组织特异性表达1,3-1,4-β-葡聚糖酶转基因鼠及猪的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-1,4-β-葡聚糖,简称β-葡聚糖是谷类植物饲料中含有的一种抗营养因子,对动物的消化吸收产生不良影响。虽然1,3-1,4-β-葡聚糖酶,简称β-葡聚糖酶能促进β-葡聚糖的分解,但在单胃动物的胃肠道中却不能产生β-葡聚糖酶,无法分解谷类植物饲料中的β-葡聚糖。而利用转基因技术在动物消化道内生产外源酶是提高饲料利用率新的研究策略和有效途径。本研究通过筛选出β-葡聚糖酶基因片段,构建β-葡聚糖酶基因腮腺组织特异性表达载体和β-葡聚糖酶基因肠道组织特异性表达载体,之后成功制备了腮腺和肠道组织特异性表达β-葡聚糖酶的转基因小鼠。通过对转基因小鼠进行基因水平、转录水平及酶活的检测,全面评估在转基因猪中生产β-葡聚糖酶来降低饲料中β-葡聚糖的抗营养作用的可行性。将线性化的β-葡聚糖酶基因腮腺组织特异性表达载体和β-葡聚糖酶基因肠道组织特异性表达载体分别转染猪成纤维细胞,获得稳定的整合有β-葡聚糖酶基因的转基因细胞系,并以这两种细胞为核供体利用核移植克隆技术制备转基因猪,最终获得腮腺组织特异性表达β-葡聚糖酶转基因猪3头,肠道组织特异表达β-葡聚糖酶转基因猪3头。结果如下:
     1、成功构建了β-葡聚糖酶基因腮腺组织特异性表达载体(pPSPBGPneo-GLU),并通过原核注射法制备了转基因小鼠。PCR和Southern blotting分析表明β-葡聚糖酶基因成功的整合进小鼠的基因组中。RT-PCR和Northern blotting显示β-葡聚糖酶基因在小鼠的腮腺组织中进行了特异性表达。酶活检测唾液中β-葡聚糖酶活性为0.18±0.02U/mL。在饲料中添加2%β-葡聚糖进行营养代谢试验研究,结果发现转基因鼠和非转基因鼠的平均日增重分别为0.0024g/d和-0.0346g/d。与非转基因鼠相比,转基因鼠的粗蛋白和粗脂肪的消化率分别显著提高了12.15%和5.11%(p<0.05),而粪便湿度二者差异不显著(p>0.05)。表明β-葡聚糖酶基因可在小鼠腮腺中成功表达,并具有减弱饲料中β-葡聚糖抗营养的作用。
     2、利用pPSPBGPneo-GLU载体成功转染长白猪成纤维细胞,经G418筛选获得带有腮腺组织特异性表达β-葡聚糖酶转基因细胞系。以该细胞系为核供体,采用核移植技术,获得腮腺组织特异性表达β-葡聚糖酶长白转基因猪3头。PCR和Southern blotting结果显示β-葡聚糖酶基因成功整合到猪基因组中。3头转基因猪唾液中酶活分别为为3.2U/mL、0.07U/mL和0.03U/mL。与非转基因猪相比,转基因猪的能量、粗蛋白和粗脂肪的消化率分别提高了(15.09%、6.20%和9.09%)、(20.73%、5.41%和1.76%)和(39.53%、5.99%和4.19%),而粪便湿度分别降低了16.10%、6.74%和2.08%。表明β-葡聚糖酶基因可在猪腮腺中成功表达,并具有减弱饲料中β-葡聚糖抗营养的作用。
     3、采用人的粘蛋白启动子(MUC)成功构建了β-葡聚糖酶基因肠道特异性表达载体(MUC2-GLU-LV),利用原核注射法制备了转基因小鼠模型。PCR和Southern blotting结果表明β-葡聚糖酶基因成功整合到小鼠的基因组中。RT-PCR和Northern blotting结果显示β-葡聚糖酶基因在小鼠的肠道中进行了特异性表达。肠液中β-葡聚糖酶的活性为1.23±0.12U/mL。在饲料中添加2%β-葡聚糖进行营养代谢试验研究,结果发现转基因鼠和非转基因鼠的平均日增重分别为0.058g/d和-0.024g/d。与非转基因鼠相比,转基因鼠粗蛋白和粗脂肪的消化率分别显著提高了9.32%和5.09%(p<0.05),而粪便湿度显著降低了12.16%。结果表明β-葡聚糖酶基因在小鼠的肠道组织中成功表达,并具有减弱饲料中β-葡聚糖抗营养的作用。
     4、利用MUC2-GLU-LV载体成功转染长白猪成纤维细胞,经G418筛选获得带有肠道组织特异性表达β-葡聚糖酶转基因细胞系,并以该细胞系为核供体,利用核移植技术共获得肠道组织特异表达β-葡聚糖酶长白转基因猪3头。经PCR检测为阳性,进一步的检测尚在进行。
     本研究首次制备了腮腺及肠道转β-葡聚糖酶基因小鼠,证明可以有效的降低葡聚糖的抗营养作用;获得了组织特异性表达β-葡聚糖酶的转基因猪,为提高消化率,建立环境友好型转基因猪打下了基础。
1,3-1,4-β-glucan, referred to as β-glucan, is an anti-nutritional factor in cerealplant material, and has bad effects on animal digestive absorption. Although the1,3-1,4-β-glucanase, referred to as β-glucanase, is able to the decompose β-glucan,β-glucanase dose not exist in monogastric animal gastrointestinal tract, and so β-glucan would not be digested in them. Therefore, the new research strategies whichsolve the problem are to produce heterologous enzymes in the animal digestive tractto improve feed utilization rate by generating transgenic animal. In this study,β-glucanase gene fragment was amplified using PCR, and the parotid gland andintestine tissue-specific expressing β-glucanase vector were constructed. Thetransgenic mice expressing β-glucanase in parotid gland and intestine tissue weresuccessful prepared by microinjection method. The transgenic mice were detected atthe DNA, mRNA levels and enzyme activity in order to comprehensively assess thefeasibility of reducing feed β-glucan anti nutritional effect by producing β-glucanasetransgenic pigs. The linearized β-glucanase gene parotid gland and intestinetissue-specific expressing vector were transfected into the porcine fibroblasts andobtained the transgenic cell lines stably expressing β-glucanase. The two kinds of celllines were used as nuclear donors for nuclear transfer technology, and transgenic pigswere produced using cloning method. Finally,3transgenic cloned pigs expressingspecifically β-glucanase in parotid gland tissue and3transgenic cloned pigsexpressing specifically β-glucanase in the intestinal tissue were obtained, respectively.The results were as follows:
     1. The parotid gland tissue-specific expressing β-glucanase vector was successfullyconstructed. The transgenic mice were produced by the pronuclear microinjection.Both PCR and Southern blotting analysis showed that the mice carried theβ-glucanase gene and the β-glucanase gene would be stably inherited. RT-PCR andNorthern blotting analysis indicated that β-glucanase gene was specifically expressedin the parotid gland tissue. The β-glucanase activity in the saliva was found to be0.18±0.02U/mL. Mice were fed a diet containing2%β-glucan for nutrition metabolism test. The results showed that the average daily gain of transgenic and non-trangenicmice was0.0024g/d and-0.0346g/d, repectively. The crude protein, crude fatdegestibility of transgenic mice were increased by12.15%and5.11%(p<0.05),respectively, compared with that of the non-transgenic mice. While the moisture infeces showed no significant difference between transgenic and non-transgenicmice(p>0.05). These results suggested that foreign β-glucanase were successfullyexpressed in the animal parotid of mice and could reduce the anti-nutritional effect ofβ-glucans in feed.
     2. Landrace porcine fibroblasts were successfully transfected bypPSPBGPneo-GLU vector harboring β-glucanase gene. By G418screening, thistransgenic cell lines were finally obtained and could specifically expressedβ-glucanase gene in parotid gland tissue and this kind of cell line were used as nucleardonors for nuclear transfer technology. Finally,3landrace transgenic cloned pigsexpressing specifically β-glucanase in parotid gland tissue were obtained. PCR andSouthern blotting analysis showed that the pigs carried the β-glucanase gene. Theβ-glucanase activity in the saliva was found to be3.2U/mL、0.07U/mL and0.03U/mL in the pigs. The metabolism test showed the energy, crude protein, crude fatdegestibility of transgenic pigs were increased by (15.09%,6.20%and9.09%),(20.73%,5.41%and1.76%) and (39.53%,5.99%and4.19%)compared with that ofnon-transgenic pigs, respectively. While the moisture in feces were reduced by16.10%,6.74%and2.08%, respectively. These results suggested that foreignβ-glucanase were successfully expressed in the animal parotid of pig and could reducethe anti-nutritional effect of β-glucans in feed.
     3. The β-glucanase gene was cloned into a intestine specific expressing vector withMUC2promoter (MUC2-GLU-LV). The transgenic mice were prepared bymicroinjection. PCR and Southern blotting analysis showed that the mice carried theβ-glucanase gene. Northern blotting analysis indicated that β-glucanase wasspecifically expressed in the intestine of the transgenic mice. The β-glucanase activityin the intestinal juice was found to be1.23±0.12U/mL. Mice were fed a dietcontaining2%β-glucan for nutrition metabolism test. The results showed that theaverage daily gain of transgenic and non-transgenic mice was0.058g/d and-0.024g/d, respectively. The crude protein, crude fat degestibility of transgenic mice wereincreased by9.32%and5.09%(p<0.05), respectively, compared with that of the non-transgenic mice. While the moisture in feces were reduced by12.16%(p<0.05).These results suggested that foreign β-glucanase were successfully expressed in theintesteine of mice and could reduce the anti-nutritional effect of β-glucans in feed.
     4. Landrace porcine fibroblasts were successfully transfected by MUC2-GLU-LVvector harboring β-glucanase gene. By G418screening, this kind of transgenic celllines were finally obtained and could specifically expressed β-glucanase gene inintestine tissue, and this kind of cells were used as nuclear donors for nuclear transfertechnology. Finally,3landrace transgenic cloned pigs expressing specificallyβ-glucanase in the intestine tissue were obtained by PCR analysis. Additionaldetection is under way.
     It is the first to produce the transgenic mice expressing β-glucanase gene inparotid gland and intestine tissue in the study. The results demonstrated that theanti-nutritional effects of β-glucan could be effectively reduced. Transgenic pigstissue-specifically expressing β-glucanase were obtained, which provided thefoundation for improving the rate of digestion and the establishment ofenvironment-friendly transgenic pigs.
引文
[1] Bacic A, Stone B. Chemistry and organization of aleurone cell wall componentsfrom wheat and barley[J]. Functional Plant Biology.1981,8(5):475-495.
    [2] Papageorgiou M, Lakhdara N, Lazaridou A, Biliaderis C, Izydorczyk M. Waterextractable (1→3,1→4)-β-D-glucans from barley and oats: An intervarietalstudy on their structural features and rheological behaviour[J]. Journal of cerealscience.2005,42(2):213-224.
    [3] Holt S, Carter D, Tothill P, Heading R, Prescott L. Effect of gel fibre on gastricemptying and absorption of glucose and paracetamol[J]. The Lancet.1979,313(8117):636-639.
    [4] Vahouny GV, Cassidy MM, Dietary fibers and absorption of nutrients, in:Proceedings of the Society for Experimental Biology and Medicine. Society forExperimental Biology and Medicine (New York, NY), Royal Society ofMedicine,1985, pp.432-446.
    [5] Johnson I, Gee JM. Effect of gel-forming gums on the intestinal unstirred layerand sugar transport in vitro[J]. Gut.1981,22(5):398-403.
    [6] Jensen M, Bach Knudsen K, Inborr J, Jakobsen K. Effect of β-glucanasesupplementation on pancreatic enzyme activity and nutrient digestibility inpiglets fed diets based on hulled and hulless barley varieties[J]. Animal FeedScience and Technology.1998,72(3):329-345.
    [7] Bedford MR, Classen HL. Reduction of intestinal viscosity through manipulationof dietary rye and pentosanase concentration is effected through changes in thecarbohydrate composition of the intestinal aqueous phase and results in improvedgrowth rate and food conversion efficiency of broiler chicks[J]. The Journal ofnutrition.1992,122(3):560.
    [8] Bedford M. Mechanism of action and potential environmental benefits from theuse of feed enzymes[J]. Animal Feed Science and Technology.1995,53(2):145-155.
    [9] Marquardt RR, Brenes A, Zhang Z, Boros D. Use of enzymes to improve nutrientavailability in poultry feedstuffs[J]. Animal Feed Science and Technology.1996,60(3):321-330.
    [10] Campbell G, Campbell L, Classen H. Utilisation of rye by chickens: effect ofmicrobial status, diet gamma irradiation and sodium taurocholate supplementation[J].British Poultry Science.1983,24(2):191-203.
    [11]郭小权,胡国良,刘妹.β-葡聚糖的抗营养作用及β-葡聚糖酶在饲料中的应用[J].江西饲料.2001,2:11-13.
    [12] Li S, Sauer W, Mosenthin R, Kerr B. Effect of β-glucanase supplementation ofcereal-based diets for starter pigs on the apparent digestibilities of dry matter,crude protein and energy[J]. Animal Feed Science and Technology.1996,59(4):223-231.
    [13] Kim J-Y. Overproduction and secretion of Bacillus circulans endo-β-1,3-1,4-glucanase gene (bglBC1) in B. subtilis and B. megaterium[J]. Biotechnologyletters.2003,25(17):1445-1449.
    [14] Fontes CM, Ali S, Gilbert HJ, Hazlewood GP, Hirst BH, Hall J. Bacterialxylanase expression in mammalian cells and transgenic mice[J]. Journal ofbiotechnology.1999,72(1):95-101.
    [15] Yin H, Fan B, Yang B, Liu Y, Luo J, Tian X, Li N. Cloning of pig parotidsecretory protein gene upstream promoter and the establishment of a transgenicmouse model expressing bacterial phytase for agricultural phosphorus pollutioncontrol[J]. Journal of animal science.2006,84(3):513-519.
    [16] Madsen HO, Hjorth JP. Molecular cloning of mouse PSP mRNA[J]. Nucleicacids research.1985,13(1):1-13.
    [17] Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ,Plante C, Pollard JW, Fan MZ, Hayes MA. Pigs expressing salivary phytaseproduce low-phosphorus manure[J]. Nature biotechnology.2001,19(8):741-745.
    [18] Annison G, Choct M. Anti-nutritive activities of cereal non-starch polysacchari-des in broiler diets and strategies minimizing their effects[J]. World’s Poult. Sci.J.1991,47(3):232-242.
    [19] Almirall M, Francesch M, Perez-Vendrell AM, Brufau J, Esteve-Garcia E. Thedifferences in intestinal viscosity produced by barley and beta-glucanase alterdigesta enzyme activities and ileal nutrient digestibilities more in broiler chicksthan in cocks[J]. The Journal of nutrition.1995,125(4):947.
    [20] Preece I, Mackenzie K. Non-starchy polysaccharides of cereal grains. I.Fractionation of the barley gums[J]. J. Inst. Brew.1952,58:353-362.
    [21] Westerlund E, Andersson R, man P. Isolation and chemical characterization ofwater-soluble mixed-linked β-glucans and arabinoxylans in oat millingfractions[J]. Carbohydrate polymers.1993,20(2):115-123.
    [22] Aspinall G, Carpenter R. Structural investigations on the non-starchypolysaccharides of oat bran[J]. Carbohydrate polymers.1984,4(4):271-282.
    [23] Woodward J, Phillips D, Fincher G. Water-soluble (1→3),(1→4)-β-D-glucansfrom barley (Hordeum vulgare) endosperm. I. Physicochemical properties[J].Carbohydrate polymers.1983,3(2):143-156.
    [24] Wood PJ. Physicochemical characteristics and physiological properties of oat(1→3),(1→4)-β-D-glucan[J]. Oat bran.1993:83-112.
    [25] Parrish F, Perlin A, Reese E. Selective enzymolysis of poly-β-D-glucans, and thestructure of the polymers[J]. Canadian Journal of Chemistry.1960,38(11):2094-2104.
    [26] Dais P, Perlin AS. High-field,13CN. MR spectroscopy of β-D-glucans,amylopectin, and glycogen[J]. Carbohydrate Research.1982,100(1):103-116.
    [27] Cui SW, Polysaccharide gums from agricultural products: Processing, structures&functionality, CRC PressI Llc,2001.
    [28] Fincher G, Stone B. Cell walls and their components in cereal graintechnology[J]. Advances in cereal science and technology.1986,8:
    [29] Newman R, Newman C, Graham H. The hypocholesterolemic function of barleybeta-glucans[J]. Cereal Foods World.1989,34:
    [30] Lund E, Gee J, Brown J, Wood P, Johnson I. Effect of oat gum on the physicalproperties of the gastrointestinal contents and on the uptake of D-galactose andcholesterol by rat small intestine in vitro[J]. British Journal of Nutrition.1989,62(01):91-101.
    [31] Chesson A. Feed enzymes[J]. Animal Feed Science and Technology.1993,45(1):65-79.
    [32] Lynch M, Sweeney T, Callan J, Doherty J. Effects of increasing the intake ofdietary β-glucans by exchanging wheat for barley on nutrient digestibility,nitrogen excretion, intestinal microflora, volatile fatty acid concentration andmanure ammonia emissions in finishing pigs[J]. Animal.2007,1(06):812-819.
    [33] Feighner SD, Dashkevicz MP. Effect of dietary carbohydrates on bacterialcholyltaurine hydrolase in poultry intestinal homogenates[J]. Applied andenvironmental microbiology.1988,54(2):337-342.
    [34] Hrmova M, Banik M, Harvey AJ, Garrett T, Varghese JN, H j PB, Fincher GB.Polysaccharide hydrolases in germinated barley and their role in thedepolymerization of plant and fungal cell walls[J]. International journal ofbiological macromolecules.1997,21(1-2):67.
    [35] McCleary BV. Lichenase from Bacillus subtilis[J]. Methods in Enzymology.1988,160:572-575.
    [36] Varghese JN, Garrett T, Colman PM, Chen L, H j P, Fincher GB. Three-dimensional structures of two plant beta-glucan endohydrolases with distinctsubstrate specificities[J]. Proceedings of the National Academy of Sciences.1994,91(7):2785-2789.
    [37] Tsai LC, Shyur LF, Lee SH, Lin SS, Yuan HS. Crystal Structure of a NaturalCircularly Permuted Jellyroll Protein:1,3-1,4-β-D-Glucanase from Fibrobactersuccinogenes[J]. Journal of molecular biology.2003,330(3):607-620.
    [38] Planas A. Bacterial1,3-1,4-β-glucanases: structure, function and proteinengineering[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure andMolecular Enzymology.2000,1543(2):361-382.
    [39] Hahn M, Pons J, Planas A, Querol E, Heinemann U. Crystal structure of(Bacilluslicheniformis)1,3-1,4-β-D-glucan4-glucanohydrolase at1.8resolution[J].FEBS letters.1995,374(2):221-224.
    [40] Keitel T, Meldgaard M, Heinemann U. Cation binding to a Bacillus1,3-1,4-β-glucanase Geometry, affinity and effect on protein stability[J].European Journal of Biochemistry.1994,222(1):203-214.
    [41] Hahn M, Olsen O, Politz O, Borriss R, Heinemann U. Crystal Structure andSite-directed Mutagenesis of Bacillus macerans Endo-1,3-1,4-glucanase[J].Journal of Biological Chemistry.1995,270(7):3081-3088.
    [42] Borriss R, Zemek J, Augustin J, Pacova Z, Kuniak L. beta-1,3-1,4-Glucanase insporeforming microorganisms. II. Production of beta-glucan-hydrolases byvarious Bacillus species (author's transl)][J]. Zentralblatt für Bakteriologie,Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite naturwissenschaftlicheAbteilung: Mikrobiologie der Landwirtschaft der Technologie und des Umw-eltschutzes.1980,135(5):435.
    [43] Olsen O, Borriss R, Simon O, Thomsen KK. Hybrid Bacillus1,3-1,4-β-glucanases: engineering thermostable enzymes by construction of hybridgenes[J]. Molecular and General Genetics MGG.1991,225(2):177-185.
    [44] SCHIMMING S, SCHWARZ WH, STAUDENBAUER WL. Structure of theClostridium thermocellum gene licB and the encoded1,3-1,4-β-glucanase[J].European Journal of Biochemistry.1992,204(1):13-19.
    [45] Flint H, Martin J, McPherson C, Daniel A, Zhang J. A bifunctional enzyme, withseparate xylanase and beta (1,3-1,4)-glucanase domains, encoded by the xynDgene of Ruminococcus flavefaciens[J]. Journal of bacteriology.1993,175(10):2943-2951.
    [46] Koshland DE. Stereochemistry and the mechanism of enzymatic reactions[J].Biological Reviews.1953,28(4):416-436.
    [47] Teng D, Wang Jh, Fan Y, Yang Yl, Tian Zg, Luo J, Yang G-p, Zhang F. Cloningof β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039(CGMCC0635) and its expression in Escherichia coli BL21(DE3)[J]. Appliedmicrobiology and biotechnology.2006,72(4):705-712.
    [48] Planas A, Juncosa M, Lloberas J, Querol E. Essential catalytic role of Glu134inendo-β-1,3-1,4-D-glucan4-glucanohydrolase from B. licheniformis asdetermined by site-directed mutagenesis[J]. FEBS letters.1992,308(2):141-145.
    [49] Keitel T, Simon O, Borriss R, Heinemann U. Molecular and active-site structureof a Bacillus1,3-1,4-beta-glucanase[J]. Proceedings of the National Academyof Sciences.1993,90(11):5287-5291.
    [50] McCarter JD, Stephen Withers G. Mechanisms of enzymatic glycosidehydrolysis[J]. Current opinion in structural biology.1994,4(6):885-892.
    [51] Viladot JL, de Ramon E, Durany O, Planas A. Probing the mechanism ofBacillus1,3-1,4-β-D-glucan4-glucanohydrolases by chemical rescue of inactivemutants at catalytically essential residues[J]. Biochemistry.1998,37(32):11332-11342.
    [52] Sinnott ML. Catalytic mechanism of enzymic glycosyl transfer[J]. ChemicalReviews.1990,90(7):1171-1202.
    [53] Davies G, Sinnott ML, Withers SG. Glycosyl transfer[J]. ComprehensiveBiological Catalysis.1998,1:119-208.
    [54] Strynadka NC, James MN. Lysozyme revisited: Crystallographic evidence fordistortion of an N-acetylmuramic acid residue bound in site D[J]. Journal ofmolecular biology.1991,220(2):401-424.
    [55] Matsumura I, Kirsch JF. Is aspartate52essential for catalysis by chicken eggwhite lysozyme? The role of natural substrate-assisted hydrolysis[J].Biochemistry.1996,35(6):1881-1889.
    [56] Street IP, Kempton JB, Withers SG. Inactivation of a. beta.-glucosidase throughthe accumulation of a stable2-deoxy-2-fluoro-. alpha.-D-glucopyranosyl-enzymeintermediate: a detailed investigation[J]. Biochemistry.1992,31(41):9970-9978.
    [57] Miao S, Ziser L, Aebersold R, Withers SG. Identification of glutamic acid78asthe active site nucleophile in Bacillus subtilis xylanase using electrospray tandemmass spectrometry[J]. Biochemistry.1994,33(23):7027-7032.
    [58] Davies GJ, Mackenzie L, Varrot A, Dauter M, Brzozowski AM, Schülein M,Withers SG. Snapshots along an enzymatic reaction coordinate: analysis of aretaining β-glycoside hydrolase[J]. Biochemistry.1998,37(34):11707-11713.
    [59] Sulzenbacher G, Driguez H, Henrissat B, Schülein M, Davies GJ. Structure ofthe Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrateanalogue: substrate distortion gives rise to the preferred axial orientation for theleaving group[J]. Biochemistry.1996,35(48):15280-15287.
    [60] McIntosh LP, Hand G, Johnson PE, Joshi MD, K rner M, Plesniak LA, Ziser L,Wakarchuk WW, Withers SG. The p K a of the General Acid/Base CarboxylGroup of a Glycosidase Cycles during Catalysis: A13C-NMR Study of Bacilluscirculans xylanase[J]. Biochemistry.1996,35(31):9958-9966.
    [61] Faijes M, Fairweather JK, Driguez H, Planas A. Oligosaccharide Synthesis byCoupled endo-Glycosynthases of Different Specificity: A StraightforwardPreparation of Two Mixed-Linkage Hexasaccharide Substrates of1,3/1,4-β-Glucanases[J]. Chemistry-A European Journal.2001,7(21):4651-4655.
    [62] Moreau V, Viladot JL, Samain E, Planas A, Driguez H. Design and chemoenzy-matic synthesis of thiooligosaccharide inhibitors of1,3-1,4-β-D-glucanases[J].Bioorganic&medicinal chemistry.1996,4(11):1849-1855.
    [63] Hahn M, Keitel T, Heinemann U. Crystal and Molecular Structure at0.16‐nmResolution of the Hybrid Bacillus Endo-1,3-1,4-β-D-Glucan4-GlucanohydrolaseH (A16-M)[J]. European Journal of Biochemistry.1995,232(3):849-858.
    [64] Borriss R. Structure and function of the genes coding for bacterial endo1,3-1,4-β-glucanases[J]. Curr. Top. Mol. Genet.1994,2:163-188.
    [65] Borriss R, Olsen O, Thomsen KK, Von Wettstein D. Hybrid Bacillus endo-(1-3,1-4)-β-glucanases: construction of recombinant genes and molecular propertiesof the gene products[J]. Carlsberg research communications.1989,54(2):41-54.
    [66] Politz O, Simon O, Olsen O, Borriss R. Determinants for the enhancedthermostability of hybrid (1-3,1-4)-β-glucanases[J]. European Journal ofBiochemistry.1993,216(3):829-834.
    [67] Meldgaard M. Different effects of N-glycosylation on the thermostability ofhighly homologous bacterial (1,3-1,4)-β-glucanases secreted from yeast[J].Microbiology.1994,140(1):159-166.
    [68] Welfle K, Misselwitz R, Welfle H, Politz O, Borriss R. Influence of Ca2+onconformation and stability of three bacterial hybrid glucanases[J]. EuropeanJournal of Biochemistry.1995,229(3):726-735.
    [69] Welfle K, Misselwitz R, Welfle H, Simon O, Politz O, Borriss R. Microcalorimetricdetermination of the thermostability of three hybrid (1-3,1-4)-β-glucanases[J].Journal of Biomolecular Structure and Dynamics.1994,11(6):1417-1424.
    [70] Welfle K, Politz O, Borriss R, Misselwitz R, Welfle H. Individual amino acids inthe N-terminal loop region determine the thermostability and unfoldingcharacteristics of bacterial glucanases[J]. Protein science.1996,5(11):2255-2265.
    [71] Pettersson D, man P. Enzyme supplementation of a poultry diet containing ryeand wheat[J]. British Journal of Nutrition.1989,62(01):139-149.
    [72] Taverner M, Campbell R, The effects of protected dietary enzymes on nutrientabsorption in pigs, in: Proceedings,4th International Seminar on DigestivePhysiology in the Pig. Polish Academy of Science, Jablonna, Warsaw, Poland,1988, pp.337.
    [73]韩正康.家禽及猪营养中的酶制剂[J].饲料酶制剂国际学术研讨会论文集.1996,6:
    [74]于旭华.β-葡聚糖酶与木聚糖酶在猪饲料中的应用[J].中国畜牧兽医.2002,29(3):17-20.
    [75]冯定远,张莹,余石英,付畅国,蒲英远,颜惜玲,汪儆.含有木聚糖酶和β-葡聚糖酶的酶制剂对猪日粮消化性能的影响[J].饲料博览.1997,9(6):5-7.
    [76]高宁国,韩正康.大麦基础日粮添加粗酶制剂对肉鸭生产性能,消化机能的影响及其年龄性变化[J].饲料酶制剂国际学术研讨会.1996,162:
    [77] Bustany ZA. The effect of pelleting an enzyme-supplemented barley-basedbroiler diet[J]. Animal Feed Science and Technology.1996,58(3):283-288.
    [78] Ravindran V, Tilman Z, Morel P, Ravindran G, Coles G. Influence ofβ-glucanase supplementation on the metabolisable energy and ileal nutrientdigestibility of normal starch and waxy barleys for broiler chickens[J]. AnimalFeed Science and Technology.2007,134(1):45-55.
    [79] Onderci M, Sahin N, Cikim G, Aydin A, Ozercan I, Ozkose E, Ekinci S, HayirliA, Sahin K. β-Glucanase-producing bacterial culture improves performance andnutrient utilization and alters gut morphology of broilers fed a barley-baseddiet[J]. Animal Feed Science and Technology.2008,146(1):87-97.
    [80]刘燕强,韩正康.大麦日粮添加粗酶制剂对雏鸡生产性能的影响[J].中国饲料.1994,7:19-21.
    [81]喻涛,韩正康.添加粗酶制剂对喂大麦基础日粮的雏鸡生产性能,血清T3水平及食糜排空速度的影响[J].畜牧与兽医.1996,28(3):99-101.
    [82]高宁国,韩正康.米糠日粮添加粗酶制剂对肉雏鸭生长性能,消化和代谢机能的影响[J].中国畜牧杂志.1997,33(3):6-8.
    [83] Thacker P, Campbell G, GrootWassink J. Effect of salinomycin and enzymesupplementation on nutrient digestibility and the performance of pigs fedbarley-or rye-based diets[J]. Canadian Journal of Animal Science.1992,72(1):117-125.
    [84] Haraldsson AK, Rimsten L, Alminger ML, Andersson R, Andlid T, man P,Sandberg AS. Phytate content is reduced and β-glucanase activity suppressed inmalted barley steeped with lactic acid at high temperature[J]. Journal of theScience of Food and Agriculture.2004,84(7):653-662.
    [85] Reilly P, Sweeney T, O'Shea C, Pierce K, Figat S, Smith A, Gahan D, O’DohertyJ.The effect of cereal-derived beta-glucans and exogenous enzyme suppleme-ntation on intestinal microflora, nutrient digestibility, mineral metabolism andvolatile fatty acid concentrations in finisher pigs[J]. Animal Feed Science andTechnology.2010,158(3):165-176.
    [86] Graham H, Hesselman K, Jonsson E, Aman P. Influence of β-glucanase suppl-ementation on digestion of a barley-based diet in the pig gastrointestinal tract[J].Nutrition reports international.1986,34(6):1089-1096.
    [87] Graham H, Fadel J, Newman C, Newman R. Effect of pelleting and beta-glucanase supplementation on the ileal and fecal digestibility of a barley-baseddiet in the pig[J]. Journal of animal science.1989,67(5):1293.
    [88] Hinchliffe E, Box WG. Expression of the cloned endo-1,3-1,4-β-glucanase geneof Bacillus subtilis in Saccharomyces cerevisiae[J]. Current genetics.1984,8(6):471-475.
    [89] van Rensburg P, van Zyl WH, Pretorius IS. Over-expression of the Saccharomycescerevisiae exo-β-1,3-glucanase gene together with the Bacillus subtilis endo-β-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-β-1,4-glucanasegene in yeast[J]. Journal of biotechnology.1997,55(1):43-53.
    [90] LLOBERAS J, PEREZ‐PONS JA, QUEROL E. Molecular cloning, expressionand nucleotide sequence of the endo-β-1,3-1,4-D-glucanase gene from Bacilluslicheniformis Predictive structural analyses of the encoded polypeptide[J].European Journal of Biochemistry.1991,197(2):337-343.
    [91] Borriss R, Buettner K, Maentsaelae P. Structure of the beta-1,3-1,4-glucanasegene of Bacillus macerans: Homologies to other beta-glucanases[J]. Molecularand General Genetics MGG.1990,222(2-3):278-283.
    [92] Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. A novel β-glucanase genefrom Bacillus halodurans C-125[J]. FEMS microbiology letters.2005,248(1):9-15.
    [93] Gosalbes MJ, Pérez-González JA, Gonzalez R, Navarro A. Two beta-glycanasegenes are clustered in Bacillus polymyxa: molecular cloning, expression, andsequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase[J]. Journal of bacteriology.1991,173(23):7705-7710.
    [94]黄兴奇,陈永青.β-1,3-1,4-葡聚糖酶基因亚克隆研究[J].西南农业学报.1990,3(4):113-115.
    [95] Schimming S, Schwarz WH, Staudenbauer WL. Properties of a thermoactive β-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed inEscherichia coli[J]. Biochemical and biophysical research communications.1991,177(1):447-452.
    [96] Ekinci MS, McCrae SI, Flint HJ. Isolation and overexpression of a geneencoding an extracellular beta-(1,3-1,4)-glucanase from Streptococcus bovisJB1[J]. Applied and environmental microbiology.1997,63(10):3752-3756.
    [97] Chen JL, Tsai LC, Wen TN, Tang JB, Yuan HS, Shyur LF. Directed Mutagenesisof Specific Active Site Residues onFibrobacter succinogenes1,3-1,4-β-D-Glucanase Significantly Affects Catalysis and Enzyme Structural Stability[J].Journal of Biological Chemistry.2001,276(21):17895-17901.
    [98] Wen TN, Chen JL, Lee SH, Yang NS, Shyur LF. A truncated Fibrobactersuccinogenes1,3-1,4-β-D-glucanase with improved enzymatic activity andthermotolerance[J]. Biochemistry.2005,44(25):9197-9205.
    [99]吕文平,许梓荣,杜文理,李卫芬,孙建义.地衣芽孢杆菌β-1,3-1,4葡聚糖酶基因的克隆和表达[J].农业生物技术学报.2004,22(3):278-280.
    [100]吕文平,许梓荣,李卫芬,孙建义,韩晋辉.淀粉液化芽孢杆菌β-1,3-1,4葡聚糖酶基因的克隆和表达[J].中国兽医学报.2005,25(3):263-265.
    [101]李卫芬,姚江涛,胡春霞,许梓荣.浸麻芽孢杆菌-葡聚糖酶基因在大肠杆菌中的表达[J].浙江大学学报(农业与生命科学版).2005,5:022.
    [102] Furtado GP, Ribeiro LF, Santos CR, Tonoli CC, De Souza AR, Oliveira RR,Murakami MT, Ward RJ. Biochemical and structural characterization of a β-1,3–1,4-glucanase from Bacillus subtilis168[J]. Process Biochemistry.2011,46(5):1202-1206.
    [103] Chen H, Li X-L, Ljungdahl LG. Sequencing of a1,3-1,4-beta-D-glucanase(lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties ofthe enzyme expressed in Escherichia coli and evidence that the gene has abacterial origin[J]. Journal of bacteriology.1997,179(19):6028-6034.
    [104] G rlach JM, Van Der Knaap E, Walton JD. Cloning and Targeted Disruption ofMLG1, a Gene Encoding Two of Three Extracellular Mixed-Linked GlucanasesofCochliobolus carbonum[J]. Applied and environmental microbiology.1998,64(2):385-391.
    [105] Bang M, Villadsen I, Sandal T. Cloning and characterization of an endo-β-1,3(4) glucanase and an aspartic protease from Phaffia rhodozyma CBS6938[J].Applied microbiology and biotechnology.1999,51(2):215-222.
    [106] Cantwell B, Brazil G, Murphy N, McConnell D. Comparison of expression ofthe endo-β-1,3-1,4-glucanase gene from Bacillus subtilis in Saccharomycescerevisiae from the CYC1and ADH1promoters[J]. Current genetics.1986,11(1):65-70.
    [107] Olsen O, Thomsen KK. Improvement of bacterial β-glucanase thermostabilityby glycosylation[J]. Journal of general microbiology.1991,137(3):579-585.
    [108] Meldgaard M, Harthill J, Petersen B, Olsen O. Glycan modification of athermostable recombinant (1-3,1-4)-β-glucanase secreted fromSaccharomycescerevisiae is determined by strain and culture conditions[J]. Glycoconjugatejournal.1995,12(3):380-390.
    [109] Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK, Von Wettstein D.Transgenic barley expressing a protein-engineered, thermostable (1,3-1,4)-beta-glucanase during germination[J]. Proceedings of the National Academy ofSciences.1996,93(8):3487-3491.
    [110] Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von WettsteinD. The production of recombinant proteins in transgenic barley grains[J].Proceedings of the National Academy of Sciences.2000,97(4):1914-1919.
    [111] Piruzian E, Monzavi-Karbassi B, Darbinian N, Goldenkova I, Kobets N,Mochulsky A. The use of a thermostable β-glucanase gene from Clostridiumthermocellum as a reporter gene in plants[J]. Molecular and General GeneticsMGG.1998,257(5):561-567.
    [112] Dowd FJ. Saliva and dental caries[J]. Dental Clinics of North America.1999,43(4):579.
    [113] Klein R. Acinar cell proliferation in the parotid and submandibular salivaryglands of the neonatal rat[J]. Cell Proliferation.1982,15(2):187-195.
    [114] Redman RS, Sreebny LM. Morphologic and biochemical observations on thedevelopment of the rat parotid gland[J]. Developmental biology.1971,25(2):248-279.
    [115] Shaw P, Schibler U. Structure and expression of the parotid secretory proteingene of mouse[J]. Journal of molecular biology.1986,192(3):567-576.
    [116] Gupta N, Asp E, Levan G, Mirels L. Structure and chromosomal localization ofthe rat salivary Psp and Smgb genes[J]. Gene.2000,243(1):11-18.
    [117] Ann DK, Clements S, Johnstone E, Carlson DM. Induction of tissue-specificproline-rich protein multigene families in rat and mouse parotid glands byisoproterenol. Unusual strain differences of proline-rich protein mRNAs[J].Journal of Biological Chemistry.1987,262(2):899-904.
    [118] Wheeler TT, Haigh BJ, McCracken JY, Wilkins RJ, Morris CA, Grigor MR.The BSP30salivary proteins from cattle, LUNX/PLUNC and von Ebner'sminor salivary gland protein are members of the PSP/LBP superfamily ofproteins[J]. Biochimica et biophysica acta.2002,1579(2-3):92.
    [119]尹海芳,樊宝良,赵志辉,刘兆良,费菁,李宁.猪腮腺分泌蛋白基因序列和蛋白结构比较分析及组织表达谱鉴定[J].科学通报.2003,13:1432-1437.
    [120] Laursen J, Krogh-Pedersen H, Dagnaes-Hansen F, Hjorth JP. The mainregulatory region in the murine PSP gene is a parotid gland enhancer[J].Transgenic research.1998,7(6):413-420.
    [121] Svendsen P, Kristiansen K, Hjorth JP. Protein-binding elements in the proximalparotid secretory protein gene enhancer essential for salivary-gland-specificexpression[J]. Biochemical Journal.2001,357(Pt2):537.
    [122] Redman RS, Sreebny LM. Proliferative behavior of differentiating cells in thedeveloping rat parotid gland[J]. The Journal of cell biology.1970,46(1):81-87.
    [123] Owerbach D, Hjorth JP. Inheritance of a parotid secretory protein in mice andits use in determining salivary amylase quantitative variants[J]. Genetics.1980,95(1):129-141.
    [124] Shaw P, Sordat B, Schibler U. The two promoters of the mouse α-amylase geneAmy-1a are differentially activated during parotid gland differentiation[J]. Cell.1985,40(4):907-912.
    [125] Gerster T, Matthias P, Thali M, Jiricny J, Schaffner W. Cell type-specificityelements of the immunoglobulin heavy chain gene enhancer[J]. The EMBOjournal.1987,6(5):1323.
    [126] Sawicki S, Jelinek W, Darnell J.3′-Terminal addition to HeLa cell nuclear andcytoplasmic poly (A)[J]. Journal of molecular biology.1977,113(1):219-235.
    [127] Golovan SP, Hayes MA, Phillips JP, Forsberg CW. Transgenic mice expressingbacterial phytase as a model for phosphorus pollution control[J]. Naturebiotechnology.2001,19(5):429-433.
    [128] Sweetser DA, Hauft SM, Hoppe PC, Birkenmeier EH, Gordon JI. Transgenicmice containing intestinal fatty acid-binding protein-human growth hormonefusion genes exhibit correct regional and cell-specific expression of the reportergene in their small intestine[J]. Proceedings of the National Academy ofSciences.1988,85(24):9611-9615.
    [129] Hauft SM, Kim SH, Schmidt GH, Pease S, Rees S, Harris S, Roth KA,Hansbrough JR, Cohn SM, Ahnen DJ. Expression of SV-40T antigen in thesmall intestinal epithelium of transgenic mice results in proliferative changes inthe crypt and reentry of villus-associated enterocytes into the cell cycle but hasno apparent effect on cellular differentiation programs and does not causeneoplastic transformation[J]. J. Cell Biol.1992,117(4):825-839.
    [130] Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, PrüM, Reuter I, Schacherer F. TRANSFAC: an integrated system for geneexpression regulation[J]. Nucleic acids research.2000,28(1):316-319.
    [131] Luchina NN, Krivega IV, Pankratova EV. Human Oct-1L isoform hastissue-specific expression pattern similar to Oct-2[J]. Immunology letters.2003,85(3):237-241.
    [132] Gambús G, De Bolós C, Andreu D, Franci C, Egea G, Real F. Detection of theMUC2apomucin tandem repeat with a mouse monoclonal antibody[J].Gastroenterology.1993,104(1):93-102.
    [133] Gum J, Hicks JW, Toribara NW, Siddiki B, Kim YS. Molecular cloning ofhuman intestinal mucin (MUC2) cDNA. Identification of the amino terminusand overall sequence similarity to prepro-von Willebrand factor[J]. Journal ofBiological Chemistry.1994,269(4):2440-2446.
    [134] Gum JR, Hicks JW, Gillespie A-M, Carlson EJ, K müves L, Karnik S, Hong JC,Epstein CJ, Kim YS. Goblet cell-specific expression mediated by theMUC2mucin gene promoter in the intestine of transgenic mice[J]. American Journal ofPhysiology-Gastrointestinal and Liver Physiology.1999,276(3): G666-G676.
    [135] Gum JR, Hicks J, Kim Y. Identification and characterization of the MUC2(human intestinal mucin) gene5'-flanking region: promoter activity in culturedcells[J]. Biochemical Journal.1997,325(1):259.
    [136] Gratchev A, Siedow A, Bumke-Vogt C, Hummel M, Foss H-D, Hanski M-L,Kobalz U, Mann B, Lammert H, Stein H. Regulation of the intestinal mucinMUC2gene expression in vivo: evidence for the role of promotermethylation[J]. Cancer letters.2001,168(1):71-80.
    [137] Ho JJ, SANG WH, Pan PL, GUOREN D, Kuan S-F, Kim YS. Methylationstatus of promoters and expression of MUC2and MUC5AC mucins inpancreatic cancer cells[J]. International journal of oncology.2003,22(2):273-279.
    [138] Maunoury R, Robine S, Pringault E, Huet C, Guenet J, Gaillard J, Louvard D.Villin expression in the visceral endoderm and in the gut anlage during earlymouse embryogenesis[J]. The EMBO journal.1988,7(11):3321.
    [139] Baniahmad A, Muller M, Steiner C, Renkawitz R. Activity of two differentsilencer elements of the chicken lysozyme gene can be compensated byenhancer elements[J]. The EMBO journal.1987,6(8):2297.
    [140] Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C,Herrlich P, Karin M. Phorbol ester-inducible genes contain a common ciselement recognized by a TPA-modulated trans acting factor[J]. Cell.1987,49(6):729-739.
    [141] Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis[J]. Cell.1990,61(5):759-767.
    [142] Robine S, Sahuquillo-Merino C, Louvard D, Pringault E. Regulatory sequenceson the human villin gene trigger the expression of a reporter gene in adifferentiating HT29intestinal cell line[J]. Journal of Biological Chemistry.1993,268(15):11426-11434.
    [143] Mietus-Snyder M, Sladek F, Ginsburg G, Kuo C, Ladias J, Darnell J,Karathanasis S. Antagonism between apolipoprotein AI regulatory protein1,Ear3/COUP-TF, and hepatocyte nuclear factor4modulates apolipoprotein CIIIgene expression in liver and intestinal cells[J]. Molecular and cellular biology.1992,12(4):1708-1718.
    [144] Troelsen J, Olsen J, Noren O, Sj str m H. A novel intestinal trans-factor(NF-LPH1) interacts with the lactase-phlorizin hydrolase promoter andco-varies with the enzymatic activity[J]. Journal of Biological Chemistry.1992,267(28):20407-20411.
    [145] Wu G, Wang W, Traber P. Isolation and characterization of the humansucrase-isomaltase gene and demonstration of intestine-specific transcriptionalelements[J]. Journal of Biological Chemistry.1992,267(11):7863-7870.
    [146] Traber PG, Wu GD, Wang W. Novel DNA-binding proteins regulateintestine-specific transcription of the sucrase-isomaltase gene[J]. Molecular andcellular biology.1992,12(8):3614-3627.
    [147] Gum JR, Hicks JW, Gillespie AM, Rius JL, Treseler PA, Kogan SC, Carlson EJ,Epstein CJ, Kim YS. Mouse intestinal goblet cells expressing SV40T antigendirected by the MUC2mucin gene promoter undergo apoptosis upon migrationto the villi[J]. Cancer research.2001,61(8):3472-3479.
    [148]翟亚峰.哺乳动物肠道细胞中α-半乳糖苷酶的诱导表达[D].广州:华南农业大学动物科学学院,2012.
    [149]何玮璇.β-葡聚糖酶动物组织特异性表达载体的构建及表达[D].广州:华南农业大学动物科学学院,2011.
    [150] Józefiak D, Rutkowski A, Jensen BB, Engberg RM. The effect of [J]. BritishPoultry Science.2006,47(1):57-64.
    [151] Ali S, Fontes CM, Hazlewood GP, Hirst BH, Clark AJ, Gilbert HJ, Hall J.Co-integration and expression of bacterial and genomic transgenes in thepancreatic and intestinal tissues of transgenic mice[J]. Gene.1997,202(1):203-208.
    [152] Ali S, Hall J, Hazlewood GP, Hirst BH, Gilbert HJ. A protein targeting signalthat functions in polarized epithelial cells in vivo[J]. Biochemical Journal.1996,315(Pt3):857.
    [153] Mikkelsen TR, Brandt J, Larsen HJ, Larsen BB, Poulsen K, Ingerslev J, Din N,Hjorth JP. Tissue-specific expression in the salivary glands of transgenicmice[J]. Nucleic acids research.1992,20(9):2249-2255.
    [154] Alien ND, Cran DG, Barton SC, Hettle S, Reik W, Surani MA. Transgenes asprobes for active chromosomal domains in mouse development[J].1988:
    [155] al-Shawi R, Kinnaird J, Burke J, Bishop J. Expression of a foreign gene in a lineof transgenic mice is modulated by a chromosomal position effect[J]. Molecularand cellular biology.1990,10(3):1192-1198.
    [156] Rasper VF, Cereal polysaccharides in technology and nutrition, AmericanAssociation of Cereal Chemists,1984.
    [157] Gum Jr J. Mucin genes and the proteins they encode: Structure, diversity, andregulation[J]. American journal of respiratory cell and molecular biology.1992,7(6):557.
    [158] Gendler S, Spicer A. Epithelial mucin genes[J]. Annual review of physiology.1995,57(1):607-634.
    [159] Kim YS, Gum Jr J. Diversity of mucin genes, structure, function, andexpression[J]. Gastroenterology.1995,109(3):999.
    [160] Velcich A, Palumbo L, Selleri L, Evans G, Augenlicht L. Organization andregulatory aspects of the human intestinal mucin gene (MUC2) locus[J]. Journalof Biological Chemistry.1997,272(12):7968-7976.
    [161] Audie J, Janin A, Porchet N, Copin M, Gosselin B, Aubert J. Expression ofhuman mucin genes in respiratory, digestive, and reproductive tracts ascertainedby in situ hybridization[J]. Journal of Histochemistry&Cytochemistry.1993,41(10):1479-1485.
    [162] Chang S, Dohrman A, Basbaum C, Ho S, Tsuda T, Toribara N, Gum J, Kim Y.Localization of mucin (MUC2and MUC3) messenger RNA and peptideexpression in human normal intestine and colon cancer[J]. Gastroenterology.1994,107(1):28.
    [163] Ho SB, Niehans GA, Lyftogt C, Yan PS, Cherwitz DL, Gum ET, Dahiya R,Kim YS. Heterogeneity of mucin gene expression in normal and neoplastictissues[J]. Cancer research.1993,53(3):641-651.
    [164] Tytgat K, Büller H, Opdam F, Kim Y, Einerhand A, Dekker J. Biosynthesis ofhuman colonic mucin: Muc2is the prominent secretory mucin[J].Gastroenterology.1994,107(5):1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700