α-Al_2O_3阻氚涂层材料中氢行为的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻氚涂层是聚变堆氚安全防护领域的关键科学与技术问题之一。在众多候选材料中,Al2O3由于其较低的氢渗透率成为当前阻氚涂层材料研究的重点。然而,氢同位素在Al203中行为及其作用机理尚不明确,因此,Al203阻氚涂层的方案设计、制备工艺调制和性能调控之间难以协调,往往顾此失彼,阻氚效果尚未得到理想的发挥。
     针对Al203阻氚涂层中氢行为涉及的基本科学问题,采用基于密度泛函理论的第一性原理计算、热力学概念、过渡态搜索和速率理论相结合的方案,分别从热力学和动力学角度系统研究了典型氧化物阻氚涂层材料a-Al203表面(中)氢的吸附、解离、侵入、存在形式和扩散等行为的详细微观机制以及α-Al2O3/FeAl界面对这些行为的影响效应,从基础上提出了在典型阻氚涂层工作环境下a-Al203阻滞氢渗透的作用机理和增强其阻氚性能的指导性原则。论文的研究成果为Al203阻氚涂层的性能调控和制备工艺研究提供了科学依据,促进了氧化物阻氚涂层材料中氢同位素行为研究的进展。论文主要研究成果有,
     1.研究了α-Al2O3(0001)和(1-102)表面的氢吸附、解离、侵入和扩散行为。首次获得了a-Al203表面(次表面)氢行为的详细机制,同时预测出氢原子优先通过α-Al2O3(1-102)面扩散侵入α-Al2O3中,并得到红外光谱实验的验证。
     H2分子以接近平行方式物理吸附在α-Al2O3(0001)和a-Al203(1-102)的表面后,在室温附近自发解离成共吸附在Al、O原子上的H原子。此后,在一定的温度范围内,这些氢原子将优先在α-Al2O3表面扩散;随温度的升高,吸附在氧原子上的氢原子先围绕该氧原子旋转,再跳跃到下一层氧原子上,从而进入次表面,此后氢继续以“旋转-跳跃”方式依次进入α-Al2O3内部。其中,H原子由a-Al203表面到次表面的“旋转”需克服较高能垒,同时次表面对氢原子的束缚作用相对表面减弱,这使得H原子难以侵入α-Al2O3次表面。一旦侵入,随后的扩散相对容易发生。氢由(1-102)表面到次表面的扩散能垒比由(0001)的扩散能垒小,而由(1-102)面侵入的平衡常数大,因此氢原子将优先通过α-Al2O3(1-102)面扩散侵入α-Al2O3中。这归因于α-Al2O3各晶面的氢原子起始侵入点的密度差异,从而引起了侵入过程中氢原子相互干扰程度不同。
     2.研究了α-Al2O3中氢的存在形式及扩散行为,对a-Al203中阻滞氢渗透的主要作用区域提出新见解。
     研究发现,氢在α-Al2O3主要以Hip和[VAl3-H+]q两种形式存在,但稳定性不如自由氢分子。在富氢平衡状态下,氢在cα-Al2O3中主要以Hi+形式存在,并伴有[VAl3--H+]2-和Ho+形式存在的氢。H在α-Al2O3中的输运主要是通过Hi+扩散完成,[VAl3--H+]2-和Ho+在一定的高温下才能解离成Hi+参与扩散。Hi+在a-Al203中以“旋转-跳跃”方式沿c轴方向成螺旋形式在八面体空隙间扩散,相应的扩散能垒低于H原子由α-Al2O3表面到次表面的扩散能垒,这表明α-Al203阻滞氢渗透主要是表面到次表面扩散能垒相对较高所致,与以往人们认为阻滞氢渗透主要是α-Al2O3内部氢扩散能垒相对较高的看法迥异,提出我们今后研究α-Al203阻滞氢渗透行为时应对表面与体相间区域加以考虑。部分α-Al2O33的本征点缺陷VAl3-,Oi2--和Vo0等能捕获Hi+形成[VAl3--H+]2-和Ho+,为α-Al2O3阻氚性能的调控提供了一种重要思路。此外,研究也获得了Hi+,[VAl3--H+]2-和Ho+的局域原子结构和H-O键的伸缩振动频率,为辨另α-Al2O3中H相关红外光谱峰的局域原子结构提供了重要参考。
     3.研究了α-Al2O3/FeAl界面的电子结构及其对α-Al2O3中氢行为的影响效应。发现界面对组元α-Al2O3的电子结构和氢行为的影响是局域性的,界面氢原子对界面的结合强度和原子结构没有损伤效应。
     根据实验结果,考虑了铁、铝混合氧化物界面和氧化铝界面两种界面,发现α-Al2O3与FeAl合金间的界面连接主要涉及离子键和金属键;由于界面对组元α-Al2O3FeAI电子结构的影响是局域性的,因此组元cα-Al2O3中氢原子的稳定性相对其表面上氢原子显著降低,这与纯a-Al203中的情况相同;但在界面上,组元FeAI中氢原子的稳定性显著升高。组元α-Al2O3中氢原子的扩散是α-Al2O3/FeAl中氢渗透过程的速率决定步骤,其中的氢原子扩散机制及动力学限制途径与纯α-Al2O3中的类似。α-Al2O3/FeAl的铁、铝混合氧化物界面相对更有利于阻滞氢的渗透和提高界面的结合强度。随界面处氢原子的聚集,α-Al2O3/FeAl界面的理论界面连接功有所增加,其上的Fe-O、Al-O或Fe-Al等键也无明显变化,所以界面氢原子对界面的结合强度和原子结构没有损伤效应。
     4.发展了研究阻氚涂层阻滞氢渗透作用机理的方法,通过热力学概念、含氢α-Al2O3系统原子化学势的变化规律、第一性原理计算得出的吸附能和过渡态速率理论为主的动力学理论的有效结合,给出了典型阻氚涂层工作环境下α-Al2O3阻滞氢渗透的作用机理。这一结果将通常的基于Fick定律的表象方法向原子级方法前推了一步,已被日本九州大学的Hashizume K研究组用于解释α-Al2O3的氚自显影实验结果。
     平衡状态下α-Al2O3中Hi+的浓度极低(稳定性低)是α-Al2O3阻滞氢渗透在热力学上的主要原因。在动力学上的作用机理为,在500~700℃温度范围,当氢渗透压力大于17kPa时,氢原子围绕α-Al2O31-102)面第3层氧原子旋转阻滞α-Al2O3中的氢渗透;当压力小于1kPa时,氢分子在α-Al2O3(1-102)面第2和第4原子层的铝原子之间位置上方的极性解离阻滞α-Al2O3中的氢渗透。这两种动力学控制机制很好地与氢渗透和氚自显影实验吻合。
     5.基于α-Al2O3阻滞氢渗透的热力学和动力学作用机理,提出了增强α-Al203阻氚涂层阻氚性能的指导性原则。
     在热力学上增强α-Al2O3阻氚性能的关键原则是降低a-Al203中H的稳定性,以增加非自发反应的难度,这有望通过在α-Al2O3中形成[VAl3-H+]2-和Ho+等氢相关缺陷达到。在动力学上的关键原则是控制Hi+的扩散,这有望通过在a-Al203表面形成负l价的氧离子中心使表面的氢分子极性分解转化为非极性分解,或在α-Al2O3中适当增加本征点缺陷数量以捕获Hi+等方法达到。
Tritium permeation barrier (TPB) is one of key scientific and technological issues for preventing the tritium loss from fusion plants. α-Al2O3is of special interest because of low hydrogen permeability. However, from the microcosmic point view, less insight is available regarding interaction of hydrogen with α-Al2O3material and corresponding mechanism of thermodynamics and kinetics, thus the design, processing and optimization of α-Al2O3TPBs rely on trial-and-error, making such TPBs often exhibiting lower efficiency than anticipated based on the bulk properties of this material.
     Focusing on basic scientific issues of the interaction of hydrogen with α-Al2O3TPB, adsorption, dissociation and diffusion of hydrogen on and into α-Al2O3surfaces, dominant H-related defects and its diffusion in bulk α-Al2O3, and effects of α-Al2O3/FeAl interface on these H-behaviors have been investigated thermodynamically and kinetically in a systematic way by the first-principle calculations and transition state theory. Based on above basic and essential steps of H-permeation in α-Al2O3, mechanisms of α-Al2O3resisting H-permeation under typical TPB working condition, and principles for the optimum performance have proposed from the basic point of view, to guide design, processing and performance optimization of α-Al2O3TPBs for engineering practical applications. The major results are as follows.
     1. Mechanisms for adsorption, dissociation and diffusion of hydrogen on α-Al2O3surface
     2. A H2molecule, with parallel configuration, absorbs on α-Al2O3(0001) and α-Al2O3(1-102) surface, and then dissociates heterolytically near room temperature, with one H atom adsorbing on a top Al atom site, and another H atom adsorbing on a top O atom site,which is thermodynamically spontaneous. It is possible that at finite temperatures a number of events involving surface diffusion of such H atoms before their migration into the bulk takes place. Bulk diffusion process of the H atom involves two steps on every O atomic layer of α-Al2O3:(1) the reorientation step in which hydrogen atom remains bonded to the same O atom and (2) the hopping step in which breaking and reforming of O-H bond take place. The rate-limiting barrier of H diffusion into the bulk from the (1-102) and (0001) surface is1.41~1.58eV, while H atoms in bulk α-Al2O3are significantly less stable than on surfaces, thus H diffusion preferentially occurs via surface path rather than bulk one. The rate-limiting barrier of H diffusion into the bulk from the (1-102) surface is0.17eV less than that of the (0001) surface, and the equilibrium constant for adsorbed H on the (1-102) surface in equilibrium with absorbed H in bulk α-Al2O3is larger than that of the (0001) surface, thus significant diffusion of H into bulk can occur more readily from the α-Al2O3(1-102) surface compared to the α-Al2O3(0001) surface, in well agreement with results of infrared spectroscopy, which is related to the different crystal structure of surfaces resulting in the different interference from other hydrogen atoms.
     3. State, local configuration and diffusion of H-related defects in bulk α-Al2O3
     We predict that the stable forms of H related defects in α-Al2O3are charged H interstitials (Hiq) and hydrogenation of the bulk VAl3-([VAl3--H+]q) under hydrogen-rich condition, which are less energetically stable than the gas phase H2. As the system of α-Al2O3and H reaches equilibrium, H in α-Al2O3is mainly in present of Hi+state, which is the most stable among H-related defects, and also likely to exist in the form of [VAl/3--H+] and Ho+. Hi+is the predominant diffusion species in α-Al2O3, and [VAl3--H+]2-and Ho+can release trapped hydrogen during high temperature annealing, and then contribute to the H-transport in α-Al2O3. The Hi+diffusion process, involving H-reorientation around oxygen atom from an octahedral interstitial site to an adjacent one followed by H-hopping within the adjacent one, has a barrier of1.26eV, lower than suface-to-subsurface diffusion barriers of H in α-Al2O3, thus it is rather reasonable that the overall diffusivity of H in α-Al2O3is governed by the surface-to-subsurface diffusion. Hi+will be trapped by the VAl3-, Vo0, Oi2-, increasing the activation energy of H migration and decreasing the H mobility, which is favored for low H-transport in α-Al2O3TPB. Local vibration mode and local structures for Hi+,[VAl3--H+]2-and Ho+have been obtained and is very helpful for us to identifying actual local structures responsible for the IR observed peaks.
     3. The effect of α-Al2O3/FeAl interface on stability and diffusion of hydrogen in α-Al2O3part
     The interfacial binding involves cation-anion and metal-metal interactions. Due to the localized distributions of the interface on density of sate of α-Al2O3part of α-Al2O3/FeAl, H-surface interaction on the α-Al2O3/FeAl resembles that on pure α-Al2O3(0001) case, H interstitials in the α-Al2O3part is significantly less stable than on surface, and in interface region consisting of the only Al-oxide (Al/O interface) or the Al, Fe mix-oxide (Al/Fe/O interface), and in FeAl part are significantly more stable. The α-Al2O3component takes a critical role in preventing hydrogen diffusion during the α-Al2O3/FeAl TPB operation. H diffusion into the α-Al2O3part of both slabs must overcome a rate-limiting barrier of about1.66-2.02eV at surface-to-subsurface step, like in α-Al2O3case. For the bulk path, the migration of H atom can occur more readily in the α-Al2O3part of the slab with the Al/O interface compared to that with the Al/Fe/O interface, while H atoms in the former are less stable, thus the α-Al2O3/FeAl barrier with Al/Fe/O interface is predicted to be more effective in resisting H-permeation against the underlying steel. The adhesion work decreasing and hydrogen-related structural damage do not occur in the interface region, suggesting that the appearing or trapped H atoms in such interface region will not be weak linked and accelerate the failure of α-Al2O3/FeAl TBP.
     4. Mechanisms, in atomic scale, of α-Al2O3resisting hydrogen isotopic permeation under typical TPB working conditions
     We have combined thermodynamic concepts, chemical potentials of atoms in the system of H and α-Al2O3, density functional theory calculations with rate theory of transition state theory to identify the kinetic and thermodynamic mechanism of α-Al2O3resisting H-permeation. The high formation energy of Hi+is the dominate term in the activation energy for H-transport in bulk α-Al2O3, suggesting that the low H concentration (low stability) in α-Al2O3is the thermodynamical bottleneck for H-permeation through α-Al2O3. As for the kinetic mechanism, H-permeation through α-Al2O3is governed by the H reorientation around oxygen in the third atomic layer of α-Al2O3(1-102) surface at the hydrogen pressure of above17kPa, whereas that is suppressed by H2dissociation above the site between B-site Al and D-site Al on the α-Al2O3(1-102) surface at the hydrogen pressure lower than1kPa. Our DFT calculations successfully reproduce hydrogen permeation and tritium imaging plate experiment observations. These results are very important to comprehend the results from the common method based on Fick's law.
     5. Principles for optimum suppressing-performance of α-Al2O3TPB
     Thermodynamical principle for optimum suppressing H-permeation for α-Al2O3TPB would be to decrease energetical stability of Hi+, and kinetics principle would be to enhance migration barrier for H,+.
引文
[1]Cristescu I R, Cristescu I, Doerr L, et al. Tritium inventories and tritium safety design principles for the fuel cycle of ITER[J]. Nucl Fusion,2007,47:S458-S463
    [2]Huang Q, Baluc N, Dai Y, et al. Recent progress of R&D activities on reduced activation ferritic/martensitic steels[J]. J Nucl Mater,2013,442:3-8
    [3]蒋国强,罗德礼,陆光达.氚与氚的工程技术[M].国防工业出版社,2007
    [4]Tanabe T. Tritium fuel cycle in ITER and DEMO:Issues in handling large amount of fuel[J]. J Nucl Mater,2013,438:19-26
    [5]Wong C P C, Chernov V, Kimura A. ITER-Test blanket module functional materials [J]. J Nucl Mater,2007,367-370:1287-1292
    [7]Chen C A, Na B C. Tritium permeation in TBM components and update of tritium activities in the TBM generated radwastes [J]. Fusion Eng Des, In press
    [8]黄志勇,饶咏初,彭丽霞.几种不锈钢的氘渗透扩散测量[M].中国工程院化工、冶金与材料工程学部第七届学术会议论文集,化学工业出版社,2009
    [9]Rion A Causey, Richard A Karnesky, Chris San Marchi. Tritium barriers and tritium diffusion in fusion reactors[J]. Comprehensive Nucl Mater,2012,4:511-549
    [10]Sahin S, Uebeyli M. A review of the potential use of austenitic stainless steels in nuclear fusion reactors[J]. J Fusion Eng,2008,27:271-277
    [11]Kohyama A, Grossbeck M L, Piatti G. The application of austenitic stainless steels in advanced fusion systems:Current limitations and future prospects[J]. J Nucl Mater,1992, 191&194:37-44
    [12]Shestakov V, Pisarev A, Sobolev V, et al. Gas driven deuterium permeation through F82H martensitic steel[J]. J Nucl Mater,2002,307&311:1494-1497
    [13]Rion A Causey. Permeation barrier for fusion reactor blankets[C]. Idsho,2007
    [14]Luo D L, Chen C A, Song J F, et al. Design Description Document for CH-HCSB TBM Tritium Systems[R], China Academy of Engineering Physics,2010
    [15]Giancarli L, Alejaldre C, Bak J S, et al. Generic TBM Arrangement-Main Body[R], ITER-IO, 2012
    [16]Yao Z Y, Hao J K, Zhou C S, et al. Permeation of tritium through 316L stainless with multiple coatings[J]. J Nucl Mater,2000,283:1287-1291
    [17]山常起.氚与防氚渗透材料[M].原子能出版社,2005
    [18]Causey R A, Wampler W R. The use of silicon carbide as a tritium permeation barrier[J]. J Nucl Mater,1995,220&222:823-825
    [19]王佩璇,王宇,史宝贵.不锈钢表面沉积SiC作为氢渗透阻挡层的研究[J].金属学报,1999,35:654-658
    [20]Nickel H, Koizlik K. Characterization of coatings on materials for components in fission and fusion reactors [J]. Thin Solid Films,1983,18:401-414
    [21]郝嘉琨,山常起,吴柱京等.316L不锈钢表面Al203镀层中氚的扩散渗透行为[J].核聚变与等离子体物理,1996,16:62-64
    [22]Levchuk D, Koch F, Maier H, et al. Deuterium permeation through Eurofer and alpha-alumina coated Eurofer[J]. J Nucl Mater,2004,328:103-106
    [23]Benamati G, Chabrol C, Perujo A, et al. Development of tritium permeation barriers on Al base in Europer[J]. J Nucl Mater,1999 272:391-395
    [24]Terai T, Yoneoka T, Tanaka H, et al. Tritium permeation through austenitic stainless steel with chemically densified coating as a tritium permeation barrier[J]. J Nucl Mater,1994, 212-215:976-980
    [25]Takayuki T. Research and development on ceramic coatings for fusion reactor liquid blankets[J]. J Nucl Mater,1997,248:153-158
    [26]Levchuk D, Levchuk S. Erbium oxide as a new promising tritium permeation barrier[J]. J Nucl Mater,2007,367&370:1033-1037
    [27]Zhen Y Y, Suzuki A, Levchuk D, et al. Hydrogen permeation through steel coated with erbium oxide by sol-gel method [J]. J Nucl Mater,2009,386&388:700-702
    [28]Levchuk D, Bolt H, Dobeli M,et al. Al-Cr-O thin films as an efficient hydrogen barrier[J]. Surf Coat Technol,2008,202:5043-5047
    [29]赵葳巍,袁晓明,占勤.氚增殖包层结构材料阻氚涂层制备技术研究现状[J].中国核科学技术进展研究报告,2013,2:217-227
    [30]Konys J. Review of tritium permeation barrier development for fusion application in the EU[R]. Proceedings of ITER TBM Project Meeting,2004, UCLA
    [31]Serra E, Glasbrenner H, Perujo A. Hot-dip aluminum deposit as a permeation barrier for MANET steel[J]. Fusion Eng Des,1998,41:149-155
    [32]Barbier F, Manuelli D, Bouche K. Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium[J]. Scripta Mater,1997,36:425-431.
    [33]Kalin B A, Yakushin V L, Fomina E P. Tritium barrier development for austenitic stainless steel by its aluminizing in a lithium melt[J]. Fusion Eng Des,1998,41:119-127
    [34]Glasbrenner H, Konys J. Investigation on hot-dip aluminized and subsequent HIP'ed steel sheets [J]. Fusion Eng Des,2001,58&59:725-729
    [35]Aiello A, Ciampichetti A, Benamati G. An overview on tritium permeation barrier development for WCLL blanket concept [J]. J Nucl Mater,2004,329&333:1398-1402
    [36]姚振宇,Aiello A带热浸铝涂层MANET Ⅱ马氏体钢的氢渗透性能研究[J].核科学与工程,2003,22:36-42
    [37]Forcey K S, Ross D K. The formation of hydrogen permeation barriers on steels by aluminizing[J]. J Nucl Mater,1991,182:36-81
    [38]占勤,杨洪广,崴巍等.渗铝-真空预氧化制备FeAl/Al2O3防氚渗透涂层性能[J].材料热处理学报,2008,29(2):158-161
    [39]Yang H G, Zhan Q, Zhao W W. Study of an iron-aluminide and alumina tritium barrier coating [J]. J Nucl Mater,2011,417:1237-1240
    [40]Luis A, Sedano C R, Michael A. Modeling tritium extraction/permeation and evaluation of permeation barriers under irradiation[J]. J Nucl Mater,1996,233:1411-1413
    [41]刘散粤.渗铝涂层不锈钢氘渗透特性实验研究[D].硕士学位论文,哈尔滨工程大学,2006
    [42]Fazio C, Stein-Fechner K, Serra E. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier[J]. J Nucl Mater,1999,273(3):233-238
    [43]Perujo A, Forcey K S. Tritium permeation barriers for fusion technology[J]. Fusion Eng Des, 1995,28:252-257
    [44]Perujo A, Serra E, Kolbe H. Hydrogen permeation rate reduction by post-oxidation of aluminide coatings on DIN 1.4914 martensitic steel [J]. J Nucl Mater,1996,233&237: 1102-1106
    [45]Glasbrenner H, Konys J, Voss Z. Corrosion behavior of Al based tritium permeation barriers in flowing Pb-17Li[J]. J Nucl Mater,2002,307&311:1360-1363
    [46]Konys J, Krauss W, Holstein N. Development of advanced processes for Al-based anticorrosion and T-permeation barriers[R].9th International Symposium of Fusion Nuclear Technology,2009, Dalian, China
    [47]Shikama T, Knitter R, Konys J,et al. Status of development of functional materials with perspective on beyond-ITER[J]. Fusion Eng Des,2008,83:976-982
    [48]张桂凯.室温熔盐镀铝-氧化法制备铝化物阻氚层技术研究[D].硕士学位论文,中国工程物理研究院,2010
    [49]Zhang G K, Li J, Chen C A,et al. Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process [J]. J Nucl Mater,2011,417:1245-1248
    [50]Konys J, Krauss W, Holstein N,et al. Development of advanced processes for Al-based anticorrosion and T-permeation barriers[J]. Fusion Eng Des,2010,85:2141-2145
    [51]Wulf S, Holstein N, Krauss W,et al. Influence of deposition conditions on the microstructure of Al-based coatings for applications as corrosion and anti-permeation barrier [J]. Fusion Eng Des,2013,88:2530-2534
    [52]Krauss W, Konys J, Holstein N, et al. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets[J]. J Nucl Mater,2011,417:1233-1236.
    [53]Russell S, Stokes J. Sorption of Hydrogen on Alumina[J]. J Am Chem Soc,1947,69: 1316-1317
    [54]Serra E, Bini A C, Cosoli G, et al. Hydrogen permeation measurements on alumin[J]. J Am Ceram Soc,2005,88:15-18.
    [55]Fowler J D, Chandra D, Elleman T S, et al. Tritium diffusion in Al2O3 and BeO[J]. J Am Ceram Soc,1977,60:155-161.
    [56]Rodney M, Robert S, Thomas S, et al. Hydrogen permeability of sintered aluminum Oxide[J]. J Am Chem Soc,1976,62:496-499
    [57]Roy S K, Coble R L. Solubility of hydrogen in porous polycrystalline aluminum oxide[J]. J Am Ceram Soc,1967,50:435-436
    [58]Levchuk D, Koch F, Maier H, et al. Gas-driven Deuterium Permeation through Al2O3 Coated Samples [J]. Phys Scripta,2004, T108:119-123
    [59]Hollenberg G W. Tritium/hydrogen barrier development[J], Fusion Eng Des,1995,28: 190-208
    [60]Hu J G, Zhang Y S, Jia L C, et al. Hydrogen atom adsorption on α-Al2O3(0001) surface from first principles[J]. Adv Mater Res,2012,399&401:2261-2265
    [61]Wang X G, Chaka A, Scheffler M. Effect of the environment on α-Al2O3(0001) surface structures[J]. Phys Rev Lett,2000,84:3650-3653
    [62]Takahiro K, Kazuyuki U, Atsushi O. Atomic and electronic structures of α-Al2O3 surfaces[J]. Phys Rev B,2010,82:155319-155332
    [63]李磊,桑革,张鹏程等α-Al2O3阻氢微观机制研究[J].物理化学,2007,23:1912-1917
    [64]Belonoshko A B, Rosengren A, Dong Q, et al. First-principles study of hydrogen diffusion in α-Al2O3 and liquid alumina [J]. Phys Rev B,2004,69:24302-24306
    [65]Mao W, Takumi C, Kenichiro S, et al. Energetics and diffusion of hydrogen in α-Al2O3 and Er2O3[J]. Fusion Eng Des,2013,28:190-208
    [66]Holder Aaron M, Osborn Kevin D, Lobb C J, et al. Bulk and surface tunneling hydrogen defects in alumina[J]. Phys Rev Lett,2013,111:065901-065906
    [67]常华,陶杰,骆心怡等.不锈钢表面阻氚渗透涂层研究现状及进展[J].机械工程材料,2007,31:1-4
    [68]李秀艳,李依依.奥氏体合金的氢损伤[M].北京:科学出版社,2003
    [69]陈长安.氚在不锈钢中的行为研究[D].硕士学位论文,中国工程物理研究院,1998
    [70]王佩璇.材料中的氦及氚渗透[M].国防工业出版社,2002
    [71]宋鹤山.量子力学[M].大连理工大学出版社,2004
    [72]梁初Li-Mg-N-H基高容量诸氢材料的诸氢性能及其机理研究[D].博士学位论文,浙江大学,2011
    [73]汪卓.二氧化钛表面缺陷及分子吸附的理论研究[D].博士学位论文,中国科学技术大学,2010
    [74]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev B,1965:140:1133-1138
    [75]Perdew J P, Burke K. Comparison shopping for a gradient-corrected density functional[J]. Int J Quantum Chem,1996,57:309-319
    [76]Hamann D R, Sehluter M, Clliang C. Norm-conserving pseudo potential[J]. Phys Rev lett, 1979,43:1494-1499
    [77]Vanderbilt D. Soft selfconsistent pseudo-potential generalized generalized eigenvalue formolism [J]. Phys Rev B,1990:43:7892-7895
    [78]Halgren T A, Lipscomb W N. The synchronous-transit method for determining reaction path ways and locating molecular transition states[J]. Chem Phys Lett,1977,49:225-232
    [79]Fischer S, Karplus M, Conjugate peak refinement:an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom[J]. Chem Phys lett,1992, 194:252-261
    [80]Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding energy paths and saddle points[J]. J Chem Phys,2000,113:9978-9988
    [81]Eyring H. The activated complex in chemical reactions[J]. J Chem Phys,1935,3:107-120
    [82]Voter A F, Doll J. Dynamical corrections to transition state theory for multistate systems: Surface self-diffusion in the rareevent regime[J]. J Chem Phys,1985,82:80-98
    [83]J(?)rgen Mortensen J. A theoretical study of adsorption and dissociation on metal surfaces[D]. Ph.D. thesis, Technical University of Denmark,1998
    [84]Herbert E, Bates J B, Wang J C, et al. Infrared spectra of hydrogen isotopes in α-Al2O3[J]. Phys Rev B,1980:21,1520-1526
    [85]Ramirez R, Colera I, Gonzalez R. Hydrogen-isotope transport induced by an electric field in α-Al2O3 single crystals[J]. Phys Rev B 2004,69:14302-14310
    [86]Toofan J, Watson P R. The termination of α-Al2O3 (0001) Surface:a LEED crystallography determination[J]. Surf Sci,1998,401:162-172
    [87]Ruberto C, Yourdshahyan Y, Lundqvist B I. Surface properties of metastable alumina:A comparative study of k- and α-Al2O3[J]. Phys Rev B,2003,67:195412-195430
    [88]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Z Kristallogr,2005,220(5&6):567-570
    [89]White J A, Bird D M. Implementation of gradient-corrected exchange-correlation potentials in car-parrinello total-energy calculations[J]. Phys Rev B,1994; 50:4954-4957
    [90]Monkhorst H J, Pack J D. Special points for brillouin zone integrations[J]. Phys Rev B,1976, 13:5188-5192
    [91]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B,1996,54:11169-1179
    [92]Fischer T H, Almlof J. General methods for geometry and wave function optimization[J]. J Phys Chem,1992,96:9768-9778
    [93]Wyckoff R W G. Crystal Structures (Inter-science)[M], New York,1964,2:6-8
    [94]Wallin E, Andersson J M, Miinger E P. Ab initio studies of Al, O, and O2 adsorption on α-Al2O3(0001)surfaces [J]. Phys Rev B,2006,74:125409-125418
    [95]Verdozzi C, Jennison D R, Schultz P A, et al. Sapphire (0001) surface, clean and with d-metal overlayers[J]. Phys Rev lett,1999,82:799-816
    [96]Carrsco J, Gomes J R.B. Theoretical study of bulk and surface oxygen and aluminum vacancies in α-Al2O3[J].Phys Rev B,2004,69:64116-64125
    [97]Zhang L L, Hu J M, Sun Y, et al. Geometry and electronic structure of the adsorption of CO molecules on different Al2O3 surfaces[J]. Acta Phys Chem Sin,2011,27(10):2311-2314
    [98]Hector Jr L G, Herbst J F, Gapehart T W. Electronie structure calculations for LaNis and LaNi5H7:energetic and elastic properties[J]. J Alloys and comp,2003,353:74-86
    [99]Delley B. From molecules to solids with the DMol3 approach[J]. J Chem Phys 2000,113: 7756-7764
    [100]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77:3865-3868
    [101]Wang M, Huang X W, Du Z L, et al. Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals[J]. Chem Phys Lett,2009, 480:258-264
    [102]Delley B, An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys,1990,92:508-517
    [103]Physisorption. http://en.wikipedia.org/wiki/Physisorption
    [104]Dai B, David S Sholl, Johnson J Karl. First principles investigation of adsorption and dissociation of hydrogen on Mg2Si surfaces[J]. J Phys Chem C,2007,111:6910-6916
    [105]Z-Jorda Pere, Becke J M. A density-functional study of van der waals forces:rare gas diatomics[J]. Chem Phys Lett,1995,233:134-137
    [106]Chemical properties of water, http://www.ozh2o.com/h2chem.html
    [107]Sutton L E. Table of interatomic distances and configuration in molecules and ions, http://www.webelements.com/hydrogen/atom_sizes.html
    [108]Woodward R B, Hoffmann R. The conservation of orbital symmetry[J]. Angew Chem,1969, 81:781-853
    [109]Islam M M, Calatayud M, Pacchioni G. Hydrogen adsorption and diffusion on the anatase TiO2(101) surface:a first-principles investigation[J]. J Phys Chem C,2011,115:6809-6814
    [110]Ke X Z, Kuwabara A, Tanaka I. Cubic and orthorhombic structures of aluminum hydride AlH3 predicted by a first-principles study[J]. Phys Rev B 2005,71,184107-184113
    [111]Trainor T P, Eng P J, Brown Jr G E, et al. Crystal truncation rod diffraction study of the α-Al2O3 (1-102) surface[J]. Surf Sci,2002,496:238-250
    [112]Nguyen T, Bonamy D, Pham V L, et al. Coarsening of two-dimensional Al2O3 islands on vicinal (1-102) sapphire surfaces during annealing in air[J]. Surf Sci,2008,602:3232-3238
    [113]Bargar J R, Brown, Jr G E, Parks G A. Surface complexation of Pb(Ⅱ) at oxide-water interfaces:Ⅰ. XAFS and bond-valence determination of mononuclear and polynuclear Pb(Ⅱ) sorption products on aluminum oxides[J]. Geochim Cosmochim Acta,1997,61:2617-2637
    [114]Mason S E, Iceman C R, Trainor T P, et al. Density functional theory study of clean, hydrated, and defective alumina (1-102) surfaces[J]. Phys Rev B,2010,81:125423-125439
    [115]Choi J H, Kim D Y, Hockey B J. Equilibrium shape of internal cavities in sapphire[J]. J Am Ceram Soc,1997,80:62-68
    [116]Oxygen, http://en.wikipedia.org/wiki/Oxygen
    [117]Meriaudeau P, Primet M. FTIR study of hydrogen adsorption on α-Ga2O3[J]. J Mol Catal, 1990,61:227-234
    [118]Huntington H B, Shirn G A, Wajda E S. Calculation of the Entropies of Lattice Defects[J]. Phys Rev,1955,99:1085-1092
    [119]Sun Q, Reuter K, SchefflerM. Effect of a humid environment on the surface structure of RuO2(110)[J]. Phys RevB,2003,67:205424-205431
    [120]Wirth J, Saalfrank P. The chemistry of water on α-alumina:kinetics and nuclear quantum effects from first principles[J]. J Phys Chem C,2012,116:26829-426840
    [121]Henkelman G, Uberuaga B P, Jonsson H A. Climbing Image nudged elastic band method for finding saddle points and minimum energy Paths[J]. J Chem Phys,2000,113:9901-9904
    [122]Sun X Y, Li B, Metiu H. Methane dissociation on Li,Na,K,and Cu- doped flat and stepped CaO(001)[J]. J Phys Chem C,2013,117,7114-7122
    [123]Wang J C, Du Y, Xu H, et al. Native defects in LiNH2:A first-principles study [J]. Phys Rev B,2011,84:024107-024117
    [124]王建川.几个化学储氢材料中缺陷形成,扩散和H2解离的第一原理研究[D].博士学位论文,中南大学,2012
    [125]Wang B, Hou H, Luo Y, et al. Density functional/all-electron basis set slab model calculations of the adsorption/dissociation mechanisms of water on α-Al2O3(0001) surface[J]. J Phys Chem C,2011,115:13399-13411
    [126]Materials studio软件半导体缺陷形成能的计算, http://wenku.baidu.com/view/b537c9 da38376baflfae58.html
    [127]Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: Applications to Ill-nitrides [J]. J Appl Phys,2004,95:3851-3879
    [128]Katsuyuki M, Tomohito T, Takahisa Y, et al. First-principles calculations of intrinsic defects in Al2O3[J]. Phys Rev B,2003,68:085110-085118
    [129]Reunchan P, Zhou X, Limpijumnong S, et al. Vacancy defects in indium oxide:An ab-initio study[J]. Current Appl Phys,2011,11:S296-S300
    [130]Hine N D M, Frensch K, Finnis M W. Point defects and diffusion in α-Al2O3[R]. International Conference on QMC, April 6,2009, Apuan
    [131]Kelic C, Zunger A, Origins of coexistence of conductivity and transparency in SnO2[J], Phys Rev Lett.88,2002:095501-095504
    [132]Neugebauer J, Van de Walle C G, Hydrogen in GaN:novel aspects of a common impurity[J]. Phys Rev Lett,1995,75:4452-4456
    [133]Bj(?)rheim Tor S, Kuwabara K, Norby T. Defect chemistry of rutile TiO2 from first principles calculations[J]. J Chem Phys C,2013,117:5919-5930
    [134]Pushpa R, Daniel D, Butt D P. Electronic properties of Ca doped LaFeO3:A first-principles study[J]. Solid State Ionics,2013,249&250:184-190
    [135]Varley J B, Peelaers H, Janotti A, et al. Hydrogenated cation vacancies in semiconducting oxides[J]. J Phys:Condens Matter,2011,23:334212-334221
    [136]Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: applications to III-nitrides[J]. J Appl Phys,2004,95:3851-3879
    [137]Arshak K, Korostynska O. Response of metal oxide thin film structures to radiation[J]. Mater Sci Eng B,2006,133:1-7
    [138]Ramirez R, Gonzalez R, Colera I, et al. Electric-field-enhanced diffusion of deuterons and protons in α-Al2O3 crystals[J]. Phys Rev B,1997,55:237-242
    [139]朱履冰,包兴.表面与界面物理[M].天津大学出版社,1992
    [140]Airiskallio E, Nurmi E, Heinonen M H, et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys:The role of Cr as a chemically active element[J]. Corros Sci,2010,52: 3394-3404
    [141]Wang M, Huang X W, Du Z L, et al. Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals[J]. Chem Phys Lett,2009, 480:258-264
    [142]Delley B. Hardness conserving semi-local pseudo-potentials[J]. Phys Rev B,2002 66:155125-155133
    [143]Fu C L, Yoo M H. Deformation behavior of B2 type aluminides:FeAl and NiAl[J]. Acta Metall Mater,1992,40:703-911
    [144]Fu C L, Painter G S. First principles investigation of hydrogen embrittlement in FeAl[J]. J Mater Res,1991,6:719-723
    [145]Paula V J, Estela A G, Romina L, et al.. The hydrogen effect in the electronic structure and bonding of the B2 FeAl alloy with a Fe vacancy[J]. Int J Hydrogen Energy,2009,34: 9591-9595
    [146]Donald F Johnson, Emily A Carter. First-principles assessment of hydrogen absorption into FeAl and Fe3Si:towards prevention of steel embrittlement[J]. Acta Mater,2010,58:638-648
    [147]Aaron Deskins N, Kerisit Sebastien, Rosso Kevin M, et al. Molecular dynamics characterization of rutile-anatase interfaces[J]. J Phys Chem C,2007,111:9290-9298
    [148]Schnitker J, Srolovitz D J. Misfit effects in adhesion calculations[J]. Model Simul Mater Sci Eng,1998,6:153-164
    [149]Christensen A, Carter E A. Adhesion of ultrathin ZrO2(111) Films on Ni(111) from first principles[J]. J Chem Phys,2001,114:5816-5831
    [150]Siegel D J, Hector L G, Adams J B. Adhesion, atomic structure and bonding at the Al(111)/α-Al2O3(001)interface:a first principles study[J]. Phys Rev B,2002,65: 85415-85419
    [151]Lallet F, Olivi-Tran N, Lewis L. Interface energies of YSZ(100) and YSZ(111) epitaxial islands on α-Al2O3(001) substrates from first principles[J]. Phys Rev B,2009,79: 35413-35424
    [152]Liu L M, Wang S Q, Ye H Q. First-principles study of metal/nitride polar interfaces: Ti/TiN[J]. Surf Interface Anal,2003,35:835-841
    [153]Zhu L G, Hu Q M, Yang R, et al. Binding of an oxide layer to a metal:the case of Ti(10-10)/TiO2(100)[J]. J Phys Chem C,2012,116:4224-4233
    [154]ReneA F. Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces[J]. Surf Sci Rep,2000,38:195-294
    [155]Gaudry E, Cabaret D, Sainctavit P, et al. Structural relaxations around Ti, Cr and Fe impurities in α-Al2O3 probed by X-ray absorption near edge structure combined with first-principles calculations[J]. J Phys:Condens Matter,2005,17:5467-5480
    [156]Taylor A, Jones R M. Constitution and magnetic properties of iron rich and its alloys[J]. J Phys Chem Solids,1958,6:16-37
    [157]Landa A, Soderlind P, Ruban A V, et al. Stability in bcc transition metals:made-lung and band-energy effects due to alloying[J]. Phys Rev Lett,2009,103:235501-235504
    [158]Perevalov T V, Shaposhnikov A V, Gritsenko V A, et al. Electronic structure of α-Al2O3: Ab initio simulations and comparison with experiment[J]. JETP Lett,2007,85:165-168
    [159]Reddy B V, Jena P, Deevi S C. Electronic structure and transport properties of FeAl alloys[J]. Intermetallics,2000,8:1197-1207
    [160]Vegge T. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory[J]. Phys Rev B,2004,70: 35412-35419
    [161]Bright Wilson Jr E, Decius J C, Cross P. Molecular vibrations-the theory of infrared and raman vibrational spectra[M]. Dover, New York,1980
    [162]Lavrov E V. Hydrogen-related defects in ZnO and TiO2[D]. Ph.D. thesis, Institut fur Angewandte Physik,2011
    [163]Perujo A, Forcey K S, Sample T. Reduction of deuterium permeation through DIN-1.4914 stainless-steel (MANET) by plasma-spray deposited aluminum[J]. J Nucl Mater,1993,207: 86-91
    [164]Forcey K S, Ross D K, Wu C H. The formation of hydrogen permeation barriers on steels by aluminizing[J]. J Nucl Mater,1991,182:36-51
    [165]Mcguire J G. Hydrogen permeation resistant layers for liquid metal reactors[R]. Proceedings Conference on Tritium Technology in Fission, Fusion and Isotopic Applications,1980, Dayton
    [166]Hashizume K, Ogata K, Nishikawa M, et al. Study on kinetics of hydrogen dissolution and hydrogen solubility in oxides using imaging plate technique[J]. J Nucl Mater,2013,442: S880-S884
    [167]Sterrer M, Berger T, Diwald O, Knozinger E. Energy transfer on the MgO surface monitored by UV-induced H2 chemisorption[J]. J Am Chem Soc,2003,125:195-199
    [168]Chen H T, Giordano L, Pacchioni G. From heterolytic to homolytic H2 dissociation on nanostructured MgO(001) films as function of the metal support[J]. J Phys Chem C,2013, 117:10623-10629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700