壤养分离群点检测及其合理采样数研究.干旱地区农业研究,2012,30(2):56-61.
    谢伯承,薛绪掌,王纪华,等.褐潮土的光谱特性及土壤反射率估算有机质含量的研究.土壤通报,2004,35(3):391-395.
    熊勤学,黄敬峰.利用NDVI指数时序特征监测秋收作物种植面积.农业工程学报,2009,25(1):144-148.
    徐吉炎,Webster, R土壤调查数据地域统计的最佳估值研究一彰武县表层土全氮量的半方差图和块状克立格估值.土壤学报,1983,20(4):419-430.
    徐丽华,谢德体.土壤养分空间变异研究.农机化研究,2012,34(7):6-9.
    徐永明,蔺启忠,王璐,等.基于高分辨率反射光谱的土壤营养元素估算模型.土壤学报,2006,43(9):709-71 6.
    杨琳,朱阿兴,秦承志,等.一种基于样点代表性等级的土壤采样设计方法.土壤学报,201 1,48(5):938-946.
    杨敏华.试谈遥感信息发展与农业信息获取,遥感信息,2000,4:4-46.
    杨玉建,朱建华,刘淑云,等.小麦拔节期农学参数和土壤含水量空间统计.农业机械学报,2009,40:159-164.
    姚荣江,杨劲松,姜龙.电磁感应仪用于土壤盐分空间变异及其剖面分布特征研究.浙江大学学报(农业与生命科学版),2007,33(2):207-216.
    姚荣江,杨劲松,姜龙.黄河三角洲土壤盐分空间变异性与合理采样数研究.浙水土保持学报,2006,20(6):89-95.
    姚月锋,蔡体久.丘间低地不同年龄沙柳表层土壤水分与容重的空间变异.2007,21(5):114-117.
    叶基瑶,李洪义,程街亮,等.EM38大地电导率测量仪在滨海盐土电导率测量中的应用及其优势.浙江农业学报,2008,20(6):467-470.
    于飞健,闵顺耕,巨晓棠.近红外光谱法分析土壤中的有机质和氮素.分析实验室,2002,1(3):49-51.
    余凡,赵英时.基于主被动遥感数据融合的土壤水分信息提取.农业工程学报,2011,27,187-192.
    张博,赵耕毛,刘兆普,等.江苏滩涂围垦区土壤养分空间变异研究.江苏农业科学,2010(5):461-464.
    张华,张甘霖.热带低丘地区农场尺度土壤质量指标的空间变异.土壤通报,2003,34(4):241-245.
    张敏.基于GIS和地统计学的土壤养分空间变异特征研究.郑州,河南农业大学,201 0.
    张娟娟,田永超,姚霞,等.同时估测土壤全氮、有机质及碱解氮含量的差值指数.土壤学报,2012,49(1):60-69.
    张娟娟,田永超,朱艳,等.一种预测土壤有机质含量的近红外光谱参数.应用生态学报,2009,20(8):1896-1904.
    赵继勇,曹芳,梁妙元,等.基于DSP的甚低速率语音编码算法及其实现.计算机工程,2011,37(21):261-268.
    赵其国.我国现代农业发展中的若干问题.土壤学报,1997,34(1):1-9.
    赵燕东,王一鸣.智能化土壤水分分布速测系统.农业机械学报,2005,36(2):76-78.
    郑海龙,陈杰,邓文靖,等.城市边缘带土壤重金属空间变异及其污染评价.土壤学报,2006,43(1):39-45.
    郑立华,李民赞,潘娈,等.近红外光谱小波分析在土壤参数预测中的应用.光谱学与光谱分析,2009,29(6):1549-1552.
    周斌,丁丽霞,史舟,等.浙江海涂土壤资源利用动态监测系统的研制与应用.北京:中国农业出版社,2008.
    周银.基于决策树方法的县级土壤数字制图研究.杭州: 浙江大学,2011.
    Ahuja, L R, Cassel, D K, Bruce, R R, et al. Evaluation of spatial-distribution of hydraulic conductivity using effective porosity data. Soil Science,1989,148(6): 404-411.
    Altdorff, D, Dietrich, P. Combination of electromagnetic induction and gamma spectrometry using k-means clustering:A study for evaluation of site partitioning. Journal of Plant Nutrition and Soil Science,2012,175(3):345-354.
    Anderson, C C M, Alley, M M, Roygard, J K F, et al. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Science Society of America Journal,2002,66(5):1562-1570.
    Anderson, J E, Fischer, R L, Deloach, S R. Remote sensing and precision agriculture: ready for harvest or still maturing? Photogrammetric Engineering & Remote Sensing,1999,65(10):1118-1123.
    Bartsch, A, Sabel, D, Schlaffer, S, et al. Proceedings of The First Joint PI Symposium of ALOS Data Nodes for ALOS Science Program, Kyoto. Nov.19-23.2007.
    Bezdek, J C, Hathaway R. J, Sabin, M J, et al. Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Transactions on Systems, Man and Cybernetics,1987,17(5):873-877.
    Bezdek, J C. Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press,1981, pp 256.
    Black, C A. Soil fertility evaluation and control. Boca Raton:CRC Press, Inc.,1993.
    Borchers, B, Uram T, Hendrickx, J M H. Tikhonov regularization of electrical conductivity depth profiles in field soils. Soil Science Society of America Journal, 1997,61(4):1004-1009.
    Borges R, Mallarino, A P. Field-scale variability of phosphorus and potassium uptake by no-till corn and soybean. Soil Science Society of America Journal,1997, 61(3):846-853.
    Brevik, E C, Fenton, T E, Horton, R. Effect of daily soil temperature fluctuations on soil electrical conductivity as measured with the Geonics EM-38. Precision Agriculture,2004,5(2):145-152.
    Brock, A, Brouder, S M, Blumhoff, G, et al. Defining yield-based management zones for corn-soybean rotations. Agronomy Journal,2005,97(4):1115-1128.
    Brus, D J, Spatjens, L E E M, de Gruijter, J J. A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation. Geoderma,1999,89(1-2):129-148.
    Burgess, T M, Webster, R. Optimal interpolation and isarithmic mapping of soil properties.1:The semi-variogram and punctual Kriging. Journal of Soil Science, 1980,31(2):315-331.
    Burrough, P A, McDonnell. R A. Principles of Geographic Information Systems. Oxford:Oxford University Press,1998, pp 333.
    Cambardella, C A, Moorman, T B, Novak, J M, et al. Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal.1994. 58(5):1501-1511.
    Chang, C W, Laird, D A, Mausbach, M J, et al. Near-infrared reflectance spectroscopy-principal component regression analysis of soil properties. Soil Science Society of America Journal,2001,65:480-490.
    Christy, C D. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture,2008,61(1): 10-19.
    Cipra, J E, Bidwell, O W, Whitney. D A, et al. Variation with distance in selected fertility measurements of pedons of western Kansas Ustoll. Soil Science Society of America Proceedings,1972,36:111-115.
    Corwin, D L, Lesch, S M, Oster, J D, et al. Monitoring management-induced spatio-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma,2006,131(3-4):369-387.
    Corwin, D L, Lesch, S M. Application of soil electrical conductivity to precision agriculture:theory, principles, and guidelines. Agronomy Journal,2003,95(3), 455-471.
    Corwin, D L, Plant, R E. Applications of apparent soil electrical conductivity in precision agriculture. Computers and Electronics in Agriculture,2005,46(1-3): 1-10.
    Corwin, D L, Rhoades, J D. An improved technique for determining soil electrical conductivity-Depth relations from above-ground electromagnetic measurements. Soil Science Society of America Journal,1982,46(3):517-520.
    Corwin, D L, Rhoades, J D. Establishing soil electrical conductivity-depth relations from electromagnetic induction measurements. Communications in Soil Science and Plant Analysis,1990,21 (11-12):861-901.
    Corwin, D L, Rhoades, J D. Measurement of inverted electrical conductivity profiles using electromagnetic induction. Soil Science Society of America Journal,1984, 48(2):288-291.
    Corwin, D L, Vaughan, P J, Loague K. Modeling nonpoint source pollutants in the vadose zone with GIS. Environmental Science & Technology,1997,31 (8): 2157-2175.
    Dalal, R C, Henry, R J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near-infrared reflectance spectrophotometry. Soil Science Society of America Journal,1986(1),50:120-123.
    Davis, J G, Hossner, L R, Wilding, L P, et al. Variability of soil chemical-properties in two sandy, dunal soils of Niger. Soil Science,1995,159(5):321-330.
    Diacono, M, Rubino, P, Montemurro, F. Precision nitrogen management of wheat. A review. Agronomy for Sustainable Development,2013,33(1):219-241.
    Dobson, M C, Ulaby, F T, Letoan, T, et al. Dependence of radar backscatter on conifer forest biomass. IEEE Transactions on Geoscience and Remote Sensing,1992,30 (2):412-415.
    Efron, B, Tibshirani, R. Improvements on Cross-Validation:The 632+ Bootstrap Method, Journal of the American Statistical Association,1997,92(438): 548-560.
    Eldeiry, A A, Garcia, L A. Using indicator kriging technique for soil salinity and yield management. Journal of Irrigation and Drainage Engineering,2011,137:82-93.
    Entekhabi, D, Njoku, E G, O'Neill, P E, et al. The Soil Moisture Active Passive (SMAP) mission. Proceedings of the Institute of Electrical and Electronics Engineers,2010,98 (5):704-716.
    FAO. A framework for land evaluation. Rome:FAO and Agricultural Organization of the United Nations,1976.
    Faechner, T, Pyrcz, M, Deutsch, C V. Soil remediation decision making in presence of uncertainty in crop yield response. Geoderma,2000,97(1-2):21-38.
    Ferguson, R B, Hergert, G W, Schepers, J S. Strategies for site-specific nitrogen management. In:Stafford J V, (eds). Precision agriculture'97:Proceedings of the first European conference on precision agriculture. Warwick University Conference Centre, Bios Scientific Publ., Ltd., UK.1997, (1):387-395.
    Ferreyar, R A, Apezteguia, H P, Sereno, R, et al. Reduction of soil water spatial sampling density using scaled semivariograms and simulated annealing. Geoderma,2002,110(3-4):265-289.
    Fisher, R A. Statistical methods and scientific inference. Edinburgh:Oliver & Boyd, 1956.
    Fortin, J G, Anctil, F, Parent, L-E, et al. Site-specific early season potato yield forecast by neural network in Eastern Canada. Precision Agriculture,2011,12(6): 905-923.
    Francois, C, Yuddy, R, Andre, B. Mapping urban vegetation cover using WorldView-2 imagery. In:Shen. S S, Lewis. P E, (eds). Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII. Proc. SPIE 2012, 8390, doi:10.1117/12.918655.
    Franzen, D W, Hofman, V L, Halvorson, A D, et al. Sampling for site-specific farming: Topography and nutrient considerations. Better Crops,1996,80(3):14-18.
    Gerbbers, R, Adamchuk, V I. Precision agriculture and food security. Science,2010. 327(5967):828-831.
    Gorsevski, P V, Gessler, P E, Jankowski, P. Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard. Journal of Geographical Systems.2003,5:223-251.
    Guo, Y. Shi. Z. Zhou. L Q, et al. Integrating remote sensing and proximal sensors for the detection of soil moisture and salinity variability in coastal areas. Journal of Integrative Agriculture,2013,12(4):723-731.
    Hainsworth, J M, Aylmore, L G.1983. The use of computer-assisted tomography to determine spatial distribution of soil water content. Australian Journal of Soil Research,1983,21(4):435-443.
    Halvorson, J L, Smith, J L, Papendick, R I. Issues of scale for evaluating soil quality. Journal of Soil and Water Conservation,1997,52(1),26-30.
    Hillel, D. Research in soil physics:a review. Soil Science,1991,151(1):30-34
    Host, G E, Polzer, P L, Mladenoff, D J, et al. A quantitative approach to developing regional ecosystem classifications. Ecological Applications.1996(2).6:608-618.
    Hummel, J W, Sudduth, K. A, Hollinger, S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture,2001(2),32:149-165.
    Isoguchi, O, Shimada, M. An L-band ocean geophysical model function derived from PALSAR. IEEE Transactions on Geoscience and Remote Sensing,2009,47(7): 1925-1936.
    Ju, Z Q, Liu, X N, Ren, T S, et al. Measuring soil water content with time domain reflectometry:an improved calibration considering soil bulk density. Soil Science,2010,175(10):469-473.
    Kaffka, S R, Lesch, S M, Bali, K M, et al. Site-specific management in salt-affected sugar beet fields using electromagnetic induction. Computers and Electronics in Agriculture,2005,46(1-3):329-350.
    Khosla, R. Fleming, K, Delgado, J A, et al. Use of site-specific management zones to improve nitrogen management for precision agriculture. Journal of Soil and Water Conservation,2002,57(6):513-518.
    Lesch, S M, Rhoades, J D, Corwin, D L. The ESAP-95 version 2.01R User Manual and Tutorial Guide. Research Report No.146,2000. USDA-ARS. In:George E. Brown, Jr., (eds). Salinity Laboratory, Riverside, CA.
    Lesch, S M, Strauss, D J, Rhoades, J D. Spatial prediction of soil salinity using electromagnetic induction techniques:1. Statistical prediction models:A comparison of multiple linear regression and cokriging. Water Resources Research,1995a,31(2):373-386.
    Lesch, S M, Strauss, D J, Rhoades, J D. Spatial prediction of soil salinity using electromagnetic induction techniques:2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation. Water Resources Research,1995b,31 (2):387-398.
    Li. H Y, Shi. Z, Webster R, et al. Mapping the three-dimensional variation of electrical conductivity in a paddy rice soil.19th World Congress of Soil Science, Soil Solutions for a Changing World,1-6 August 2010, Brisbane, Australia. Published on DVD.
    Li, H Y, Shi, Z, Webster, R. et al. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil. Geoderma,2013,195-196:31-41.
    Li, Y, Shi, Z, Li, F, et al. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture,2007,56:174-186.
    Loreto, A B, Morgan, M T. Development of an automated system for field measurement of soil nitrate. Paper No.1996,96-1087. American Society of Agricultural and Biological Engineers, St Joseph, Michigan.
    Lund, E D, Christy, C D, Drummond, P E. Practical application of soil electrical conductivity mapping. In:Stafford, J V, (eds). Precision Agriculture'99, Proceedings of the Second European Conference on Precision Agriculture. Odense, Denmark, July 11-15. Sheffield Academic Press Ltd., Sheffield, UK, 1999.
    Mandelbrot, B B. Fractal:Form, Chance and Dimension. SenFrancisco, Freeman, 1977.
    McBratney, A B, De Gruijter, J J. A continuum approach to soil classification by modified fuzzy k-means with extragrades. Journal of Soil Science,1992,43(1): 159-175.
    McBratney, A B, Webster, R. How many observations are needed for regional estimation of soil properties? Soil Science,1983a,135(3):177-183.
    McBratney, A B, Webster, R. Optimal interpolation and isarithmic mapping of soil properties. V. Co-regionalization and multiple sampling strategy. Journal of Soil Science,1983b,34(1):137-162.
    McBride, R A, Shrive, S C, Gordon, A M. Estimating forest soil quality from terrain measurements of apparent electrical conductivity. Soil Science Society of America Journal,1990,54(1):290-293.
    McNeill, J D. Electromagnetic terrain conductivity measurement at low induction numbers. Tech. Note TN-6. Geonics, ON, Canada,1980.
    Metternicht G. Vegetation indices derived from high-resolution airborne videography for precision crop management, International Journal of Remote Sensing,2003, 24(14):2855-2877.
    Minasny, B, McBratney, A B, Walvoort, D J J. The variance quadtree algorithm:use for spatial sampling design. Computers & Geoscience,2007,33,383-392.
    Minasny, B, McBratney, A B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geoscience,2006,32, 1378-1388.
    Minasny, B, McBratney, A B. FuzME version 3.0, Australian Centre for Precision Agriculture, The University of Sydney, Australia.2002.
    Moral, F J, Terron, J M, Marques da Silva, J R. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil & Tillage Research,2010,106: 335-343.
    Moral, F J, Terron, J M, Rebollo, F J. Site-specific management zones based on the Rash model and geostatistical techniques. Computers and Electronics in Agriculture,2011,75:223-230.
    Morgan, C L S, Waiser, T H, Brown, D J, et al. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma,2009,151:249-256.
    Mulla, D J. Mapping and managing spatial patterns in soil fertility and crop yield.In: Robert. P, Larson, W, Rust, R, (eds). Soil Specific Crop Management. American Society of Agronomy, Madison, WI.1993, pp 15-26.
    Myers, D B, Kitchen, N R, Sudduth, K A, et al. Combining proximal and penetrating soil electrical conductivity sensors for high-resolution digital soil mapping. In: Viscarra Rossel R A, McBratney A B, Minasny B, (eds). Proximal soil sensing. Netherlands, Springer Science+Business Media B. V.,2010, pp 233-243.
    Njoku, E G, Entekhabi, D. Passive microwave remote sensing of soil moisture. Journal of Hydrology,1996,184(1-2),101-129.
    Nobes, D C, Armstrong, M J, Close, M E. Delineation of a landfill leachate plume and flow channels in coastal sands near Christchurch, New Zealand, using a shallow electromagnetic survey method. Hydrogeol Joural,2000,8 (3):328-336.
    Odeh, I O A, McBratney, A B, Chittleborough, D J. Further results on prediction of soil properties from terrain attributes:heterotopic cokriging and regression-kriging. Geoderma,1995,67(3-4):215-226.
    Odeh. I O A, McBratney, A B, Chittleborough, D J. Soil pattern-recognition with fuzzy c-means:Application to classification and soil-landform interrelationships. Soil Science Society of America Journal,1992(2),56:505-516.
    Odeh, I O A, McBratney, A B, Chittleborough, D J. Spatial prediction of properties form landform attributes derived from a digital elevation model. Gerderma,1994, 63(3-4):197-214.
    Oldeland, J, Dorigo, W, Lieckfeld, L, et al. Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Reomote Sensing of Evironment,2010,114(6): 1155-1166.
    Owe, M, Van De Griend, A A. Daily surface soil moisture model for large area semiarid land application with limited climate data. Journal of Hydrology,1990, 121(1-4):119-132.
    Paine, J G. Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, an airborne electromagnetic induction methods. Water Resources Research,2003,39(3):3-1-3-10.
    Pal, N R, Pal, K, Keller, J M, et al. A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems,2005,13(4):517-530.
    Paloscia, S, Pettinato, S, Santi, E. Combining L and X band SAR data for estimating biomass and soil moisture of agricultural fields. European Journal of Remote Sensing,2012,45:99-109.
    Pellarin T, Calvet J C, Wigneron J P. Surface soil moisture retrieval from L-band radiometry:a global regression study. IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2037-2051.
    Pierce, F S, Warncke, D D, Everett, M W. Yield and nutrient variability in glacial soils of Michigan. In:Robert, P C, Rust, R H, Larson, W E, (eds). Site-Specific Management for Agricultural Systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. WI, USA 1995, pp 133-151.
    Raper, R L, Hall, E H. Soil strength measurement for site-specific agriculture, The United States of America as represented by the Secretary of Agriculture, Auburn University.2003.
    Resop, J P, Fleisher, D H, Wang, Q G, et al. Combining explanatory crop models with geospatial data for regional analyses of crop yield using field-scale modeling units. Computers and Electronics in Agriculture,2012,89:51-61.
    Rhoades, J D, Chanduvi, F, Lesch, S M. Soil salinity assessment:Methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper#57, Food and Agriculture Organization of the United Nations, Rome, Italy.1999.
    Rhoades, J D, Lesch, S M, LeMert, R D, et al. Assessing irrigation/drainage/salinity management using spatially referenced salinity measurements. Agricultural Water Management,1997,35:147-165.
    Rodriguez-Perez, J R, Plant, R E, Lambert, J-J, et al. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precision Agriculture,2011,12(6):775-794.
    Roubens, M. Fuzzy clustering algorithms and their cluster validity. European Journal of Operational Research,1982,10:294-301.
    Saino, N, Szep, T, Ambrosini, R, et al. Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proceedings of the royal society B-biological science,2004,271:681-686.
    Schepers, A R, Shanahan, J F, Liebig, M K, et al. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal,2004.96:195-203.
    Scull, P, Franklin, J, Chadwick O A. et al. Predictive soil mapping:a review. Progress in Physical Geography,2003,27(2):171-197.
    Shi. Z, Li, Y. Wang, R C. et al. Assessment of temporal and spatial variability of soil salinity in a coastal saline field. Environmental Geology,2005,48(2):171-178.
    Shi, Z, Wang, K, Bailey, J S, et al. Temporal changes in the spatial distribution of some soil properties on a temperate grassland site. Soil Use and Management, 2002,18:353-362.
    Shiel, R S, Mohamed, S B, Evans, E. Planning phosphorus and potassium fertilisation of fields with varying nutrient content and yield potential. In:Stafford J V, (eds). Precision agriculture'97:Proceedings of the first European conference on precision agriculture. Warwick University Conference Centre, Bios Scientific Publ., Ltd., UK.1997.(1):171-178.
    Shimada, M. Isoguchi, O, Tadono, T, et al. PALSAR radiometric and geometric calibration. IEEE Transactions on Geoscience and Remote Sensing.2009,47(12): 3915-3932.
    Shonk, G A, Gaultney, L D, Schulze, D G, et al. Spectroscopic sensing of soil organic matter content. Trans of the American Society of Agricultural Engineers,1991, 34:1978-1984
    Shuster, W D, Subler, S, McCoy, E L. Deep-burrowing earthworm additions changed the distribution of soil organic carbon in a chisel-tilled soil. Soil Biology & Biochemistry,2001,33 (7-8):983-996.
    Si, Y, de Boer, W F, Gong, P. Different Environmental Drivers of Highly Pathogenic Avian Influenza H5N1 Outbreaks in Poultry and Wild Birds. PLoS ONE,2013, 8(1):e53362. doi:10.1371/journal.pone.0053362.
    Simmelsgaard, S E, Djurhuus, J. The possibilities of precision fertilization with N, P and K based on plant and soil parameters. In:Stafford J V, (eds). Precision agriculture 97, Proceedings of the first European conference on precision agriculture. Warwick University Conference Centre, Bios Scientific Publ., Ltd., 1997,1:179-187.
    Song, X Y, Wang, J H, Huang, W J, et al. The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture,2009, 10(6):471-487.
    Stein, A, Van Groenigen, J W, Jeger, M J, et al. Space-time statistics for environmental and agricultural related phenomena. Environmental and Ecological Statistics,1998,5(2):155-172.
    Stoyan, H, De-Polli, H, Bohm, S, et al. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil,2000,222(1-2):203-214.
    Sudduth, K A, Kitchen. N R, Sadler, E J, et al. VNIR spectroscopy estimates of within-field variability in soil properties In:Viscarra Rossel R A, McBratney, A B, Minasny, B, (eds). Proximal soil sensing. Netherlands, Springer Science+Business Media B. V.,2010, pp 153-163.
    Sudduth, K, Drummond, S, Kitchen, N. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture,2001,31(3):239-264.
    Teng, W L, Wang, J R, Doraiswamy, P C. Relationship between satellite microwave radiometric data, antecedent precipitation index, and regional soil moisture. International Journal of Remote Sensing,1993,14 (13):2483-2500.
    Tianji, K K. Agricultural Salinity Assessment and Management. Reston:American Society of Civil Engineers,1990.
    Topp, G C, Davis, J L, Annan, A P. Electromagnetic determination of soil water content:Measurements in coaxial transmission lines. Water Resources Research. 1980,16:574-582.
    Triantafilis, J, Ahmed, M F, Odeh, I O A. Application of a mobile electromagnetic sensing system (MESS) to assess cause and management of soil salinization in an irrigated cotton-growing field. Soil Use and Management,2002,18:330-339.
    Triantafilis, J, Gibbs,l, Earl, N. Digital soil pattern recognition in the lower Namoi valley using numerical clustering of gamma-ray spectrometry data. Geoderma, 2013,192:407-421.
    Triantafilis, J, Huckel, A I, Odeh,1 O A. Comparison of statistical prediction methods for estimating field-scale clay content using different combinations of ancillary variables. Soil Science,2001,166 (6):415-427.
    Triantafilis, J, Laslett, G M, McBratney, A B. Calibrating an electromagnetic induction instrument to measure salinity in soil under irrigated cotton. Soil Science Society of America Journal,2000,64(3):1009-1017.
    Triantafilis, J, Odeh, I O A, Minasny, B, et al. Elucidation of physiographic and hydrogeological features of the lower Namoi valley using fuzzy k-means classification of EM34 data. Environmental Modelling & Software,2003,18: 667-680
    Turton, B C H. A novel variant of the Savitzky-Golay filter for spectroscopic applications. Measurement Science and Technology,1992,3(9):858-863.
    Ulaby, F T, Moore, R K, Fung, A K. Microwave Remote Sensing:Active and Passive Dedham. MA:Artech House,1986.
    van Wijk, R E, Kolzsch, A, Kruckenberg, H, et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos,2012,121(5): 655-664.
    Viscarra Rossel, R A, Chen, C. Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils. Remote Sensing of Environment,2011,115:1443-1455
    Viscarra Rossel, R A, McBratney, A B, Minasny, B, (eds). Proximal soil sensing. Netherlands, Springer Science+Business Media B. V.,2010.
    Viscarra Rossel. R A, Walvoort, D J J. McBratney. A B, et al. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma,2006,131(1-2):59-75.
    Wang, B W, Zhou, W J, Ma, S, et al. Regression-kriging of soil organic matter using the enviromental viariables derived from MODIS and DEM. Resources and Environment,2012,13(4):838-842
    Wang, X J, Qi, F. The effects of sampling design on spatial structure analysis of contaminated soil. The Science of the Total Environment,1998.224,29-41.
    Warrick, A W, Nielson, D R. Spatial variability of soil physics. In:Application of soil physics. Hillel. D, (eds.). New York:Academic Press.1980.
    Watanabe. M, Sato. M, Iribe. K. et al. Proceedings of The First Joint PI Symposium of ALOS Data Nodes for ALOS Science Program, Kyoto. Nov.19-23.2007.
    Webster R, Oliver, M A. Geostatistics for environmental scientists. England:John Wiley & Sons, Ltd.,2001.
    Webster, R. Quantitative and numerical methods in soil classification and survey. Oxford:Oxford University Press,1977.
    Whalley, W R, Leeds-Harrison, P B, Bowman, G B. Estimation of soil moisture status using near infrared reflectometry. Hydrological Processes,1991,5(3):321-327.
    Whalley, W R. Considerations on the Use of time-domain reflectometry (Tdr) for measuring soil-water content. Journal of Soil Science,1993.44:1-9.
    Wigneron, J P, Calvet, J C, Pellarin T. et al. Retrieving near-surface soil moisture from microwave radiometric observations:current status and future plans. Remote Sensing of Environment.2003.85(4):489-506.
    Williams. P C, Norris, K. H. Qualitative applications of near-infrared reflectance spectroscopy. In:Williams. P C. Norris. K H, (eds). Near Infrared Technology in the Agricultural and Food Industries. American Association of Cereal Chemists. St. Paul, MN,1987, pp 241-321.
    Wu, C F. Wu, J P, Luo. Y M. et al. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal.2009.73(4):1202-1208.
    Yanai. J. Lee. C K. Kaho, T. et al. Geostatistical analysis of soil chemical properties and rice yield in a paddy field and application to the analysis of yield-determining factors. Soil Science & Plant Nutrition.2001.47(2):291-301.
    Yu. C. Warrick. A W, Conkin, M H, et al. Two-and three-parameter calibrations of time domain reflectrometry for soil moisture measurement. Water Resources Research.1997.33:2417-2421.
    Zegelin. S J, White, I. Jenkins. D R. Improved field probes for soil-water content and electrical-conductivity measurement using time domain reflectometry. Water Resources Research,1989(11),25:2367-2376.
    Zhao, J L, Liu. C. Lv, T T. et al. Identification of landslide spatial distribution and their types along the Riviere Frorse Drainge Basin triggered by the earthquake in Haiti on 12 January 2010. Disaster Advances.2011.5(1):5-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700