TiO_2/Fe_3O_4-SiO_2光催化剂对废水中萘降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一类典型的持久性有毒物质,具有致畸、致癌、致突变“三致”毒性,是目前已知环境中最大量的具有致癌性的单一化学物种。以水溶性最强的PAHs——萘为原料,合成邻苯二甲酸酐、染料、杀虫剂的过程中产生的萘系废水,具有排放量大、浓度高、色泽深、酸或碱性强、成分复杂等特征,属于典型的有毒有害难降解的工业废水。研究开发此类难降解有机污染物的处理技术对我国的萘系有机中间体生产有着重要的意义。光催化氧化法是处理难降解萘系化合物优先考虑和重点研究的发展方向。
     近年来纳米Ti02作为一种新型环境功能材料被广泛用于难降解废水处理中。但是由于悬浮态Ti02与废水分离困难,使废水处理的成本提高。本论文以稳定的超顺磁性Fe304纳米粒子作为磁核,应用StOber法在Fe304纳米粒子表面包覆Si02,制成超顺磁性Fe3O4-SiO2载体,通过溶胶-凝胶法在Fe3O4-SiO2载体表面担载纳米Ti02催化剂,制备出单分散的具有“核-壳”结构的磁可分TiO2/Fe3O4-SiO2(TFS)复合型光催化剂。通过XRD、FTIR、TEM等表征手段,对最佳条件下制备的TFS复合型光催化剂的物性进行分析,证实制备出磁可分的纳米级复合型Ti02光催化剂。
     为了探讨TFS复合型光催化剂对污染物的催化降解效果,本论文选择多环芳烃的代表性污染物——萘进行降解试验,并通过响应曲面法的中心组合设计方法对实验操作条件进行优化,确定各个实验操作条件对萘降解率的影响顺序,同时采用数值求导、Matlab及遗传算法三个方法求得更精确的最佳操作参数数值,使萘的降解率达到最大值。试验结果表明,TFS复合型光催化剂对萘均具有高效的降解能力,且表观反应速率快。光催化对萘的最佳操作条件为光照时间97.1min、pH值2.1、复合型催化剂投加量96.2mg/L,在此条件下优化的萘降解率高达97.39%。通过模型验证,该模型预测值与实验值的最大相对误差不超过4%,说明模型对实验结果具有良好的预测效果,对于实验具有较好的指导意义。应用GC-MS分离分析方法在萘光催化降解反应过程中检测到12种确定的中间产物及3种未确定的中间产物,并推测出能够解释这些化合物形成和转化的光降解途径。
Polycyclic aromatic hydrocarbons (PAHs) are typical persistent poisonous matters known for their toxic, mutagenic and carcinogenic properties which are the largest number of carcinogenic single chemical species in the current known environment. The naphthalene series wastewaters are produced during the course of synthesize phthalic anhydride, dyestuffs and pesticides using the most water soluble PAHs-naphthalene as raw material.The wastewaters are characterized with component complex, higher concentrations, toxicity, darker color, acidity or alkalinity and toxicity, and are difficult to be degraded under natural environment. Therefore it is very meaningfulness to study and look for the practical technology that is used for processing wastewater of our countrvy's naphthalene series.
     In recent years, TiO2 nanocatalysts are widely used in wastewater treatment as a kind of new environmental function materials. However, because suspended TiO2 is hard to be separated from wastewater, the cost of this treatment is raised much higher. In this paper, superparamagnetic Fe3O4 nanoparticle in the form of ferrofluid (supplied by Harbin Normal University) was selected as the magnetic nanocore to produce homogeneous coated Fe3O4-SiO2 support using the well-known stober method. Then immobilizing TiO2 nanocatalyst on Fe3O4-SiO2 magnetic nanocores the monodispersed TiO2/Fe3O4-SiO2 (TFS) nanocatalyst with typical "coreshell" structrue was successfully obtained through sol-gel process. The prepared magnetic separable TiO2 nanocatalysts were characterized by scanning electron microscopy (SEM), Xray diffraction (XRD) and Fourier-transform infared spectroscopy(FTIR) methods which confirming that has synthesized a magnetic separable nano-scale composite TiO2 photocatalyst.
     To study the effect of the TFS composite photocatalyst's catalyzing and dagrading the contamination, this paper chooses the representational contamination of polycyclic aromatic--naphthalene to conduct the degradation experiment, and optimizes the experimental operating conditions through the method of central composite design of the response surface methodology, makes sure the influencing sequence of these experimental operating conditions. In the meanwhile,it takes three methods:numerical derivation,matlab simulation and genetic algorithm to get the more precise optimal values of operating parameters, so as to make the dagradation rate of naphthalene reach the maximum.The experiment result indicates that the TFS composite photocatalysts behave a high efficient ability of degradation,and its apparent reaction rate is fast. The optimal experimental condition which photocatalysis acts to naphthalene is:illumination time is 97.1min, pH-value is 2.1, the amount of compound catalyst is 96.2mg/L. In the conditon above, the optimized naphthalene degradation rate is high to 97.39%. Though model verification, the maximum relative error between this model predictive value and the experiment value is no more than 4% which illustates that this model has a good prediction effect to the results of experiment and shows a relatively fine guiding significance. It detects 12 kinds of determined intermediates and 3 kinds of uncertain intermediates in the progress of photocatalysis degradation reaction by using the GC-MS separation and analysis method, and conjectures the degradation pathway which can explain these compounds' formation and transformation.7
引文
[1]文晟.水体中多环芳烃的TiO2光催化降解研究.中国科学院广州地球化学研究所博士学位论文,2002:1-13页
    [2]Tryk D. A., Fujishima, K. Honda. Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta,2000,45: 2363-2376P
    [3]Jirapat A., Puangrat K., Supapan S.. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. Journal of Hazardous Materials,2009,168: 253-261P
    [4]Li H. S., Zhang Y. P., Wang S. Y., Wu Q.. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique. Journal of Hazardous Materials, 2009,169:1045-1053P
    [5]Chan C.C., Chang C.C., Hsu W.C., Wang S.K., Lin J.. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal, 2009,152:492-497P
    [6]Dahm A., Lucia L.A.. Titanium Dioxide Catalyzed Photodegradation of Lignin in Industrial Effluents. Industrial and Engineering Chemistry Research. 2004,43 (25):7996-8000P
    [7]P. Du, A. Bueno-Lopez, M. Verbaas. The effect of surface OH- population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. Journal of Catalysis,2008,260:75-80P
    [8]Z. Y. Wang, F. X. Zhang, N. J. Guan. Facile Postsynthesis of Visible- Light-Sensitive Titanium Dioxide/Mesoporous SBA-15. Chem. Mater.,2007,19(13): 3286-3293P
    [9]H. Y. Zhu, J. Y. Li, J. C. Zhao, G.J. Churchman. Photocatalysts prepared from layered clays and titanium hydrate for degradation of organic pollutants in water. Applied Clay Science,2005,28:79-88P
    [10]Seung-woo Lee, Jack Drwiega, Chang-Yu Wu, David Mazyck, Wolfgang M.Sigmund. Anatase TiO2 Nanoparticle Coating on Barium Ferrite Using Titanium Bis-Ammonium Lactato Dihydroxide and Its Use as a Magnetic Photocatalyst. Chem. Mater.,2004,16(6):1160-1164P
    [11]Beydoun D.,Amal R., Low. G.K.-C., McEvoy S.. Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution. J. Phys. Chem. B, 2000,104(18):4387-4396P
    [12]刘子儒.表层土壤中部分多环芳烃的光化学降解研究.大连理工大学硕士学位论文,2009:3-14页
    [13]袁东星,杨东宁,陈猛等.厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布.环境科学学报,2001,21(1):107-112P
    [14]何苗,张晓健,瞿福平,顾夏声.混合基质条件下难降解有机物生物降解性能.环境科学,1997,18(1):21-23页
    [15]徐文尔,文湘华.微生物在含染料废水处理中的应用.环境污染治理技术与设备,2000,1(2):9-16页
    [16]Borraccino R., Pauss A., Lebeaut. The priority toxicant reference range study: Interion report. Meded-Fac Landbounkd Toegepaste Bio. Wet.,1993,58: 1783-1785P
    [17]Kameeya Takashi, Murayama Takashi, Vmo Kohei. Biodegradation ranks of priority organic compounds under anaerobic conditions a biotic degradation of catechol,l-naphthol, trichloro phenol and o-nitrophenol. Science Total Environmental,1995,17:43-45P
    [18]冯文国,张全兴,陈金龙.萘系染料中间体生产废水的治理方法.化工环保,1999,19(4):208-212页
    [19]Matthews R. W.. An adsorption water purifier with in situ photocatalytic regeneration. J. Catal.,1998,113(2):549-555P
    [20]路光杰,袁斌,曲久辉.活性炭纤维处理有机化工废水的研究.工业水处理,1996,16(5):25-26页
    [21]阮晨,黄庆.活性炭吸附法去除印染工业废水色度的试验与研究.四川环境,2006,25(4):29-35页
    [22]冯文国,张全兴,陈金龙.萘系染料中间体废水的治理方法.化工环保,1999,19(4):208-212页
    [23]许昭怡,张慧春,王勇等.大孔树脂吸附法处理萘系染料中间体生产废水的进展.化工环保,1999,19(1):20-24页
    [24]沈国兴,严国安,余新等.萘及其衍生物对普通小球藻的毒性效应.水生生物学报,1999,23(5):460-468页
    [25]Takashi K., Takashi M., Kohei V. Biodegradation ranks of pdodty organic compounds under anaerobic conditions a biotie degradation of catechol, 1-naphthol, trichloro phenol and o-nitrophenol. Sci. Total Environ.,1995, 17(1-2):43-51P
    [26]李永君,赵化冰,任河山等.萘降解细菌的分离及其降解基因的分子检测.生态学,2006,25(7):738-742页
    [27]Nigam P., Banat I. M., Marchant R., Singh D.. Degradation of naphthalene by bacterial culture. Environment International,1998,24:671-677P
    [28]Hsiao-Lin Huang et al. Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate:Effect of criyical micell concentration. Chemosphere, 2001,44:963-972P
    [29]Elena A. Mordukhova, Sergei L. Sokolov, Vladimir V. Kochetkov et al. Involvement of naphthalene dioxygenase in indole-3-acetic acid biosynthesis by pseudomonas putida. FEMS Microbiology Letters,2000,190:279-285P
    [30]宾月景,祝万鹏,蒋展鹏.H-酸的催化湿式氧化反应过程研究.环境污染与防治,2000,22(3);4-7页
    [31]丁军委,陈峰秋,吴素芳等.超临界水氧化法处理含酚废水.环境污染与防治,2000,22(1):1-3页
    [32]林春锦,周红艺,潘志彦等.超临界水氧化法降解苯酚的研究.环境科学研究,2000,13(2):12-13页
    [33]Yu JingLi, Savage Phillip E.. Kinetics ofcatalytic supercritical water oxidation of phenol over TiO2. Environ. Sci. Techonol.,2000,34(15): 3191-3198P
    [34]Zhu WanPeng, Yang Lihua, Wang Li. Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. Wat. Res.,1996,30(12):2949-2954P
    [35]王连生,孔令仁,常城.17种多环芳烃在水溶液中的光解.环境化学,1991,10(2):15-20页
    [36]Das S., Muneer M., Gopidas K. R.. Photocatalytic degradation of wastewater pollutants titanium-dioxide mediated oxidation of polynuclear aromatic hydrocarbons. J. Photochem. Photobiol. A:Chem.,1994,2:77-83P
    [37]Pramauro E., Prevot A. B., Vincenti M., Gamberini R.. Photocatalytic degradation of naphthalene in aqueous TiO2 dispersions:Effect of nonionic surfactants. Chemosphere,1998,36:1523-1534P
    [38]Lenka Hykrdova, Jarom' □r Jirkovsky, Gilles Mailhot, Michele Bolte. Fe(III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism. Journal of Photochemistry and Photobiology A:Chemistry,2002,151:181-193P
    [39]黄应平,罗光富,颜克美.TiO2纳米半导体光催化研究进展.三峡大学学报,2002,24(6):567-568页
    [40]姚恩亲,马家举.新型抗菌剂-纳米TiO2的研究与应用.化学与生物工程,2003,6:50-51页
    [41]胡聪丽.磁性负载纳米光催化剂TiO2/Fe3O4的研究.兰州理工大学硕士学位论文,2008,2:7-11页
    [42]石建稳,郑经堂.纳米TiO2光催化剂可见光化的研究进展.化工进展,2005,24(8):841-843页
    [43]Choi W., Termin A., Hoffmann M.. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem.,1994,98(51):13669-13679P
    [44]张颖,姚明明,卢萍等.SiO2胶体的掺杂对纳米TiO2薄膜光催化活性的影响.功能材料,2005,36(6):911-914页
    [45]吴自清.磁性TiO2/SiO2/Fe3O4光催化剂的制备及其对溴氨酸光催化氧化研究.华中科技大学硕士学位论文,2006:6-9页
    [46]Xin B., Jing L., Ren Z., et al. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2. J. Phys. Chem., 2005,109(7):2805-2809P
    [47]高鹏,崔波.低温沉淀法制备固体超强酸及其对酯化反应的催化作用.石油化工,2004,33(1):5-8页
    [48]Uchihara T., Mastsumura M., Ona J., et al. Effect of EDTA on the photocatalytic activies and flath and potentials of cadmium sulfide and cadmium selenide. J. Phys. Chem.,1990,94:415-418P
    [49]程沧沧,邓南圣,吴峰等.光电催化降解10-壬基酚聚氧乙烯醚.中国环境科学,2005,25(3):380-384页
    [50]任成军,李大成,钟本和.影响Ti02光催化活性的因素及提高其活性的 措施.四川有色金属,2004,4:18-22页
    [51]杜朝平,杨幼名.磁场助Y2O3/TiO2粉体的光催化性能研究.工业催化,2005,13(2):47-50页
    [52]Parra S., Stanca E. S., Guasaquillo I., Thampi K. R.. Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B:Environmental,2004,51:107-116P
    [53]Qourzal S., Tamimi M., Assabbane A., lehou Y. A.. Photocatalytic degradation and adsorption of 2-naphthol on suspended TiO2 surface in a dynamic reactor. Journal of Colloid and Interface Science,2005,286: 621-626P
    [54]袁东星,杨东宁,陈猛等.厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布.环境科学学报.2001,21(1):107-112页
    [55]Cheng-Tai Chen, Yu-Chie Chen. Fe3O4/TiO2 Core/Shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem.,2005,77: 5912-5919P
    [56]Penk Z. G., Hidajat P. K., Uddin M. S.. Adsorption of bovine serum albumin on nanosized magnetic particles. Colloid Interface Sci.,2004,271:277-283P
    [57]Coutinho D., Acevedo A. O., Dieckmann, G R.. Molecular imprinting of mesoporous SBA-15 with chiral ruthenium complexes. Microporous Mesoporous Mater,2002,54:249-255P
    [58]Mohamed M., Salama T. M., Yamaguchi T.. Synthesis, characterization and catalytic properties of titania-silica catalysts. Colloids Surf. A,2002, 207:25-32P
    [59]Huang Xiang hui, Chen Zhen-hua. y-Fe203/Si02 nanocomposites obtained by Sol-Gel synthesis. Inorg. Mater,2005,20(3):685-691P
    [60]Zuyuan Wang, Fuxiang Zhang, Yali Yang. Facile post synthesis of visibel-light-sensitive titanium dioxide/mesoporous SBA-15. Chem. Mater, 2007,19:3286-3293P
    [61]Gao X., Wachs I. E.. Titania-silica as catalysts:molecular structural characteristics and physico-chemical properties. Catal. Today,1999,51: 233-254P
    [62]Klein S., Thorimbert S., Maier W. F.. Amorphous microporous Titania-Silica mixed oxides:preparation, vharacterization, and vatalytic redox properties. Catal.,1996,163:476-488 P
    [63]Keshavaraja A., Ramaswamy V., Soni H. S.. Synthesis, characterization, and catalytic properties of micro-mesoporous, amorphous tianosilicate catalysts. Catal.,1995,157:501-511P
    [64]Mohamed M, Salama T. M., Yamaguchi T.. Synthesis characterization and catalytic properties of titania-silica catalysts. Colloids Surf. A,2002,207: 25-32P
    [65]Hutter R., Mallat T., Baiker A.. Titania-Silica mixed oxides Ⅱ. catalytic behaviour in olefin epoxidation. Catal.,1995,153:177-189P
    [66]Chen L. C., Huang C. M.. Application of statistical strategies to process optimization of sol-gel derived SiO2 modification of TiO2. Ind. Eng. Chem. Res.,2004,43:6446-6452P
    [67]Soriano L. G, Fuentes G. J. Crystal-field effects at the TiO2-SiO2 interface as observed by X-ray absorption spectroscopy. Langmuir,2000,16(17): 7066-7069P
    [68]Plaza R., J.Duran, A.Quirantes, et al. Surface chemical analysis and electrokinetic properties of spherical hematite particles coated with yttrium compounds. Colloid Interface Sci.,1997,194:398-407P
    [69]Deng C., P. James, P. Wright. Poly (tetraethylene glycol malonate)-titanium oxide hybrid materials by sol-gel methods. Mat. Chem.,1998,8(1):153-159P
    [70]Yasumori A., Shinoda H., Cameshima Y, et al. Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods. Mater. Chem.,2001,11: 1253-1257P
    [71]徐瑞银,王殿芳,王禹等.用于染料废水光降解处理的催化剂及其作用机制.北京石油化工学院学报,2004,12(2):26-30页
    [72]钟志京,曲治华.光解法降解含萘污水的实验研究.四川环境.1998,17(2):15-19页
    [73]P. Reddy, G. Reddy, G. Seenayya. Production of thermostable pullulanase by Clostridium thermesulfurogenes SV2 in solid-state fermentation:optimization of nutrients levels using response surface methodology. Bioprec Eng,1999, 21:497-503P
    [74]A. Sircar, P. Sridhar, P. K. Das. Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochemistry,1998,33(3):283-289P
    [75]赵海珍,陆兆新,吕凤霞等.脂肪酶催化猪油与辛酸酸解制备功能性脂反应条件的优化.中国生物工程杂志,2005,25(9):78-83页
    [76]宫衡,李小明,伦世仪.响应面法优化赖氨醉发酵培养基.生物技术.1995.5(41):13-15页
    [77]D. NR, L. DKJ. Small response-surface designs. Technometrics,1990, (32): 187-94P
    [78]F. J. Cui, Y. Li, Z. H. Xu et al. Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technology,2006, (97): 1209-1216P
    [79]D. C. Montgomery. Design and Analysis of Experiments (5th edition). John Wiley & Sons.2001
    [80]E. Pramauro, A.B. Prevot, M. Vincenti, et al. Photocatalytic degradation of naphthalene in aqueous TiO2 dispersions:effect of nonionic surfactants. Chemosphere,1998,36 (7):1523-1542P
    [81]J. Theurich, D.W. Bahnemann, R. Vogel, et al. Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions:A kinetic and mechanistic study. Res. Chem. Intermed,1997,23:247-274P
    [82]M. Muneer,M. Qamar, D. Bahnemann. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Mol. Catal. A:Chem,2005,234: 151-157P
    [83]M.A.Fox, C.C.Chen, J.N.N.Younathan. Oxidative Cleavage of Substituted Naphthalene Induced by Irradiated Semiconductor Powders. Org. Chem., 1984,49:1969-1974P
    [84]L. Hykrdova, J. Jirkovsky, G. Mailhot, et al. Photo-oxidation of dissolved cyanide using TiO2 catalyst. Photochem. Photobiol. A,2002,151:181-193P
    [85]F. Soana, M. Sturini, L. Cermenati, et al. Titanium dioxide photocatalyzed oxygenation of naphthalene and some of its derivatives. Chem. Soc. Perkin Trans,2000,24:699-704P
    [86]M.J. Garcia-Martinez, L. Canoira, G. Blazquez, I. Da Riva, R. Alcantara, et al. Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings. Chem. Eng.,2005,110:123-128P
    [87]J. Jia, T. Ohno, Y. Masaki, et al. Dihydroxylation of naphthalene by molecular oxygen and water using TiO2 photocatalysts. Chem. Lett.,1999,28: 963-964P
    [88]T. Ohno, K. Tokieda, S. Higashida, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A,2003,244:383-391P
    [89]B. Pal, M. Sharon. Photodegradation of polyaromatic hydrocarbons over thin film of TiO2 nanoparticles. A study of intermediate photoproducts. Mol. Catal. A:Chem,2000,160:453-460P
    [90]K. Hashimoto, T. K awai, T. Sakata. Photocatalytic reactions of hydrocarbons and fossil fuels with water, hydrogen production and oxidation. Phys. Chem.,1984,88:4083-4088P
    [91]J. C. D'Oliveira, G. Al-Sayyed, P. Pichat. Photodegradation of 2-and 3-Chlorophenol in TiO2 Aqueous Suspensions. Environ.Sci. Technol,1990,24: 990-996P
    [92]A. Lair, C. Ferronato, J. Chovelon, et al. Naphthalene degradation in water by heterogeneous photocatalysis:An investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A:Chemistry, 2008,193:193-203P
    [93]E. Pramauro, A. Bianco Prevot, M. Vincenti, et al. Photocatalytic degradation of naphthalene in aqueous TiO2 dispersions:Effect of nonionic surfactants. Chemosphere,1998,36:1523-1542P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700